Modeling in Neuroscience I. Biological bases

Zoltán Somogyvári

senior research fellow

HUN-REN Wigner Research Centre for Physics, Department of Computational Sciences, Theoretical Neuroscience and Complex Systems Research Group

Supporting materials: http://cneuro.rmki.kfki.hu/education/neuromodel/

Neuromodel 2025

Computational Neuroscience

Structure – Dynamics – Implementation – Algorithm – Computation - Function

The brain and the computer I.

Number of units Connections/unit	I mm³ of cortex 50,000 neurons 10,000		I mm² of a CPU I million transistors	
Total connections	500 million		2 million	
Wiring	4 km of axons		0.002 km of wire	
	Whole brain	1555 B	Whole CPU	
Weight	1.3 kg		~0.4kg	(ntel)
Power	20 W		27 W	Core 2 Extreme
Units	10 ¹¹ neurons		10 ⁸ transistors	

 2×10^{9}

2 km of wire

1 x 1015

8 million km of axons

wiring

connections

The brain and the computer II.

Properties	Brain	Computer
# processing elements	10 ¹⁴ synapse, 10 ⁹ neuron	108 transistor
Element size	10 ⁻⁶ m	10 ⁻⁶ m
Energy use	30W	30W
Connections per element	10000	3
Processing speed	100 Hz	10 ⁹ Hz
Computation	parallel, distributed	serial
Fault tolerant	yes	no
Learns	yes	a little
Conscious	usually	Not (yet)

Hierarchy of description

Brain of vertebrates (mammals)

as visible with naked eye

rat

- 1. medulla oblongata
- 2. pons
- 3. cerebellum
- 4. mesencephalon
- 5. metencephalon
 - thalamus
 - hypothalamus
 - epithalamus
- 6. telencephalon
 - ganglia basalis
 - cortex
 - paleocortex
 - archicortex
 - *>* hippocampus, ...
 - neocortex
 - > lobus frontalis
 - lobus parietalis
 - lobus occipitalis
 - >lobus temporalis

paleocortex periarchicortex archicortex isocortex proisocortex

The archicortex

The neocortex

Elementary unit of the nervous system: The neuron

Parts of the neuron:
dendrite
soma
nucleus
axon
initial segment
terminal

synapse

glia myelin sheath Ranvier-nodes Function:
reception
integration
reproduction
transmission
encoding
output

communication

background speed up amplification

Types of neurons

Pyramidal cell in the cerebral cortex

Bipolar cell in the retinal

Reticular cell in the thalamus

Purkinje cell in the cerebellum

Mitral cell in the olfactory bulb

The cell

with electronmicroscope

Peripheral protein

lipid bilayer proteins integral peripheral

extracellular space (EC) intracellular space (IC)

Trough the cell membrane

Different permeability, for different ions and molecules

Forces of ion transport

 $\Delta G = \Delta G_c + \Delta G_m = -3.06 \text{ kcal/mol}$

Membrane transport, trough proteins

- pumps (+energy!)
- channels
- transporters

(100 - 103 ions/s)

(107 - 108 ions/s)

(102 - 104 molecules/s)

Discovery of the electricity in animals

Galvani, De Viribus - Electricitatis in Motu Musculari. 1792.

The electric neuron: resting potential

with electrode

The phenomenon:

Potential difference between the two side EC and IC of the membrane

Plasma

Reason:

on the two different sides of the membrane:

- different concentrations of ions on
- the two side of the membrane
- different permeability for different
- ions

The generation of the resting potential

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Larry R Squire and others: Fundamental Neuroscience 2nd Edition., Academic Press, 2002

The electric neuron: action potential

with electrode

The action potential is an 'all or none' phenomenon

Between two neuron: The synapse

Excitatory and inhibitory postsynaptic potentials

Excitatory and inhibitory neurotransmitters

Glutamat

(information transmission)

(mood, wake/sleep)

Noradneraline (arousal)

Dopamine

(reward system, Parkinson disease, schizophrenia)

GABA-gamma aminobutyric acid (in the central neural system)

Glycine (in the periphery)

