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Abstract

Sleep spindles are bursts of electrical oscillatory activity in the brain of sleeping mammals

exhibiting a waxing-waning envelope of 0.5–1.5 seconds duration, and a characteristic

frequency in the 11–16 Hz range. They play a crucial role in memory consolidation,

and enhancing this process through non-invasive brain stimulation, such as transcranial

focused ultrasound stimulation, may improve memory and learning. Achieving such im-

provements requires a robust and precise real-time detection system, both in terms of

software and hardware. However, most of the existing detection systems are specialized

for human spindle activity, limiting their application in animal studies that are essential

for in-depth research. Additionally, stimulation capabilities are often absent from these

frameworks. In this thesis, I aim to address these limitations by developing a complex

software-hardware system for real-time sleep spindle detection in rodents, designed to be

interfaced with an ultrasound transducer to trigger neural stimulation.

I began my research by testing various sleep spindle detection algorithms offline. After

reviewing the literature, I developed a simple detector and implemented four additional

promising detectors in Matlab. I conducted parameter optimization and evaluated their

performances using two expert labelled datasets as reference. The analysis included

measures classically used in the literature to characterize sleep spindle oscillations, such

as the average frequency spectra, spindle duration, inter-spindle intervals, and by-sample

comparisons, considering both between- and within-subject variations. The results of

three detectors demonstrated an efficiency comparable to expert-to-expert performance.

Based on its stability, simplicity and accuracy, the detector I developed based on previous

examples I studied was selected for further evaluation in real-time applications.

For online detection of sleep spindle oscillations, I designed and developed a hardware

system using a Raspberry Pi 4 and an ADS1115 analog-to-digital converter (ADC). The

setup was assembled in a breadboard using general-purpose input/output (GPIO) cables.

Python was used to control the GPIO ports and access the ADC. The hardware com-

ponents were tested one-by-one before real-time application. Following successful signal
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acquisition, synthetic spindles were generated embedded within previously recorded elec-

troencephalographic (EEG) signals and fed to an oscilloscope as a digital signal. The

oscilloscope acted as the analog source for the tests, utilizing its arbitrary function gen-

erator feature. My detector was adapted for online operation in Python, and I tested

it with the synthetic spindles. Once parameters of the algorithm were set to allow for

reliable detection of artificial spindles, real EEG data was used to confirm the result.

After fine-tuning the parameters, the online detection performance matched the results

achieved in offline mode.

One GPIO pin was chosen to carry the control signal upon sleep spindle detections to

drive the ultrasound transducer. The transducer is incorporated into the setup to deliver

transcranial focused ultrasound stimulation when it is triggered. In order to unleash

the full potential of the stimulation, experiments should be conducted during the natural

sleeping period of the animals. This requirement necessitated the development of a device

capable of securely holding the transducer on the head of the rodents. To address this, a

plastic headgear was designed and 3D-printed. The stability of the structure was tested

on a 3D printed rat skull by consulting with an expert of this field.

To conclude, the developed hardware-software solution with the mechanical compo-

nents enables the exploration of a research paradigm that is at the forefront of current

neuroscience.
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Chapter 1

Introduction

Today, brain stimulation is no longer just a concept from science fiction movies; for many

neurologists, it has become part of everyday practice, particularly with electrical, mag-

netic and infrared stimulation techniques. However, currently available safe methods to

non-invasively modulate neural activity all have some caveats. While electrical or mag-

netic stimulation has very precise temporal resolution, these methods cannot target neural

regions at a fine scale [1]. Furthermore, while infrared neural stimulation (INS) is capable

of high-resolution spatial stimulation, it cannot reach neural structures deeper than the

cortex [2]. The potential of transcranial focused ultrasound stimulation (tFUS) is clear,

with its non-invasive nature, deep tissue penetration and precise focus. However, despite

experimentation with ultrasound stimulation dating back to the late 1920’s [3], many

aspects of its effects remain unclear to this day [4]. Further experiments are definitely

needed to explore this promising area of neuroscience.

In contrast to tFUS, sleep spindle oscillations are one of the most thoroughly re-

searched phenomena of mammalian neuroscience. They are characteristic EEG events

during non-rapid eye movement (NREM) sleep. Their role has been linked to memory

consolidation [5], learning, cognitive functions, and neural plasticity, attracting a signifi-

cant focus of research in both sleep science and neurostimulation [6]. In addition to their

functional significance, their distinctive features are conserved across species, making

them a key subject for translation biomarkers used in preclinical and potentially clinical

experiments.

Scientists had already begun to explore the impact of tFUS on neural activities, during

rapid eye movement (REM) and NREM [7] sleep. After in-phase stimulation during slow

oscillations, changes occurred in spindle activity: an increase of coupling of spindle-

ripple in NREM sleep was observed. This provides a hopeful outlook for future tFUS
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experiments aiming to influence sleep spindles and concurrently memory and learning

processes.

In my long-term research, I plan to follow this direction and create a system that inte-

grates these two fields. The envisioned framework will encompass EEG data acquisition,

real-time sleep spindle detection, and a tFUS module that activates upon detection. This

closed-loop system would be fitted to rodents, to be utilized during the preclinical phase

of experiments. Figure 1.1 demonstrates the workflow of the closed-loop system. The

process begins with recording the animal’s EEG signal and culminates in the stimulation

module. Such device could be invaluable in further tFUS and sleep research.

Figure 1.1: The workflow of the closed-loop system.

In this thesis, my work toward creating this closed-loop system by developing a real-

time sleep spindle detection hardware-software solution is described. In Chapter 2, I first

provide a short description of the background of sleep spindles. Their functions, cellular

origin and most importantly, their distinctive features are detailed. This is followed by

a brief introduction to the implemented offline detectors and the reasoning behind their

choice. In Chapter 3 the development process is presented. It includes the offline eval-

uation of the algorithms, and how the conclusion was drawn for the further application

of the detector developed by me. The parameter optimization process and various eval-

uation metrics are both explained there. Afterwards, the focus shifts to the hardware.

The components and how they are connected are described in detail. Next, the real-time

software is unveiled. I emphasize the solutions that are unique in the online system and
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the ones that were challenging to find. At the end of the chapter, a 3D-printed headgear

design for rodents is presented. Incorporating this device into the system establishes

a seamless connection between measurement and stimulation. To obtain the presented

results, the analog signal was simulated by the oscilloscope, helping us to validate the

developed framework as it is discussed in Chapter 4. The accuracy of the device is con-

firmed with synthetic and with real spindles. I conclude this thesis in Chapter 6 with a

brief summary and an outlook to future applications and research.
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Chapter 2

Literature Review

2.1. Sleep Spindles

In neuroscience sleep spindles have been a constant topic of research for decades [6].

Their distinct appearance made it possible to identify them almost at the same time as

electroencephalographic (EEG) recording was discovered. Since then, a lot of progress has

been made. Now spindles are known as signs of memory consolidation and are frequently

used in conversations about learning or cognition [5]. In the following section their

dominant features, their cellular origin and their believed functions are all introduced

briefly.

Sleep spindles are hallmark events on EEG recordings. The name speaks for itself,

as they appear during sleep, specifically non-rapid eye movement (NREM) sleep, and

their changing amplitude makes them resemble spindles. Figure 2.1 demonstrates the

characteristic features with a schematic depiction (2.1a) and a real example (2.1b).

(a) Schematic spindles from Schmeichel

Lab [8].

(b) Real spindle activity from one of the

dataset I studied.

Figure 2.1: The signature appearance of sleep spindles.
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Their unique features often categorize them into two groups: slow and fast spindles [6].

Slow ones tend to have higher amplitude and smaller frequency, while they preserve the

typical waxing and waning pattern. On the other hand, fast spindles occupy a higher

frequency range and have lower amplitude, mostly keeping an only waning shape. In

general, it can be said that the spindle-like shape, the 0.5-3 s duration and the 9-15 Hz

frequency range are characteristic features they carry. The specific numbers cited in

various articles may differ slightly, but the overall order of magnitude has remained

consistent since spindles were first described [9]. Most detection methods are designed to

identify these attributes in EEG recordings. It is important to note that many detectors

are specialized for human EEG. While sleep spindles are conserved across species, fine-

tuning the parameters related to these features is necessary to accommodate data from

animals.

The cellular origin of these events lies in the intrathalamic network of nucleus reticu-

laris thalami (nRt) cells and thalamocortical (TC) cells, together referred to as the nRt-

TC loop [10]. Specific genes like CaV3.3 and SK2 are responsible for expressing different

channels, which act together to create the rhythmic firing patterns [6]. Modification of

such genes was successfully used to selectively alter sleep spindles. The temporal organi-

zation of sleep spindles is regulated by cortical slow oscillations through cortico-thalamic

synapses and by hippocampal ripples. Detailed studies show that ripples align with spe-

cific phases of spindles, creating “spindle-ripple events”. This coalescence of rhythms is

thought to play a role in transferring information for long-term memory storage [5]. That

is why the finding by Dong et al. [7] claiming to influence this coupling with transcranial

focused ultrasound stimulation is so powerful. Predominantly, the production of slow

spindles happens above the frontal cortex, while the fast spindles can be detected above

the parietal and central sites [6]. Additionally, they can be found in the parahippocampal

gyrus, hippocampus, and, to a lesser extent, in the entorhinal cortex and amygdala. This

information is key for defining the stimulation sites and the target cells for non-invasive

brain stimulation intended to influence the spindle activity.

Lastly, what truly makes these oscillations interesting is their potential function.

As I have already mentioned, studies indicate that sleep spindles may be contributing

to neural plasticity, learning and memory consolidation [6]. The bursting activity of

cells producing these events are generally believed to be an effective way of triggering

synaptic plasticity. Experimental data confirmed that the generated Ca2+ bursts could

induce both short-term potentiation and long-term potentiation in cortical neurons, and
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hence contribute to neural plasticity. Moreover, lowering arousal threshold therefore

maintaining NREM sleep under disturbing environment is also one function of spindles

that is supported by evidence. For example, the overexpression of SK2 channels led

to prolonged spindle activity, and consequently, in a higher arousal threshold in mice.

One of the most frequently referenced function involves the memory. Spindles have been

associated with improved recall of both declarative [11] and procedural memories [12],

and their activity seems to correlate with learning performance [13]. However, it remains

unclear whether spindles directly trigger memory consolidation or simply enhance sleep

quality, and further research is needed to fully understand their role in these processes.

The closed-loop system we aim to develop has the potential to significantly advance this

research.

2.2. Detection Algorithms

Sleep spindle detection can be approached in two ways: one requires the continuous pres-

ence of an expert for accurate monitoring, while the other relies on detection algorithms,

allowing the computer to perform the task. While expert analysis remains the gold stan-

dard, it is highly time-consuming (and subjective), which is why many scientists are

actively working to address this challenge. Therefore, I encountered a wide range of algo-

rithms during my literature research, leaving me spoiled for choice. During the selection

process, I focused on choosing detectors that demonstrated superiority in specific aspects.

Additionally, I considered various working mechanisms to identify those most effective

on our datasets. For potential future real-time applications, I included both simple and

complex models. This approach ensures flexibility in hardware selection, allowing for

either simple or complex setups without being constrained by the choice of software.

The pattern followed by most of these algorithms are easy to recognize. Their pipeline

typically consists of filtering in the characteristic frequency band of spindles, fitting an

envelope and applying a threshold for event detection. Finally, the duration of the iden-

tified spindles is verified to ensure it falls within the expected range. Building on this

foundation, I developed my own detector (which I will refer to as My Detector), which

will be detailed in Section 3.1. The skeleton of most of the spindle detecting algorithms,

which also inspired the creation of My Detector, is shown in Figure 2.2.

The first algorithm from the literature was selected for two main reasons. First,

it employs wavelet transformation, a method representative of many other approaches.

Second, it had previously demonstrated superior performance compared to four other
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Figure 2.2: The pipeline of many sleep spindle detecting algorithms, including the one

developed by me.

detectors. Originally introduced by Wamsley et al. in 2012 [14], its effectiveness was

further evaluated by Warby et al. in 2014 [15]. The general idea behind the algorithm

is to replace the filtering with a continuous wavelet transformation using a complex

Morlet wavelet with center frequency of 13.55 Hz. Then an envelope is created by the

moving average (MA) and spindles are detected over a threshold calculated from the

mean of the MA signal multiplied by a constant. The MATLAB code was provided in

the supplementary information of Warby et al.’s work [15]. I slightly modified the code to

better fit my large and noisy data. First, I added a bandpass filter between 0.5 and 35 Hz

to exclude noisy segments from the analysis. To avoid other noise artifacts, I replaced

outlier voltages with the average of the signal.

The second detector originated from my supervisor’s previous work, and it had already

been applied to part of our testing data. Previously working well under similar settings,

Pálfi et al.’s algorithm [16] got a place between the detectors. Wavelet transformation

is also a key component here, but after performing the decomposition, the regions of

maximal power within the spindle frequency band were identified on the time-frequency

plane. Then a lower and an upper threshold is used to identify the spindles. The algorithm

also introduces methods to concatenate short spindle sections that are close to each other.

The last step considers the duration of the detected spindles, as many of the algorithms

do. The original code was given to me by my supervisor Dr. Tamás Kiss and I only

implemented its parallelization. The same approach used in My Detector was followed:

the data was split into separate parts, and the analysis was run in parallel on these

segments. One major advantage of this detector is that it is specifically designed for

rodent sleep data, whereas all the other detectors were tested on human data.

The series of conventional detectors was concluded by the A7 detector [17]. In 2019

this algorithm surpassed its peers by using the sigma frequency band (12-16 Hz) of the

EEG and some of its features as a more sophisticated detection approach. Beside the

absolute sigma power, the relative sigma power, and the correlation/covariance of the

sigma band-passed signal to the original EEG signal are utilized. The parameters are

calculated in a 0.3 s long time window with 0.1 s long steps. This method could be
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compatible with online detections. The source code of the detector was uploaded on

GitHub [18]. The algorithm was implemented in Python and no changes were added

beside parameter optimization.

Last, but not least, as machine learning models have started to rise, the spindle

detection field was reached as well. For the evaluation a neural network (NN), called

SUMO was selected. The SUMO is a U-Net-type deep neural network model, which had

already outperformed the A7 detector [19]. The network was trained on EEG data from

180 human participants, sourced from the Massive Online Data Annotation (MODA)

project. The trained model takes two-channel EEG data as input and outputs a raw

vector of probabilities, indicating whether each point is likely to represent a spindle.

This is later smoothed with a moving average to get the final output. The trained model

was available in the same GitHub repository as the A7 detector [18]. Because of the lack

of data for training, the model trained on human EEG was used without modifications.

To summarize, five sleep spindle detection algorithms were implemented. My Detec-

tor, along with the algorithms by Wamsley et al. and Pálfi et al., was used in MATLAB,

while the A7 detector and the Sumo NN were utilized in a Python environment. The

owners of the algorithms all provided their source code via GitHub or as supplementary

information. This made the adaptation a quick process and only slight changes were

added, like including parallelization for a faster analysis on large data. Parameters were

also identified and tuned later, as detailed in Section 3.2.3.
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Chapter 3

Design and Development

In this chapter, the main steps of the development process are detailed. First, the de-

velopment of my algorithm is described and the offline performances of the sleep spindle

detectors are evaluated. Based on the results, one detector is chosen for online applica-

tions, and it is implemented in a form to fit the constraints introduced by the real-time

environment. A hardware that is capable for analog signal processing is assembled, and

its components are tested one by one. The basis code that includes data acquisition,

visualization and saving is also described. In addition, a 3D printed headgear design

is presented, which can hold the ultrasound transducer on the animal’s head during in

vivo experiments. By the end of the chapter, every element of the real-time sleep spin-

dle detection system has been described, and the solution is ready to demonstrate its

performance in a test environment.

3.1. Development of My Detector

As previously mentioned, based on the typical pipeline of detection algorithms found in

the literature, I developed my own approach following the steps shown in Figure 2.2. For

filtering, My Detector employs a 4th-order Butterworth bandpass filter with a default

frequency range of 12–16 Hz. Envelope detection is performed using MATLAB’s built-in

envelope function, which utilizes the Hilbert transform. Detections are recorded when the

envelope exceeds a predefined, constant threshold and the duration falls between 0.2 and

6 seconds. This deviates slightly from the conventionally used 0.5–3 s range, however, an

examination of the available expert-labeled datasets revealed that this interval was the

best fit for the identified events.

The algorithm was implemented using parallel computing to accelerate its execution.
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The input data is divided into six chunks, with any leftover data points discarded. Fil-

tering and envelope fitting are performed in parallel on these segments using MATLAB’s

parfor module. Finally, the results are concatenated into a single filtered array and a

single envelope array.

Figure 3.1 illustrates the working mechanism of the detector along with its specific

parameters. The parameters with the most significant impact on the final output are

highlighted in red. The first one defines the minimum duration of the peaks for the

envelope function, while the second is the constant threshold applied to the entire signal,

which must be exceeded for detections to occur. The exact values of these will be later

optimized in Section 3.2.3.

Figure 3.1: A detailed workflow of My Detector, including its specific elements and

parameters.

3.2. Offline Evaluation of Sleep Spindle Detectors

In the previous chapter, some of the available sleep spindle detecting algorithms were

outlined. Many of them claiming to surpass the performance of the others. In order to

verify this ourselves the offline evaluation of them is necessary. Moreover, the majority of

them were tested on human data and our goal is to design an accurate spindle detector

for rodents. On top of that, optimal parameters could always differ between datasets.

Overall, offline evaluation could provide valuable insights across multiple aspects. Before

presenting the results, the utilized data sets, the evaluation metrics and the process of

parameter optimization are described.

3.2.1 Data

The detection algorithms were evaluated on cortical EEG recordings of mice and rats.

The data came from two different sources, both from previous research conducted by

my supervisor. The first dataset contained 70 recordings from 14 mice. For the first

four animals, five of their recordings were scored by an expert, but only three of them

contained spindles. This leaves us with 12 annotated EEG signals. The three different
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measurements taken from the same animals allow us to do within-subject performance

evaluation. Further information about this data acquisition can be found in Pálfi et

al.’s article [16]. The second dataset only involved recordings from three rats, with one

recording per rat. However, they were all scored by 2 experts, creating a consensus, which

I used as gold standard during certain parts of the evaluation process.

3.2.2 Evaluation Metrics

To compare the algorithms, various evaluation metrics were employed. Following the

methodology outlined in Warby et al. [15], I implemented a sample-based analysis that

calculates the F1-score, precision, and recall of the detections relative to the manually

labeled data. Based on true positive (TP), false positive (FP) and false negative (FN)

hits, these metrics can be calculated with the following equations:

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

F1 score = 2 · Precision · Recall
Precision + Recall

(3.3)

In simple terms, a high precision score indicates that most of the identified events are

true spindles, while a high recall means that the detector successfully identifies most of

the expert-labeled spindles. The F1-score combines these two metrics to provide a single

value that represents both precision and recall. Ideally, a perfect result would approach

1, while a result less than 0.5 would indicate lower accuracy. This can be overwritten by

analyzing the gold standard dataset and comparing the performances of the two experts

to establish an upper limit for the achievable F1 scores. Table 3.1 presents the F1 scores

between experts on the three measurements from the rat dataset. The key takeaway from

this analysis is that if the experts’ agreement reaches only a mean F1 score of 0.5971,

achieving a similar score with automated methods can be considered sufficient.

Rat - 3662 Rat - 3664 Rat - 3668 Mean

F1 score between experts 0.5581 0.6751 0.5580 0.5971

Table 3.1: The F1 scores between the experts in the gold standard dataset indicate the

upper limit of performance for automated methods.
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This metric formed the basis of the evaluation process and the subsequently presented

parameter optimization. Additionally, further analysis took place to confirm the results.

This included the extraction of the average frequency spectrum for all signals, along with

the inter spindle interval distribution and length distribution. The mean squared errors

between the distributions of the experts and the algorithms were calculated to quantify

these results.

3.2.3 Parameter Optimization

Inherently, even the simplest signal processing pipelines require the adjustment of certain

parameters. To fulfill the full potential of the algorithms, parameter optimization was

performed. Because the mice dataset contained more data, it was used for the optimiza-

tion task.

Initially, I identified the possible parameters by examining both the original articles

and the source codes. For My Detector, I selected two parameters that were believed to

have the greatest impact on the output. One parameter determined the minimum dura-

tion of the envelope’s peaks, while the other set the threshold the envelope had to exceed

for event detection. In the algorithm of Wamsley et al., four parameters were identified as

potentially influential, including the frequencies and scale for the wavelet transformation,

as well as a scaling factor for the amplitude. In the A7 detector’s architecture, I identified

another four parameters, all of which are thresholds for features in the sigma frequency

band. I concluded that for the Sumo NN, reasonable parameter choices are only available

during training. Since I did not intend to retrain the network, no changes were made to

the parameters in this regard. Pálfi et al.’s algorithm allowed for a total of six parameters

to be adjusted. However, optimizing all of them would have been computationally overly

expensive due to the exceptionally long run time. Therefore, the original values were

retained. Overall, the parameters of the three detectors were optimized.

Subsequently, the reasonable ranges for parameter search were manually adjusted

through experimentation. My initial choice for the optimization method was Grid search

optimization. This technique was quite slow, as all the potential variation of the param-

eters are examined. However, it was useful to confirm the selected intervals that could

contain the optimal values. Additionally, Bayesian optimization was implemented for a

more robust, faster and automated solution. Figure 3.2 presents examples of the results

for both methods side by side. The 3D plots represent the optimization of My Detector,

which only had two parameters to adjust, allowing for a 3D visualization of the achieved
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performances. By comparing the axes between the two types of analyses, differences in

the parameter ranges can be observed, which were narrowed down for the Bayesian algo-

rithm. It is also important to note that the Bayesian optimization solves a minimization

problem, while Grid search optimization seeks to maximize the performance.

(a) Grid search optimization (b) Bayesian optimization

Figure 3.2: Parameter optimization.

Ultimately, the optimal parameters of each algorithm for the different EEG signals

were provided by the Bayesian algorithm. The parameter values were collected in a CSV

file with their corresponding F1 scores. Using this table, the mean values across the

same animals (mean across the 3 measurements, see Table A.1) were calculated and later

applied during the evaluation processes on the same dataset. The final parameters, which

are ready for application to unknown animals, were the mean across the 12 signals, and

they are summarized in the 3.2 Table.

Param1 Param2 Param3 Param4

Name Value Name Value Name Value Name Value

My Detector
Envelope

duration
0.589 Threshold 18.572 - - - -

Wamsley et al.
Center

frequency
13.349

Bandwidth of

the wavelet
0.451

Scale of

the wavelet
3.145

Scale of

the amplitude
1.699

A7 detector

Threshold for

absolute sigma

power

1.848

Threshold for

relative sigma

power

0.445
Threshold for

sigma covariance
2.369

Threshold for

sigma correlation
0.603

Table 3.2: The final parameter values are the averages of the optimal values calculated

across the 12 signals.

These values provide an initial estimate for novel signals. Nevertheless, parameter

optimization of data gathered from new animals or in different measurement environments
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is always beneficial and is essential for the best results.

3.2.4 Offline Performances

Taking advantage of the optimal parameters calculated for each animal, the first part of

the evaluation was carried out using the mice dataset with the corresponding parameters.

For the exact values, see Table A.1 in the Appendix.

As a starting point, detections by the expert were collected in a 2D-array, with the

beginning of the spindles in the first dimension and the durations in the second. This

array is later referred to as Es and is compared to a similar one, which is formed from the

spindles found by the detectors, called Ds. All analysis was done using these two objects.

It should be emphasized that during the evaluation, the potential of the algorithms

for the online application had to be prioritized. Hence, time consumption was a critical

point of the process and that often made us sacrifice detectors if their accuracy showed

no promise either.

F1 score

The F1 score served as the foundation for evaluation. This means that the detectors were

primarily assessed based on their performance in these metrics. The recalls, precisions,

and F1 scores were calculated using equations 3.1, 3.2, and 3.3. The results for all

detectors across the 12 signals were averaged and are presented in Table 3.3, with the

highest performances highlighted in gray. Pálfi et al.’s algorithm, which required several

minutes to process, significantly longer than the others (for reference, My Detector took

approximately 10–20 seconds) yielded an F1 score that was much below the others’, and

therefore it was excluded from this analysis.

F1 score Precision Recall

My Detector 0.553 0.502 0.623

Wamsley et al. 0.425 0.420 0.433

Pálfi et al. - - -

A7 detector 0.566 0.611 0.529

Sumo NN 0.578 0.594 0.571

Table 3.3: Mean F1-score, Precision, and Recall for the different models between subjects.

The Sumo NN achieved the highest overall F1 score, with both the A7 detector

and My Detector coming close to the top. In contrast, Wamsley et al.’s method lagged
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behind the others. Despite Sumo’s strong F1-score, the A7 detector stood out for its high

precision, while My Detector excelled in recall. These differences may become crucial in

real-time applications, where favoring precision or recall could enhance outcomes based

on experimental insights. Figure 3.3 visually presents these results, highlighting Wamsley

et al.’s notably lower performance.

Figure 3.3: Between subject performances on the recall-precision axis with the mean

F1-score displayed.

The dataset included multiple repeated measurements for each animal, which opened

the door for within subject analysis. This could be a meaningful tool regarding the stabil-

ity of the algorithms. Low variance of the results within a subject could indicate a stable

performance and the significance of parameter optimization before the signal acquisition,

while varying values can question the reliability of the detector. The algorithms were

evaluated by calculating the mean performance across the three measurements within

each animal, with the standard deviation representing variability in these measurements.

All the performances of the algorithms are presented on Figure A.1 in the Appendix,

where the proximity of the points with the same colour represents the stability of the

performances. Table 3.4 contains the standard deviations. To summarize these results,

high fluctuations in the Sumo NN’s performance and a stable output for the A7 detector

and My Detector can be observed. This suggests, that the preliminary calibration of

these two detectors on the animal, could lead to accurate detections. Keep in mind that

the Sumo NN had not been optimized and is currently trained on human data. With

further optimization, this anomaly may be resolved, but that requires a lot of data on

animals for training.
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Standard deviation within subject

F1 score Precision Recall

My detector 0.0340 0.0350 0.0486

Wamsley et al. 0.0353 0.0702 0.0346

Pálfi et al. - - -

A7 detector 0.0239 0.0411 0.0320

Sumo NN 0.0510 0.0312 0.0916

Table 3.4: Standard deviation results of different detectors within subject.

The by-sample analysis demonstrated strong performance for three of the five detec-

tors. To further evaluate these findings, the annotated rat dataset was utilized. The

primary goal of these calculations was to determine whether the characteristic features of

automatically detected spindles aligned with those identified by expert consensus. This

dataset contained much shorter signals, providing an opportunity to test the efficacy of

Pálfi et al.’s algorithm. The parameters were derived from Table 3.2, except for the

threshold for My Detector, which was increased to 50 to accommodate the amplitude of

the new signals. The detection array (Ds) was extracted using the same logic as before,

but applied to the new dataset. The consensus array (Es) included spindles identified

by both experts, representing the shared ground truth or consensus. Ultimately, conclu-

sions were drawn from this offline analysis and one detector was selected for real-time

application.

Average Frequency Spectrum

In the average frequency spectrum of the spindles, a peak typically appears within the

range of 9–16 Hz. For better visibility, this interval is highlighted in Figure 3.4. The

upper subplot displays the spindle spectra as identified by the various algorithms, while

the lower subplot illustrates the characteristics of the consensus spectrum.

All detectors, except the Wamsley et al., along with the experts, have a distinctive

peak in the expected band. It implies correct detections for most, and poor performance

for the Wamsley et al. To better demonstrate these differences, the mean squared errors

between the algorithms and the consensus were calculated based on the data of three

rats. The results are collected in Table 3.5, supporting our assumption that the Wamsley

et al. was the weakest link during this analysis.

An interesting, but not surprising result belongs to the algorithm of Pálfi et al.,
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Figure 3.4: Average frequency spectrum of the detected sleep spindles by the algorithms

and the experts.

Mean squared error of the spectra

3662 3664 3668

My Detector 6.79 · 104 6.21 · 104 6.89 · 104

Wamsley et al. 4.94 · 105 7.21 · 105 6.13 · 105

Pálfi et al. 5.57 · 104 4.48 · 104 3.93 · 104

A7 detector 1.06 · 105 1.39 · 105 3.62 · 105

Sumo NN 1.46 · 105 1.44 · 105 3.62 · 105

Table 3.5: Mean squared errors of the average frequency spectra of the algorithms using

the consensus as reference.

which produced the smallest errors. This was also expected, because that algorithm was

developed and optimized on this dataset. My Detector had no such advantage, but still

exhibited a solid performance.

Inter Spindle Interval

The second key feature analyzed was the inter-spindle intervals (ISI). An increased den-

sity of spindles is believed to indicate learning and has been correlated with improved

performance in motor tasks [6]. This highlights the importance of accurately detecting

spindles with correct time intervals between them. However, given the wide variability

of ISI, a direct calculation may be less meaningful. Instead, comparing the detected
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ISI to those identified by experts provides a more insightful measure. To evaluate this,

the mean squared errors (MSE) between the detected spindles and the expert consensus

were calculated and summarized in the Table 3.6. Additionally, Figure 3.5 illustrates an

example of ISI distributions, demonstrating the alignment between the detection method

and expert assessments. The log function is applied to the intervals, making the x axis

show values that correspond to the log-transformed intervals. This transformation helps

handle the typically wide range of ISI values by compressing the scale and allows easier

comparison of distributions. On the y axis, the normalized frequency of the ISI values is

shown.

Figure 3.5: Example distributions.

Mean squared error of the ISI

3662 3664 3668

My Detector 1.01 · 10−3 4.40 · 10−4 4.15 · 10−4

Wamsley et al. 6.57 · 10−4 1.09 · 10−3 1.03 · 10−3

Pálfi et al. 6.39 · 10−4 4.87 · 10−4 5.01 · 10−4

A7 detector 6.98 · 10−4 4.88 · 10−4 5.89 · 10−4

Sumo NN 5.32 · 10−4 7.07 · 10−4 3.99 · 10−4

Table 3.6: MSE of the ISI between the

algorithms and the consensus.

Comparison of spindle detectors based on inter spindle intervals (ISI).

Overall, the results were highly consistent among the detectors and fell within the

same range as the variability observed between expert scorers (10−4). My Detector

and the method by Wamsley et al. revealed slightly weaker performance, but without

significant difference.

Spindle Duration

The duration of the spindles is a characteristic feature of the event, even though the

exact range has not been established. Generally, they are expected to be between 0.5 to

3 seconds [15], but examples are often seen which do not strictly follow these margins.

Consequently, instead of solely analyzing the length of the detections, comparison with the

consensus could give more informative picture about accuracy. Table 3.7 shows the mean

squared errors between the algorithms and the consensus, while Figure 3.6 demonstrates

an example of the distributions.

The experts identified spindles with a maximum duration of 3.3 seconds, while Pálfi’s
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Figure 3.6: Example distributions.

Mean squared error of the durations

3662 3664 3668

My Detector 2.42 · 10−3 7.31 · 10−4 1.17 · 10−3

Wamsley et al. 2.40 · 10−3 9.98 · 10−4 2.12 · 10−3

Pálfi et al. 1.36 · 10−3 5.26 · 10−4 6.36 · 10−4

A7 detector 2.41 · 10−3 8.11 · 10−4 9.48 · 10−4

Sumo NN 2.57 · 10−3 4.89 · 10−4 1.17 · 10−3

Table 3.7: MSE of the durations be-

tween the algorithms and the consensus.

Comparison of spindle detectors based on durations of spindles.

detector was capable of detecting spindles up to 5.1 seconds. For both methods, most of

the spindles fell within the 0.5–1.5 second interval. The scorer agreement analysis yielded

a mean squared error (MSE) of approximately 8.4 · 10−4 for spindle length. Considering

this, the algorithms demonstrated reasonable accuracy, with Pálfi et al.’s detector slightly

outperforming the others, though without major distinction.

Conclusion

The primary conclusion from the evaluation is that the detector by Wamsley et al. strug-

gled with both time consumption and accuracy across different datasets and did not

demonstrate sufficient performance in any key area to suggest their suitability for further

use. The algorithm of Pálfi et al. could reach similar results as the others on the second

dataset, but failed on the first one containing larger signals with more noise. This im-

plies a less reliable mechanism, which is better to avoid in the future. The other three

algorithms demonstrated great potential for online usage with convincing results. The

Sumo NN reached the highest F1 score of 0.58, which is almost as good as the average

F1 score between experts. The A7 detector and My Detector showed stable performance

and remarkable results in precision or recall. Based on these, all three of them would

be a good candidate for real-time detections. However, beside performance, consistency

and time consumption, hardware and software compatibility was also a crucial factor in

my choice for online application. While the Sumo NN inherently has a complex struc-

ture, My Detector is built from the simplest signal processing units, that would run on

any hardware. Ultimately, that benefit helped to shift the choice toward My Detector.

The A7 detector fell of the radar at the moment, because of its slightly more complicated
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structure. However, it is not completely out of the scope. During the animal experiments,

high precision might be prioritized, especially if ultrasound stimulation reveals harmful

or unwanted effects when applied without spindles. In such cases, the A7 detector should

be preferred to the others.

3.3. Hardware design

The hardware of the real-time sleep spindle detection system comprises two primary

components: one for acquiring the EEG signal and another for processing it with the

selected algorithm. In addition, a closed-loop stimulation system requires a stimulation

component, which, in this case, is an ultrasound transducer. EEG measurements are

taken using small, surgically implanted M1x2 stainless steel screws that penetrate the

skull. Wires from these screws are soldered to a connector mounted on the head of

the animal. Given the low amplitude of EEG signals, they must be amplified before

entering into an analog-to-digital converter (ADC). The converter is necessary as only

a digital signal can be processed according to the detection algorithms performed by a

microcomputer. This microcomputer executes the selected algorithm and generates a

control signal to drive the transducer. The following section presents each component,

examining their advantages, suitability, and connectivity for this project.

3.3.1 Components and connectivity

The essential parts of the hardware setup include a microcomputer, an ADC, and an

amplifier, as well as an oscilloscope and LED for testing purposes. First, the specific

components are described in detail.

A Raspberry Pi (RPi) is a common choice for signal processing tasks, more broadly,

for a range of applications where real-time data handling and embedded processing are

needed. The RPi 4 model B has quad-core ARM Cortex-A72 CPU running at 1.5GHz

and a 8GB of LPDDR4 RAM, allowing the running of memory intensive applications

and higher performance than previous models [20]. The updated hardware behind the

40 GPIO pin-layout provides a more efficient use with external devices. Its capability to

handle complex calculations quickly, connect with multiple input/output devices, manage

precise timing, and its compatibility with Python made it ideal for the implementation

of my real-time sleep spindle detection application.

In addition to the Raspberry Pi, an analog-to-digital converter (ADC) is required to

process the analog signals. The ADS1115 16 bit ADC module is popular among RPi
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users. Its input voltage range can be scaled through the programmable gain amplifier

(PGA), which allows to represent voltages as small as ±7.8125 µV . For the exact gain

and resolution parameters, see Table 3.8. The sampling rate can also be adjusted to a

maximum of 860 samples/second. This rate is suitable for the 9–16 Hz spindle events,

which we would like to detect. Another main advantage is the I2C interface type. Using

this protocol the RPi can easily communicate with the ADC and due to the popularity,

accompanying Python libraries already exist. After contemplating the low price, avail-

ability and beneficial characteristics, we decided on behalf of the ADS1115 ADC. We

ended up purchasing a complete module from Hestore [21].

The magnitude of EEG signals is usually between 10 and 100 µV . Taking into account

the ADC’s input voltage range, the need for an amplifier during animal experiments is

clear in order to have an appropriate resolution of the EEG. At the research centre a

BL-096/16 Multifunctional Biological Amplifier (ELSOFT Bt., Budapest) was available.

This has a maximum gain of 1000, which shifts the input range into 10 to 100 mV. It

is still far from the optimum, which could fulfill the -256 mV to +256 mV range, but

roughly a 5 · 7.8 = 39 µV resolution can be achieved in this way. After conducting some

experiments, we concluded that it would be sufficient, hence the BL-096/16 Amplifier

was utilized.

Connections between these elements were built up on a breadboard using multiple

male and female jumper cables. Additional components used during the testing included

an LED, a 1 kΩ resistor and a Voltcraft DSO-6104F oscilloscope. The block diagram of

the components is shown on Figure 3.7.

A schematic diagram was created using KiCad to illustrate the primary connections in

the circuit, as shown in Figure 3.8. This diagram includes all elements, which were either

used in the testing phase or are supposed to be utilized during the real experiments. The

LED and oscilloscope belong to the former group, acting as substitutes for the transducer

and EEG signal, respectively. The analog signal is represented by either the oscilloscope

or the true EEG signal, serving as the input for the amplifier. The amplifier is a complex

device with multiple input and output channels. As for now, the first non-inverted input

channel, the ground and the first output channel were utilized, hence the amplifier in the

KiCad model is only a simplification of the real component. The amplified signal enters

the first input channel of the ADC. The ADC is again simplified and the whole module is

not represented. The Raspberry Pi’s 3.3 V GPIO pin (pin 1) supplies the voltage, while

pin 6 provides ground (GND) for both the ADC and Raspberry Pi. I2C communication
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Figure 3.7: Block diagram of the hardware components.

is established between the devices via SDA and SCL pins, corresponding to GPIO2 and

GPIO3 on the Raspberry Pi, respectively. Output is generated through GPIO17 (pin 11),

which, during testing, drives an LED with an in-series resistor for current regulation. In

actual experiments, GPIO17 will control the transducer.

3.3.2 Testing

Each component was individually tested to ensure proper functionality. First, the Rasp-

berry Pi was set up, and a test Python script (like ‘Hello World’) was executed success-

fully. Next, the ADC was verified through communication with the Raspberry Pi. The

amplifier was tested using a small signal generated by an oscilloscope, and finally, the

transducer was driven directly from the Raspberry Pi. Below, a thorough breakdown of

these tests can be found.

To test the ADC and its communication with the Raspberry Pi, an oscilloscope was

connected to the system, generating a simple sinusoidal signal. The primary objective

was to display the acquired sinusoidal waveform on the RPi for verification of receiving

the analog signal. The signal was created with the help of the oscilloscope’s function

generator. The frequency was set to 1 Hz, the peak-to-peak voltage to 100 mV and the
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Figure 3.8: Schematic diagram of the connections of the hardware.

offset to 50 mV to avoid negative voltage values. The signal was coupled to the ADC

input via an oscilloscope probe with a BNC connector and alligator clips. After setting

up the connections in the program and running it, the output is shown on Figure 3.9

next to the original signal on the oscilloscope. This confirmed the correct operation of

the ADC and RPi system.

Figure 3.9: A simple sinusoidal signal is received and displayed by the Raspberry Pi.

The amplifier was tested using a similar setup, with an additional oscilloscope measur-

ing the amplified signal instead of the Raspberry Pi. The output of the first oscilloscope

was connected to the amplifier’s non-inverted input and ground. This amplified signal

was then fed into the second oscilloscope. The function generator of the first oscilloscope
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was limited to a minimum amplitude of 2 mV, resulting in a sinusoidal signal with a

peak-to-peak voltage of 2 mV. On the amplifier, Channel 1 was selected in a non-inverted

mode and a gain setting of 1000. The second oscilloscope recorded an output signal with

a 2 V amplitude, confirming successful amplification.

The control signal generated by the RPi was first tested with an LED. The LED was

switched on when the sinusoidal signal exceeded a certain threshold, and was switched

off otherwise. This setup ensured the functionality of the driving GPIO pin. Next, the

transducer, which was custom-built with a configuration that enables this type of control,

was connected to the GPIO17 pin. The transducer drove another transducer, which was

connected to an oscilloscope. The idea was to generate an electrical signal in the second

transducer from the vibrations produced by the first one, allowing the oscilloscope to

record this response. The transducer had a configuration to block the radiation upon

getting a HIGH input, so in that case we expected a flat response on the oscilloscope.

The test initially revealed an error with the electronics of the transducer, but after repairs,

it was ready for use.

3.4. Software design

Following successful hardware testing, software development began. To perform real-time

animal experiments, well-structured software implementation with specific functionalities

is essential. The necessary functions include real-time EEG signal display for immediate

data verification, data storage for future analysis, and rapid, accurate sleep spindle detec-

tion. The program’s core architecture involves establishing I2C communication between

the Raspberry Pi and the ADC, configuring GPIO, reading data from the ADC, and rout-

ing it through multiple processing functions to implement these key features. Alongside

these functions, the reading from the ADC, the timing foundations and parallelization

aspects are also discussed below.

3.4.1 Software Set Up for Analog Signal Processing

The analog signal needs to be digitized before processing, so the ADS1115 ADC is in-

cluded in the circuit for this purpose. On the software side, the output of the ADC must

be read to enable data processing on the Raspberry Pi. Fortunately, Python libraries are

available for direct communication with the ADC from the RPi. The following section

documents this setup.

Communication between the Raspberry Pi and the ADC is established using the I2C
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protocol, by the means of several imported modules. On the microcomputer, Python

libraries like board and busio streamline the process, while the ADC interface relies on

the adafruit_ads1x15.ads1115 library. This library enables the gain and sampling

rate of the ADC to be configured through the gain and data_rate parameters. Ta-

ble 3.8 summarizes the available gain values (PGA). The sampling rate can be adjusted

from 8 to 860 Hz, with a default of 128 Hz. For the communication tests, the gain was

set to 4, providing a resolution of about 0.3 mV, suitable for the expected 100 mV peak-

to-peak amplitudes. The data rate was set to 860 Hz, but the actual reading speed was

set to considerably lower, averaging around 300 Hz. These numbers were later adjusted

for the different measurements.

Gain Setting Full-Scale Range LSB Size

2/3 ±6.144 V 187.5 µV

1 ±4.096 V 125 µV

2 ±2.048 V 62.5 µV

4 ±1.024 V 31.25 µV

8 ±0.512 V 15.625 µV

16 ±0.256 V 7.8125 µV

Table 3.8: The gain settings, the resulting full-scale ranges and the corresponding LSB

sizes for the ADS1115 ADC [21].

The input channel of the ADC is specified using the adafruit_ads1x15.analog_in

module, allowing the Raspberry Pi to read directly from that channel via the I2C proto-

col without manually defining input pins on the board. For output control, however, the

RPi.GPIO library is used with BCM numbering, setting GPIO 17 as an output. During

testing, the default setting was LOW, but for transducer control, it was changed to HIGH.

Upon detection, this setting was briefly toggled to the opposite state for approximately

0.5 seconds to initiate ultrasound stimulation or to activate the LED.

Timing

The appropriate timing is one of the most crucial point of any real-time system. In

Python the timemodule and its sleep() function is a popular choice in similar projects.

However, during testing this did not perform accurately for us and caused random delays

in the reading from the ADC. Hence, the timing in our pipeline is implemented with the

time.monotonic() function. A sampling rate (e.g., 1/300 second/samples) is defined
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at the beginning of the script, and that is always used to calculate the next time point

for reading. If not enough time passed since the last sampling, a while cycle holds up the

execution. With this solution the delays compared to the sampling rate were negligible.

For a more time-efficient application, data visualization is managed at a separate rate.

Following the same logic as before, the signal is plotted only if the predefined time (e.g.,

0.3 seconds) has elapsed, reducing the demand on the CPU core.

3.4.2 Parallel Programming

As I have mentioned previously the proper timing is indispensable. The system must

be able to plot the data, write it to a file and process it for spindle detections all in

a specific time interval. Fortunately, these tasks can be executed parallel, which would

minimize the time spent without reading. To access the RPi’s four processors Python’s

multiprocessing library was utilized. Data is passed through FIFO (First-In, First-

Out) queue structures, ensuring that each piece of information is processed in the precise

order it was enqueued, thereby preserving the sequential integrity of EEG data points

and spindle events. A total of four processes are launched, for data acquisition, plotting,

saving, and analysis activities. One queue for each is sent from the acquisition function to

convey the captured data points. Two other FIFO queues are generated from the analysis

function to send information of the detected spindles to the storage and visualization

functions. A shared stop signal coordinates the termination of all processes, enabling

a synchronized and orderly shutdown. This design ensures smooth and reliable data

handling across processes.

3.4.3 Online Sleep Spindle Detector

Data analysis operates as one of the parallel processes in our system. While data acqui-

sition occurs continuously, analysis begins only after the data reaches a minimum length

of 0.2 seconds, which corresponds to the expected minimum length of spindles. Once

this condition is met, the signal is sent to the online detector, which is based on My

Detector used for offline analysis. The basic pipeline follows the same steps as before (see

Figure 2.2), but with slight modifications to better suit the real-time nature of the task.

Originally developed in MATLAB, the algorithm has been fully implemented in

Python on the Raspberry Pi. One significant change involves the envelope fitting method:

while offline analysis utilized the Hilbert transform, which was computationally intensive

for real-time applications, the online version calculates the rectified signal and processes
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it through a low-pass filter to extract the amplitude envelope. Additionally, the duration

criteria have been adjusted to focus on immediate stimulation upon spindle detection.

Rather than detecting the entire spindle length between 0.2 and 6 seconds, the system

now prioritizes detecting a spindle that is at least 0.2 seconds long, triggering a control

signal immediately upon identification. Subsequent data points are still analyzed, allow-

ing the corresponding control signal to remain active. For instance, if a spindle lasts 0.6

seconds, three distinct spindles would be detected, maintaining the correct output for

that duration.

To manage the analysis within the constraints of the experiment, where longer in-

tervals without spindle activity can occur, signal pieces are analyzed with a maximum

length of 6 seconds. If there are no spindles within this timeframe, the first data point

is discarded (using the .pop() function), and the next is read to maintain the required

6-second signal length. As the signal window is consistently processed through a band-

pass filter, we have introduced a parameter to control the size of the filtering output.

This allows for the trimming of the beginning and end of the output, as filtering can

introduce anomalies at those points. This solution ensures that the values obtained after

filtering are accurate and reliable. The envelope fitting and the thresholding follows the

filtering process just as in the offline pipeline. When valid detections occur, the results

are forwarded to the visualization and storage processes, while the output voltage is gen-

erated to control the LED (and later the transducer). Subsequently, the temporary array

containing the current processing data is cleared and the queue from data acquisition is

read again. The workflow of the online detections is shown on Figure 3.10.

Figure 3.10: Workflow of the online detections.

The analysis function takes the three queues, the stop event, the sampling rate, the

maximum length of the analyzed data and the size of the cut-off segments during fil-

tering as input variables. The latter one with the sampling rate was inherited by the

detection function complemented with the voltages. Additionally, the detection function

allows setting parameters such as threshold size, frequency range, and the order of the

Butterworth filter.
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3.4.4 Real-time Signal Visualization

The visualization function is the second process running in parallel with data acquisition.

Its purpose is not only to verify detections, but also to monitor the EEG signal, allowing

for quick identification of any issues with the measuring electrodes. If anomalies are

observed in the visual output, measurements can be paused and corrected immediately,

preventing delayed recognition of potential issues.

The figure is created using the ion() function from the matplotlib library, en-

abling interactive plotting. After setting up the plot elements, the figure.canvas.draw()

function is called to ensure the axis labels and title are displayed correctly from the start.

For efficiency, the visualization is updated in intervals rather than continuously, reducing

computational load. The plot_update_interval parameter controls the time be-

tween each update, ensuring the figure refreshes at regular intervals. This interval can be

adjusted depending on the requirements of new measurements. When a display update

is timely, the time and voltage data arrays are refreshed, and the window size of the

plot is adjusted accordingly. For optimal memory usage, the function limits the tempo-

rary arrays for voltages and timestamps to twice the maximum analyzed data length (by

default, 12 seconds), while only a 10-second window of data is shown, with older data

continuously removed. The function also reads spindle events from a dedicated queue

that the analysis process sends. Spindle events are marked by dashed lines at their start

and end times. These lines are removed along with the background whenever the plot is

refreshed, and the function then checks for any new events. After the stop event is trig-

gered, interactive plotting is turned off, but the figure remains open until it is manually

closed.

The input variables include the two queues, the stop event, the interval to update

plotting, and the maximum size of data.

3.4.5 Continuous Signal Storage

The final process is the storage function. To enable future analysis, this function saves

the EEG signal along with the timestamps of spindle events and stimulations. By using

this saved file, the recorded data can be reconstructed, allowing for an assessment of

detection accuracy. Including the stimulation data also makes it possible to analyze the

timing delays between spindle onsets and stimulations, which is crucial in experimental

setups where the effects of ultrasound may depend strictly on precise timing.

The output file is a CSV with three columns: Voltages [V], Time [s], and Spindle [T/F],
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designed for straightforward interpretation. Voltages and timestamps are logged to the

file immediately as they enter into the queue, with minimal delay or effort. However,

saving spindle events is more complex. These events are received from the analysis

function via a dedicated queue after the relevant data segment has already been saved.

To ensure these data points are not missed, a buffer temporarily stores recent entries.

When a spindle event is detected, the buffer checks for timestamps within the spindle’s

start and end times. If matching timestamps are found, the third column is updated to

mark these entries as True for spindle events, and the entire buffer is then written to

the output file. This approach, however, may create duplicate time and voltage values in

the file. Managing these duplicates is handled in post-processing, where data is sorted

in ascending order, and for duplicate timestamps, only the entries marked with a True

spindle event are retained. To save memory during extended experiments, the buffer size

is limited to the predefined maximum data length. If the buffer exceeds this limit, it

shifts to accommodate new data points, discarding the oldest entries.

Stimulation times are not yet included in the CSV file. Currently, spindle detection

times are printed to the command window, showing the detection timestamp along with

the spindle’s start and end times. After the measurement, this information can be saved

into a separate TXT file for documentation. When a spindle is detected, an output

voltage is triggered on the GPIO immediately, so the detection timestamps approximate

the stimulation times. This setup enables efficient recording and provides a close estimate

of the stimulation timing without directly logging it in the CSV file.

3.5. Headgear design

As the original pipeline implies (Figure 1.1) the hardware was designed to drive a trans-

ducer upon spindle detections, which aims to stimulate certain brain areas to enhance

memory consolidation. The concept is that behavioral tests are conducted during the

rodents’ awake periods to create episodic memories. During resting, animals enter slow

wave sleep within approximately 30 minutes and start to generate sleep spindle oscil-

lations. When spindles are detected, ultrasonic stimulation is applied to cortical areas,

enhancing the generation of spindles. Subsequenty, when the animal wakes up, the same

experimental task is performed and recall performance is evaluated. The results are com-

pared to rodents who do not receive the stimulation. This means that instead of doing

the stimulation during anesthesia, a headgear can be designed which connects to an im-

planted pedestal, so the animal can wear it during the day and their natural sleep rhythm
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can be assessed. In this subsection, the design of such headgear is described. The idea

and the basis of the headgear originates from Lee et al. [22].

The designs were created in Fusion 360. To ensure accurate dimensioning and com-

ponent testing, a 3D model of a rat skull was downloaded from Sketchfab [23]. Animal

comfort was a top priority in the design process, particularly by minimizing the weight

of the device, which is closely related to its size. A method introduced by Lee et al. was

adopted, using an implanted pedestal to act as a connector for the headgear, allowing the

animal to avoid carrying the entire setup continuously. Our headgear is based on a plas-

tic cylinder mounted onto the skull’s surface, likely secured with dental cement or glue.

Onto this pedestal, an additional cylinder fits and is fastened with a screw on an extra

material surface. A thin board is attached to this cylinder using a clamp, allowing height

adjustment of the device. The transducer is then connected to this board through a 3D-

printed holder structure featuring a ball joint. The ball joint is designed to be glued into

a hole in the board, which would be drilled during the surgery upon determining the ideal

placement for the transducer. This solution allows both adjustment of the transducer’s

height and angle resulting in precise positioning over the desired brain region. The holder

also features a side opening to accommodate the transducer’s cable. The last piece of

the headgear is a cone put on the transducer and filled with ultrasound conductive ma-

terial (like ultrasound gel or water) allowing ultrasound transmission. Figure A.2 shows

the individual parts one-by-one alongside the rat skull model. The assembled headgear

in Fusion is shown in Figure 3.11. The dimensions are provided for reference, without

claiming to be exhaustive.

On the Fusion model, the locations of the different elements approximate the exper-

imental setup. To facilitate further experimentation with their actual placements, the

components were printed in multiple instances. The configuration assembled from the

printed parts is shown in Figure 3.12. The different colors indicate the materials used

during printing: the black material is brittle, lacking elasticity and prone to breaking un-

der stress, making it suitable only for modeling the setup. In contrast, the gray material

is more flexible while still offering excellent stability, making it the likely choice for use

with surgically implanted rats. After the initial print, in addition to the insights gained

about the materials, the dimensions were also reconsidered. The height of the cylinder

was increased, and the length of the board was reduced. Moreover, the width of the walls

was consistently reduced in most of the components. As of the time of writing this thesis,

the redesigned parts have not yet been printed, but it is hoped that they will be suitable
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Figure 3.11: Side views of the assembled headgear above the rat skull model with a drawn

and a shaded version. The unit of the dimensions is mm.

for the surgery once printed.

Figure 3.12: The assembled headgear with the 3D-printed components.

In our system, stimulation is not the sole feature, as presented in the original headgear

concept. We integrate real-time EEG measurements alongside the stimulation. These

measurements are obtained through small screws implanted into the skull to record the

signals. Cables connected to the screws are routed into a connector, which is also mounted

on the animal’s head. This connector then couples the signals to the amplifier. The

precise positioning of the connector in relation to the headgear components is initially
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experimented with using the 3D skull model. However, the final placement can only be

determined during the actual procedure, as it depends on the physical constraints and

positioning within the animal’s anatomy. This introduces some level of uncertainty in the

implementation of the system. To mitigate such issues, a simpler design is proposed that

builds upon the completed cone element. A thin-walled cylinder is added to the cone, with

the lengths of its walls slightly extended. This component would be 3D printed from a

more flexible material, allowing for better adaptation to the contours of the skull surface.

Once mounted with dental cement or glue, the transducer could be docked inside the

cylinder for stimulation. This setup would also create more space for the EEG connector,

improving the overall system layout and functionality. However, this would not be ideal

from the animal’s perspective, as it should carry a much larger device, probably in an

uncomfortable placement.
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Chapter 4

Results

This section evaluates the performance of the developed hardware-software solution. The

tests aimed to assess the effectiveness of the system in real-time EEG signal processing

and spindle detection, as well as to compare its accuracy with results obtained in an

offline environment.

4.1. Online Evaluation of the Sleep Spindle Detector

In the previous chapters, the detailed structures of the hardware and software were pre-

sented. In the following analysis, the developed device was evaluated in an environment

designed to approximate realistic measurement conditions. During this evaluation, the

oscilloscope was used as a substitute for an analog signal source, while the LED served

as an output indicator. The amplifier was excluded from the setup due to the challenges

of relocating it, given its size. However, prior testing confirmed its proper functionality,

ensuring it would not cause issues later. The system consisting of the oscilloscope, the

ADC, the Raspberry Pi and the LED was assembled based on the previous descriptions in

Section 3.3.1. The data used for testing was loaded into the oscilloscope via a USB drive

formatted with the FAT file system. The USB drive must have had a maximum capacity

of 244 MB to be recognized. To ensure the data closely resembled real EEG signals, a

signal from the datasets utilized in the offline evaluation was modified as detailed in the

following subsection.

4.1.1 Data

Two types of signals were used for the test data: one containing synthetic spindles em-

bedded within real EEG data and the other containing original, unaltered spindles. The
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background signal for both is from the mice dataset, specifically from the measurement re-

ferred to as RMK0000014_saline. This was originally sampled with a 2000 Hz frequency.

The oscilloscope could read up to 6,000 points with the external signals loaded via a

USB drive. Cutting 6,000 points from a 2000 Hz signal provides a 3-second-long piece.

That is too short to realize a realistic signal with multiple sleep spindles. To expand the

range for analysis, the signals were resampled at 200 Hz, extending the duration to 30

seconds. Although the signals are no longer than 30 seconds, the oscilloscope generates

an infinite loop from the valid points. This looping is useful to do longer measurements,

but introduces additional challenges, such as uncertainty about the start of the original

signal. To address this, the beginning of the signal was marked by changing the first

20 data points to an outlier value (around 0.1 V), allowing consistent comparisons with

offline results. The significance of this will be further explained in the following sub-

sections. Prior to resampling, a low-pass Butterworth filter with a cutoff frequency at

half of the new sampling rate was applied to prevent aliasing. The signals were written

into a binary file containing 16-bit integers. They were structured to include a header

section specifying the number of data points, extreme values, and a baseline, allowing the

oscilloscope’s arbitrary function generator to read them. The menu of this also enabled

control over the frequency, period, offset and peak-to-peak voltage of the signal. The

period could be set to 30 seconds with the corresponding frequency value, to match the

length of the transmitted signal to the original one. The peak-to-peak voltage and offset

were observed during the signal generation and the proper values were selected. The

setting of these values was essential for the accurate EEG signal simulation. The process

of generating test data, from adding spindles to the background signal to setting the final

parameters on the oscilloscope, is illustrated in Figure 4.1. Signals are always analyzed

offline prior to being loaded into the oscilloscope. This offline analysis, a crucial step for

online evaluation, is emphasized in red to highlight its importance.

Figure 4.1: The process of generating signals for the online tests.
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4.1.2 Synthetic Signal

Synthetic spindles were generated using a MATLAB script based on the description in

Kulkarni et al.’s work [24]. These spindles were crucial for online evaluation, as their lo-

cations can be manually identified with ease, reducing result uncertainty. This approach

greatly aids program debugging by allowing real-time confirmation of detections. Given

the limited size of our dataset, this approach proved particularly advantageous for intro-

ducing novel events into the system, thereby enhancing the robustness and reliability of

the detection process.

One synthetic signal was created by extracting a segment from the original EEG

signal and resampling it with 200 Hz. Four synthetic spindles were added. The offline

detection method (My Detector) was automatically applied to evaluate the algorithm’s

effectiveness on this modified data. In Figure 4.2, the synthetic, downsampled signal is

displayed (4.2a) alongside the processed version (4.2b). The outputs of the filtering and

envelope fitting are both shown, with additional reference lines indicating the threshold

and the offline detections identified by My Detector. The green color marks the beginning,

while red denotes the end of the event. The four added spindles are easily identifiable,

and the offline detector clearly performs well. The beginnings and the durations of the

detected spindles were saved to be used during the evaluation of the online detector.

They can be observed in Table 4.1.

After the offline analysis, the generated signal was transferred to a USB drive for-

matted with the FAT file system. Using the oscilloscope’s arbitrary function generator

menu, a 30-second period, a 210 mV peak-to-peak amplitude, and a 4 mV offset were

configured. The oscilloscope’s output is connected to the first input channel of the ADC,

allowing the Raspberry Pi to read the signal in alignment with previous settings.

The parameters of the software were revised to fit the new signal. The gain of the

ADC was set to 16 to better suit the input voltage range. The data rate of the ADC was

860 Hz, but the reading only happened at every 0.005 second, realizing a 200 Hz sampling

rate. Other parameters were left at their default values, and only the output file name

had been set before the measurement was started. As the measurement starts, a new

window pops up displaying the EEG signal in real-time. When a spindle is detected, two

dashed vertical lines appear on the screen: red indicates the beginning of the spindle,

while blue marks its end. Additionally, the relative detection times, calculated from the

measurement start, are displayed in the command window. To provide a visual indicator,

the LED is turned on for 0.5 seconds. The voltage and time values are continuously
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(a) Downsampled signal with synthetic spindles.

(b) Detections made on the synthetic signal by My Detector offline.

Figure 4.2: Analysis of synthetic spindles offline.

written into the CSV file, where the locations of the spindles are marked. Figure 4.3

shows the real-time EEG plot including the detection lines. Direct comparison with

the offline results can be challenging to make, because the infinite loop generated by

the oscilloscope introduces uncertainty regarding the start of the signal. Therefore, the

captured signal does not align perfectly with the original seen on Figure 4.2. The small

segment of outlier values, which are easy to find, was incorporated into the data to solve

this issue. On Figure 4.3 a black arrow marks the artificial data points, which correspond

to the beginning of the offline signal. Moreover, the end of the signal was not displayed

because of the nature of the acquisition and visualizing functions, but it was not missed.

Also note that normally, a 10-second window is used, it was only changed for the sake of

better illustration.
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Figure 4.3: Detections made on the synthetic signal by My Detector online.

After the measurement, the signal was reconstructed from the saved CSV file to make

further analysis possible. Spindles were combined if the interval between them was less

than 0.3 seconds. This approach was feasible because the stimulation duration is likely to

be at least 0.3 seconds, making the distinction negligible in the final outcome. Figure 4.4

shows the reconstructed signal, with the identified spindles highlighted in light blue and

the start of the original signal indicated by the black arrow. It is visible to the naked eye

that the detections align with the spindles quite well.

The evaluation of these detections was conducted on an extended measurement, where

the oscilloscope’s loop was recorded for 300 seconds. This recording included the signal

repeated 10 times, containing a total of 40 spindles. To evaluate the results, the recon-

structed signal was shifted to align with the original timestamps. First, the marked data

points exceeding 0.1 V were located and the time of the first such point was subtracted

from all the others, making it the zero time point. Time values which became negative

were added 300 s to transfer them to the end. This alignment allowed for direct compar-

ison of spindle detections between the online and offline analysis. The start times and

durations of the spindles, recorded during the offline detections, provided a reference for

the expected spindle occurrences. Table 4.1 shows this information.
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Figure 4.4: Reconstruction of the real-time detections on the synthetic spindles.

Start [s] Duration [s]

1. Spindle 3.125 1.3

2. Spindle 10.945 0.93

3. Spindle 15.185 1.295

4. Spindle 27.51 0.92

Table 4.1: The start and duration times of the generated synthetic spindles on the 30-

seconds-long signal.

Because the same signal was replayed 10 times over the 300-second period, the spindles

also repeated periodically. For instance, the first spindle appeared at 3.125 seconds and

then recured at 33.125, 63.125, and so on, up to 283.125 seconds, maintaining a consistent

duration of 1.3 seconds. Similarly, the second spindle was visible at 10.945, 40.945, 70.945,

and so forth, always lasting 0.93 seconds. This periodicity applied to all other spindles

as well. Using this logic the expected time intervals of spindles can be compared to the

start times and durations of detected spindles. Table 4.2 contains the quantified version

of this comparison. First, the average duration of the events over one period (30 s)

were calculated and are displayed in the first two coloumns. The difference between the

original and online durations can provide insight into the extent of false negative data

points. For instance, the largest discrepancy was observed for spindle number 1, with an

average of approximately 0.42 seconds missing from its 1.3-second duration. In contrast,

for spindle 4, the difference was only 0.04 seconds per event. These results indicate that

the occurrence of false negatives was minimal. The next coloumns include the number of

detections made on each spindle. It was observed that a single spindle is often identified as

multiple shorter detections, which can inflate the total count. To address this, the average
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number of detections corresponding to each original spindle was calculated. A detection

was classified as a hit if any part of it overlapped with the intervals defined by the original

spindle timings or their periodically shifted versions. This classification emphasizes the

importance of detections within these intervals for triggering timely stimulations, as the

goal is to stimulate during or shortly after a spindle. The results show that all 40 spindles

were successfully identified, with each detection corresponding to a genuine event and with

a minimum amount of false negative points.

Original

Duration [s]

Online

Duration [s]

Original

Count

Online

Count

Average Detections

per

Original Spindle

Hits

1. Spindle 1.3 0.878 10 30 3.0 10

2. Spindle 0.93 0.795 10 30 3.0 10

3. Spindle 1.295 0.874 10 30 3.0 10

4. Spindle 0.92 0.881 10 20 2.0 10

Table 4.2: Results of the online detection on synthetic spindles.

The quantified results confirmed the accuracy of the system. During the 300-second-

long measurement the detector continuously made precise detections, generated a file

that was well-suited for the analysis and maintained a real-time display without lagging.

However, although accurate detections are essential, they only represent part of the

success. The timing delay between spindle onset and subsequent stimulation can be a

critical factor in the experimental outcomes. Minimizing this delay ensures that the stim-

ulation aligns more closely with the natural spindle activity, potentially enhancing the

experiment’s efficacy and relevance. In practice, the stimulation timing can be approx-

imated by the detection moment, as the output is immediately available on the GPIO

pin. Analysis of the saved data revealed an average delay of 0.294 ± 0.0302 seconds

from spindle onset and 0.088 ± 0.0294 seconds from offset until detection occurred. The

estimated maximum acceptable delay from the offset for the experiments is 0.5 seconds,

hence the results were approved.

4.1.3 Real EEG Signal

To simulate the real experimental environment as closely as possible, unaltered EEG

data was also used to evaluate online detection. This provided us with the advantage

of knowing the expert-annotated spindles beforehand, allowing us to validate our results
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without solely relying on offline detections. The signal underwent the same downsampling

and low-pass filtering as previously described, and a binary file was saved using the same

procedure. Figure 4.5 shows the downsampling process, where the signal’s characteristics

remained the same in the time domain, but the number of data samples, as well as the

number of frequency components, were reduced. In the lower right corner of the figure,

the peak in the spindle frequency band (9–16 Hz) is visible, confirming the existence

of the spindles. The beginning was marked again with 20 points of 0.1 V. The key

difference from the synthetic signal is that another segment of the original data, rich in

expert-detected spindles, was selected for analysis.

Figure 4.5: Downsampling real EEG data from 2000 Hz sampling frequency to 200 Hz.

Before being loaded into the oscilloscope for real-time measurements, the selected

signal segment was automatically analyzed using the offline detector, incorporating expert

annotations. Figure 4.6 presents the raw signal alongside its processed version, which

includes filtering and envelope fitting. The threshold is indicated by a solid horizontal line.

Dashed vertical lines show spindle detections by the algorithm, while solid vertical lines

represent expert annotations. For each event, the beginning is marked with green lines,

and the end is marked with red lines. Within this segment, the algorithm detected four

spindles. Among these, three exhibit substantial overlap with expert-identified spindles,

while one appears to be a false positive. To enhance the clarity of the following analysis,

the spindles were assigned numbers and are marked with color coded lines at the top of

the figure. Oscillations classified by the expert were labeled as 1, 2, and 3, while the false

positive event was designated as number 4.

The start and duration times of these events were saved, just as in the previous anal-
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Figure 4.6: Offline detections of real spindles.

ysis, and are displayed in Table 4.3. It first lists the spindles identified by the expert,

followed by any false positive events detected by the offline algorithm. This categoriza-

tion emphasizes their original classification while serving as a reference for the online

detector. Detecting expert-identified spindles is the primary objective of the system,

but successfully identifying offline-detected spindles demonstrates that the online mech-

anism performs similarly to the offline one. This is expected, as the online algorithm is

an adaptation of the offline detector. Furthermore, additional detections might indicate

a faulty mechanism; however, analyzing their timing in detail may uncover alternative

explanations. All in all, this table provides valuable insights for estimating the timing

of online detections. For example, during a 300-second measurement with a 30-second

periodicity, it predicts that the first spindle will appear at 1.411 seconds, 31.411 seconds,

61.411 seconds, and so on, with the same logic applying to subsequent events.

Start [s] Duration [s]

1. Spindle 1.411 1.276

2. Spindle 7.69 0.577

3. Spindle 10.492 3.911

4. Spindle 5.379 0.336

Table 4.3: The start and duration times of the real spindles on the 30-second-long signal.

After the offline analysis, the generated binary file was loaded into the oscilloscope.

The period was again set to 30 seconds, the peak-to-peak voltage was 185 mV and the

51



offset was 20.5 mV. The parameters of the software were not changed since analyzing

the synthetic signal, only the output file was renamed. The measurement was conducted

the same way as before, and the captured data was subsequently saved in a CSV file.

Upon finishing the measurement, Figure 4.7 was displayed. To improve the clarity of the

detections, the corresponding spindle events are labeled at the top with their respective

numbers and colors. Any additional detections that do not correspond to previously

identified spindles were assigned new numbers and colors for distinction. The extra

voltages marking the beginning of the signal is shown with a black arrow around the 19th

second.

Figure 4.7: Online detections of real spindles.

The captured signal was reconstructed using the CSV file, with spindles merged if the

interval between them was less than 0.3 seconds. Figure 4.8 presents the reconstructed

version with the artificial points marked with an arrow and the spindles having the same

number and color code as in Figure 4.7.

Next to the known spindles, two additional ones are visible. One, around the 19th

second, is equivalent to the marked start of the original signal indicated by the arrow. This

detection can be disregarded given the artificial nature of these points. The other extra

detection is around the 28th second, within 1 s distance to spindle number 3. This may

suggest that the event is an actual extension of the third spindle, which was overlooked

by the expert. However, it is also plausible that the discrepancy arises due to a fault in
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Figure 4.8: Reconstruction of the online detections made on real EEG data.

the algorithm.

As evident, visually assessing performance and identifying true spindles becomes sig-

nificantly more challenging in this context, emphasizing the importance of quantitative

evaluation. This was performed on a 300-second-long measurement, and the results are

collected in Table 4.4. The data was captured and reconstructed the same way as before.

The online detections from the 300-second measurement were analyzed based on the time

intervals suggested by Table 4.3. Similar to the synthetic signal, the original durations

of each event within one period were compared to the online results. It shows, that for

the third spindle, an average of 2.04 seconds was missed during each period. This differ-

ence corresponds to many false negative data points, highlighting the detector’s weakness

when it comes to longer spindles. Additionally, some spindles, such as the second and

fourth, exhibited false positive points, as their duration exceeded the original length. The

periodicity of the looped signal resulted in each original spindle being repeated 10 times,

as reflected in Table 4.4 under the column labeled “Original Count”. Based on the known

start and end times of the recurring spindles, the number of detections made within these

intervals was counted and recorded under the “Online Count” column in Table 4.4. Since

multiple detections can overlap with a single spindle, the average number of detections

per spindle per period was also calculated. This pointed out that the third spindle was

not always identified with the same number of detections, which is a result of the real-
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time sampling and processing. A “hit” was registered if any part of an original spindle

was covered by a detection.

Original

Duration [s]

Online

Duration [s]

Original

Count

Online

Count

Average Detections

per Period
Hits

1. Spindle 1.276 0.863 10 10 1.0 10

2. Spindle 0.57 0.849 10 10 1.0 10

3. Spindle 3.911 1.871 10 52 5.2 10

4. Spindle 0.336 0.569 10 10 1.0 10

5. Spindle - 0.569 - 10 1.0 -

6. Spindle - 0.574 - 10 1.0 -

Table 4.4: Results of the online detection on signal containing real, expert annotated

spindles.

The results indicate that all spindles originally identified by the experts were success-

fully detected. The false positive event observed in the offline analysis also reappeared

in the online detections, demonstrating comparable performance between the two ap-

proaches. Additionally, two extra spindles were consistently identified. One of these,

located approximately 1 second before the third expert-detected spindle, which might

mean it is related to that event. The second extra spindle corresponds to the marked

beginning of the signal, as noted earlier, and can be disregarded since it would not occur

in real EEG data.

The detections aligned well with expectations derived from the offline analysis. Event

recall was perfect, and the precision closely matched the offline results, though there is

potential for further optimization. This dataset proved significantly more challenging for

the system compared to the synthetic one, as it included longer and more diverse spindle

phenotypes. This complexity was also reflected in the stimulation delays.

By using the saved detection timestamps, delays were calculated relative to spindle

onset and offset times. The analysis revealed an average delay of 0.45 ± 0.723 seconds

from the disappearance of spindles and 0.76 ± 0.861 seconds from their onset. While

these values fell within the permissible range (estimated to be 0.5 seconds from the end),

they were near the upper limit. Since the goal is to minimize delays, additional statistical

assessments were conducted for clarity. Using delays rounded to two decimal places, the

mode of delays was found to be 0.09 seconds from the end and 0.30 seconds from the start.

These results imply that, in general, detections occur promptly; however, certain types

54



of spindles consistently take longer to be identified, highlighting areas for improvement

in the detection algorithm.
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Chapter 5

Discussion

This thesis presents my work for developing a device to detect sleep spindle oscillations

online and use these detections to trigger a neural stimulator. The developed device

has proven effective in detecting sleep spindles in rodents’ EEG data. However, certain

limitations are inherent in the current system. Addressing these constraints is key to

enhancing its performance. In this chapter, I will discuss potential theoretical solutions

that could be implemented in future iterations of the system.

5.1. Limitations and Future Development

5.1.1 Software

Detection Algorithm

Despite the promising performance of My Detector in both offline and online environ-

ments, it remains one of the simplest algorithms applied to this problem. It is important

to acknowledge that even a rudimentary neural network used during evaluation often out-

performed the detector, despite not being trained on domain-specific data. This suggests

that higher F1 scores and overall accuracy may be achievable once the network is properly

trained on rodent-specific datasets. Such results could potentially match those reported

in the original study [19]. Moreover, other machine learning-based algorithms have been

described in the literature, showing compelling results in similar applications [25][24].

Incorporating such advanced techniques could significantly reduce uncertainties and en-

hance the overall system. In particular, adopting machine learning models specifically

designed for real-time systems [24] could provide substantial improvements.
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Graphical User Interface

The real-time visualization function efficiently displays the captured signal alongside the

detected spindles. For a more advanced solution, this functionality could be integrated

into a graphical user interface (GUI), allowing users to specify input variables (such as

output file names) and log detections seamlessly. Incorporating start and stop buttons

would further enhance user-friendliness. Implementing such features would necessitate a

more sophisticated data transfer mechanism to enable seamless communication between

the processes and the GUI.

Storage Function

Extensive experimentation was conducted to optimize the storage function across mul-

tiple criteria. Despite these efforts, the current implementation remains suboptimal as

post-processing is still required. Ideally, the storage system should ensure that time and

voltage values are in strictly ascending order, with corresponding Boolean values clearly

marking spindle occurrences. With the current CSV format, retroactive writing or mod-

ifying specific entries directly is infeasible. A potential solution, rewriting the entire file,

would impose a significant computational burden. Alternative formats like TXT or bi-

nary were dismissed due to their unsuitability for managing large datasets, particularly

for long-duration experiments. HDF5 emerged as a promising option for its ability to

handle large datasets efficiently. However, achieving an accurate and fully functional

implementation proved challenging, leaving room for development in this area. The pre-

cise timing of stimulations should also be recorded for future analysis. Currently, these

times are displayed in the command window and manually copied into a file at the end

of the process. Utilizing the HDF5 file format could address this issue by enabling the

storage of stimulation timestamps alongside other data, enhancing both organization and

accessibility.

5.1.2 Hardware

Amplifier

The current hardware setup is compact and performs reliably, but there is room for im-

provement, especially in the amplifier. The amplifier is significantly larger than other

components, limiting the system’s portability and usability. Smaller, commercially avail-

able amplifiers, such as the CGX CAMP Compact Amplifier [26], are affordable and could
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improve the solution by offering a broader range of gain settings. This would enhance

resolution and overall system robustness. An even more effective solution could involve

designing a custom amplifier circuit integrated with the ADC module. Such a design

would reduce the device’s size and complexity, further optimizing its performance.

Connections

Connections are currently made using a breadboard and jumper cables, which is neither

stable nor practical, as it requires reassembly before each measurement. Implementing a

custom circuit could seamlessly address the connections between the amplifier and ADC.

Additionally, this solution would provide an opportunity to design a more robust interface

for connecting to the Raspberry Pi and/or the transducer.

5.1.3 Headgear

The current headgear design is unsuitable for extended behavioral studies due to its

reliance on glue for attachment, which limits reproducibility and renders it impractical for

repeated use. A redesigned headgear incorporating an adjustable arm and customizable

drop length, as suggested by Lee et al. [22], would enhance versatility and precision.

This design would allow researchers to fine-tune the stimulation angle, improving both

usability and experimental consistency. Additionally, the transducer could be housed

in an adaptable holder to accommodate various sizes, with a cone structure facilitating

transmission. A specialized material currently under development could revolutionize

this approach, offering improved efficiency. Alternatively, integrating ring transducers,

as demonstrated by Hyunggug Kim et al. [27], could reduce the weight carried by the

animal and enhance focusing precision, further optimizing experimental outcomes.

5.1.4 Experimental Environment

Despite our best efforts to simulate analog signals using the oscilloscope, it remains an

approximation. The next step involves measuring EEG signals from surgically implanted

animals. However, animal experiments introduce significant uncertainty, with many fac-

tors potentially affecting performance outcomes. These include the quality of the surgery

or screws, the animal’s characteristics, the stability of the physical system, electrical noise

of the environment, and numerous other unpredictable influences on the final results. The

further research should be conducted by considering these aspects.
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Chapter 6

Summary

To summarize, a reliable real-time sleep spindle detector was developed. Various algo-

rithms were evaluated based on their offline performance, helping us to select an optimal

one for online detection. This detector was then implemented on hardware and mod-

ified to meet the demands of real-time applications. The microcomputer running the

processing code was equipped with additional components to create a system capable of

analog signal processing, which included the integration and testing of an ADC and am-

plifier. An ultrasonic transducer was added for stimulation purposes, and testing these

components required building a circuit with an oscilloscope and LED.

The online detector was tested on two types of signals. First, synthetic spindles

were generated over real EEG backgrounds, allowing for visual performance validation.

Next, snippets of real EEG signals were used, and statistical parameters were calculated

for both offline and online detections to compare results, showing a stable and accurate

performance. Finally, a 3D-printed headgear was designed to hold the transducer on the

head of the animal during awake experiments.

6.1. Future Plans

In the future, we aim to use this system in actual animal experiments. By selecting a

behavioral test for the rodents, their performance can be assessed with and without tFUS

intervention. The device would be active during the animals’ sleep, with the headgear

holding the transducer in place over the animal’s head and EEG screws connected to

the ADC input channel. EEG data would be processed in real-time on the Raspberry

Pi, triggering the transducer upon spindle detection. This approach could significantly

advance ultrasound stimulation and sleep research.
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Another potential application of this system lies in its adaptability to other signal

processing tasks. The detection algorithm can be easily modified to identify different

phenomena, making it versatile for various research areas.
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Appendix A

Appendix

(a) (b)

(c) (d)

Figure A.1: F1 score, precision and recall scores for the different models within subjects.

The different animals are represented by their code in the brackets, while the different

measurements are indicated by the name of the chemical (eg.: ketamine) used in the

experiment.
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Figure A.2: Individual components of the headgear, displayed next to a rat skull model

for design reference. The sizes of the parts are not proportional to the skull for illustrative

purposes.
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RMK0000014

Param1 Param2 Param3 Param4

My Detector 16.588 0.555 - -

Wamsley et al. 15.330 0.553 3.094 1.053

A7 detector 1.732 0.478 2.665 0.573

RMK0000016

Param1 Param2 Param3 Param4

My Detector 19.774 0.697 - -

Wamsley et al. 13.240 0.378 3.201 2.305

A7 detector 1.918 0.374 2.063 0.589

RMK0000018

Param1 Param2 Param3 Param4

My Detector 16.570 0.447 - -

Wamsley et al. 13.353 0.412 3.249 1.097

A7 detector 1.861 0.401 2.470 0.609

RMK0000019

Param1 Param2 Param3 Param4

My Detector 21.358 0.656 - -

Wamsley et al. 11.477 0.462 3.035 2.345

A7 detector 1.881 0.528 2.279 0.641

Table A.1: Parameter values across different detectors for the mice dataset, where the

animals are coded as RMK0000014, RMK0000016, RMK0000018, and RMK0000019.
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