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neural data



  

Is there any possibility to identify directed 
causal relationships from two data series, 
with unknown origin, without further 
experimentation?

We surely can measure correlation, but 
correlation and causality
are different things. Moreover correlation is a 
symmetrical relation
while causality can be unidirectional. 

Is there a way to infer the
directional causality,
to distinguish the bidirectional
(circular) causality or to reveal
hidden common cause?

Determination of causal effects in time series
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Granger-causality

The original idea of 
predictive causality 
came from Norbert 
Wiener 

x → y, if the inclusion 
of past x values 
improves the 
prediction quality on y

X Y Clive Granger implemented
it via autoregressive linear 
models in 1969

Nobel price in 
Economic Sciences 2003



Granger-causality

Presumtions:
– Stationary processes
– Zero-mean
– Uncorrelated Gaussian noise
– We have data of every important 

valiable

?
Linear autoregression:

FX→Y=

var (ϵ1)−var (ϵ3)
m

var (ϵ3)
T−2m−1

Evaluation F test:



The limits of pairwise analysis

?

Spurious connections because of indirect effects 
or delayed interactions....

 Or not?

?

The result of 
a pairwise analysis:



  

It is sensitive to the model used for the prediction. The limitations of 

linear autoregressive models can be ameliorated by using nonlinear 

extensions, kernel solutions or model free transfer entropy method.

But, the predictive causality principle can not reveal circular 

causal relationships!

The predictive causality measures the information added by the second 

time series, but in case of circular coupling, the information contained 

by the second data series is already available in the system's own past.

Problems with the Granger-causality

X Y



Judea Pearl

Bayesian networks, graphical models, Conditional 
independence

http://en.wikipedia.org/wiki/Bayesian_networks


Transfer 
Entropy



Transfer 
Entropy



  

Cross Convergence Map:
A new framework for causality analysis

A new model-free approach, 
promising:

● Detection of circular causality
● Detection of nonlinear coupling

It utilizes the Taken's time 
delay embedding theorem:

The trajectory reconstructed 
in the state space is 
topologically equivalent
With the trajectory of the 
system's original trajectory in 
its real space. 

Science 338, 496 (2012)



  

Cross Convergence Map:
A new framework for causality analysis

● Sugihara’s method is based on 
that the consequence is an 
observation of the cause, thus 
the cause can be reconstructed 
from the consequence.

● Points that are neighbors in the 
state-space of the consequence 
should be neighbors in the state 
space of the cause as well.

● This topology preserving 
property can be tested by the 
cross mapping method.    

Science 338, 496 (2012)



  

xt+1=r xt(1-xt)

Our first model system: The logistic map

A one dimensional, discreet-time 
dynamical system implementing
stretching an folding 
transformations. 

It can exhibit different dynamical 
behavior, from stable fixpoint, 
through periodic oscillations to 
chaos, depending on the 
parameter r.

We choose r = 3.8 which ensures chaotic behavior.



  

Two coupled logistic maps

xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn((1-yn)+bxyxn)

rx=ry=3.8 so both maps are in the chaotic regime

Case I.: Circular, nonlinear coupling



  

Phase-space reconstruction based on delayed maps

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.

xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn((1-yn)+bxyxn)



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

In case of causal connections, the reconstructed manifold
sholud be topologically equivalent according to the Takens' theorem.

But, how to test it?

Existence of a diffeomorphism

Both dataset formed a 2D manifold in the 3D embedding space.



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space

Choose a point!

Sugihara's method: Convergent Cross mapping



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Find its neighborhood!

Sugihara's method: Convergent Cross mapping

Both dataset formed a 2D manifold in the 3D embedding space.



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Lets do it for many points! If the neighbors in the first space are neighbors
in the the second space as well, then the second variable is causal to the
first one.

Find the same time points in the other state space

Sugihara's method: Convergent Cross mapping

The images of the neighbors remained close to each other and
to the image of the original point 



  

In case of circular causality the mapping should work in both directions!

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Let us do it into the other direction! 

Sugihara's method: Convergent Cross mapping



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Let us do it into the other direction! 

The chosen point

Sugihara's method: Convergent Cross mapping



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

The neighborhood

Sugihara's method: Convergent Cross mapping

Let us do it into the other direction! 



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

The mapping worked well into both directions!
This is the sign of circular causality. 

Mapping

Sugihara's method: Convergent Cross mapping



  

Cross mapping in case of unidirectional interactions

The consequence The cause

While the consequence formed a 2D manifold, the cause resulted an 
only 1D manifold in the 3D embedding space!

yn+1=ryyn(1-yn)xn+1=rxxn((1-xn)+byxyn)

Case II.: Unidirectional, nonlinear coupling



  

While the first dataset formed a 2D manifold, the second dataset resulted
an only 1D manifold in the 3D embedding space!

Mapping works well from consequence to cause

Cross mapping in case of unidirectional interactions

The consequence The cause



  

The mapping worked well from x to y but failed from y to x, showing,
that y is causal to x but x is not causal to y. 

But spread out in the other direction!

Cross mapping in case of unidirectional interactions

The consequence The cause



Detecting causality based on the quality of the cross 
convergence map

Quality of crossmapping described by the linear 
correlation coefficient between the estimated and the 
observed variable

Causality appears as 
convergence of correlation
coefficient as the length of data
increases.  

Based on the weighted average of the mapped neighborhood, and estimation for the
second variable is generated. As the length of the data series increases, the neighborhood
(the closest simplex) shrinks to the base point (of which neighborhood is mapped).



  

Delayed cross map function

We have extended Sugihara’s method for time-dependent 
and delayed connections. The method was tested on simulated 
coupled dynamical systems. Peaks positions on the negative 
axis mark the correct delay times.

Case I:
Unidirectional coupling

The method precisely: 
identified the direction and 
the delay of the coupling:

Delay: 0

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 0

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Driver Driven

Dorottya Cserpán

Zsigmond Benkő



  

The peak of the cross map functions follows precisely the delay of the effect

Delay: 5

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 5

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Case I:
Unidirectional coupling

Delayed cross map function

Driver Driven



  

The positive axis marks the anti-causal direction of the time shifts.
This effect is stronger in deterministic systems and in case of strong
couplings. In these cases, the future of the driven system can be 
predicted from the cause as well.  

Delay: 10

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 10

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Case I:
Unidirectional coupling

Delayed cross map function

Driver Driven



  

In case of bidirectional coupling, the peak positions mark the correct 
delay times in both directions. The coupling coefficients could be 
different, and the delays could be the same or different into the two 
directions.

Delay: 1

Chaotic
oscillator

X→Y Delay: 1
Y→X Delay: 1

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 1

Delayed cross map function

Driver Driven



  

Delay: 5

Chaotic
oscillator

X→Y Delay: 5
Y→X Delay: 5

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 5

In case of bidirectional coupling, the peak positions mark the 
correct delay times in both directions. The coupling coefficients 
could be different, and the delays could be the same or different 
into the two directions.

Delayed cross map function

Driver Driven



  

Delay: 10

Chaotic
oscillator

X→Y Delay: 10

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 15

Y→X Delay: 15

In case of bidirectional coupling, the peak positions mark the 
correct delay times in both directions. The coupling coefficients 
could be different, and the delays could be the same or different 
into the two directions.

Delayed cross map function

Driver Driven



LFP vs IOS

During the long (1 hour) recording, epileptiform bursts appeared with 
increasing frequency. Parallel, the optical reflectance (and the transmittance) 
of the tissue changes for visible light, without any additional dying. The 
process is clearly activity dependent, but slow.

Epileptiform activity was evoked by 
low Mg+ environment in vivo slice 
preparation. The local field potential 
was recorded together with the 
intrinsic optical signal (IOS), which 
is possibly a result of swelling of 
cells during over excitation.

Ildikó Világi

Sándor Borbély

Kinga Moldován

Eötvös Loránd 
University
Department of
Physiology and 
Neurobiology 



LFP vs IOS

The faster component 
were inverted 
comparing reflected 
and transmitted light, 
while the slow 
component was 
negative both cases.
 
Different mechanisms:

IOS low → absorbtion

IOS high → transmittance



LFP vs IOS

The sampling 
frequency of the IOS 
was only 2Hz, much 
lower than the 1kHz of 
the LFP!!!

In order to make the 
causality analysis 
applicable:  

The faster and slow component 
of the IOS were divided by 
subtracting a moving window 
average,to get stationary time 
series.

The LFP has been 
downsampled by summing up 
the V2 for every 500 ms 
 



LFP-IOS cross correlation

The instantaneous correlation is nearly zero, the cross correlation 
function has two significant peaks: a higher negative one at -2s (LFP 
leads) and a smaller positive one at +2.5s (IOS leads). This could be 
the sign of a well delayed interaction.

LFP leads?

IOS leads?



Delayed cross map function

Instead: 
Delayed Cross Map function shows a 
causal effect from LFP to IOS with 
500ms delay, corresponding to 1 
sample time for IOS.
Although, the time scale of the two 
signals were very different, the 
unidirectional causal effect was 
revealed.

LFP→IOS Delay: 500 ms



Delayed cross map function

The causal relationship was significant and independent from the form of 
evoking the epileptic activity.



Autonomous dynamics between epileptic bursts

dIOSh=
−IOSh(t)

τ1

In lack of detectable epileptic activity, the amplitude of the IOS decay 
exponentially in all the three cases.
From this observation, a simple linear differential equation can describe the 
autonomous dynamics of IOS:
 



Reverse engineering 

The IOS time series was 
reconstructed, based on 
the LFP recording with 

high precision during the 
1h long session.

dIOSh
dt

=W (t )∗LFP2−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2



Reverse engineering 

The same model, 
with different 
parameters 

describes the 4AP 
activity as well. 

dIOSh
dt

=W (t )∗LFP2−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2

4AP case





  

Intra- and inter hippocampal 
connectivity during seizure  

Péter Halász

Dániel Fabó

Boglárka Hajnal

In order to find out the 
lateralization of the 
seizure onset, two 
near-hippocampal 
electrodes inserted 
through the foramen 
ovale into the lateral 
ventricles.  

Loránd Eröss

László Entz

Emilia Tóth

National Institute of 
Clinical Neurosiences Virág BokodiMárta Virág



  

Intra- and inter hippocampal 
connectivity during seizure  

From the 2*6 channel 
bilateral hippocampal 
potential recordings 
2*4 channel CSD 
were calculated. 

The causality analysis 
were applied to the 
temporal derivative of 
the CSD.

The connections 
which were active 
before the seizure 
stops, but new, more 
extended connection 
structure emerges 
during the seizure. 
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Intra- and inter hippocampal 
connectivity during seizure  

During seizure, the 
intra-hippocampal 
connections emerged 
and spread out for 
larger distances, while 
the inter-hippocampal 
connections dropped 
down.

The connection 
structure before and 
during the seizure 
was very conservative 
through different 
seizures in this 
patient.
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Applying Sugihara’s causality analysis method to the layer mean CSD, we showed, that there were 
significant changes in the causal connections between layers and subfields of the hippocampus, between 
theta and SPW-R. Thickness of the dark blue lines show the connection strength. During theta oscillation, 
the granular layer of DG were driven by the outer two third of the str. moleculare, (entorhinal perforant 
path). In contrast, during sharp-wave, the inner third of the str. moleculare (septal and commissural input) 
was shown to drive the granular and hilar layers. Parallel, the causal connection between CA1 str. 
lacumosum-moleculare and str. Radiatum is much stronger during theta, while the connection between 
CA1 rad and pyr is much stronger during SPW-R. The method were more sensitive to the more direct and 
bidirectional dendritic-somatic connections, than the connections through axon bundles, but relative 
changes could be high in those cases as well.

Theta Sharp-Wave-Ripple

Inputs

O
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MEC2/3

LEC2/3
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CA1

CA3

COM

DG

MEC2/3

LEC2/3

SEP
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CA1

CA3

COM

DG EC5

CA1CA1
SubSub

EC5

Causality between the hippocampal layers

Berényi 
Antal



  

1 2 3 4 5 6 7 8 9

1 -1 -5 -1 0 -4 10 20 2 -2

2 -3 0 -1 -20 -1 2 -3 -2 -2

3 0 -6 0 1 -5 10 20 -1 0

4 -1 20 -2 2 -4 7 20 -1 -2

5 -2 0 3 -20 2 6 -2 -2 -1

6 -20 -1 -5 20 -5 1 -2 -4 -3

7 -20 4 -20 -20 2 5 2 -20 0

8 1 -5 -1 -1 -4 10 20 2 -2

9 -3 4 0 -20 2 7 -1 0 0

1 2 3 4 5 6 7 8 9

1 2 -1 -1 3 -1 -17 -20 -1 -1

2 -1 0 -15 -1 -1 2 3 -1 1

3 -1 5 0 -1 4 -1 -4 3 -5

4 4 3 -1 1 -1 -1 3 4 3

5 0 0 -3 2 0 2 3 0 3

6 -2 -1 -2 5 -1 2 3 -1 -1

7 -2 -1 0 -2 -1 3 0 -1 -1

8 2 3 0 7 -1 -4 -20 2 -1

9 -1 -1 16 -16 -1 1 3 -1 0

1 2 3 4 5 6 7 8 9

1 0 -14 -1 -8 -9 15 0 2 3

2 20 0 4 -2 -1 -1 13 2 19

3 -2 -1 2 3 3 3 -5 -2 -5

4 -7 -1 -3 2 0 3 20 7 -20

5 -2 3 -2 -1 2 3 18 7 14

6 -13 -13 -15 0 -1 2 -10 3 20

7 6 -11 2 -18 0 1 2 -20 -20

8 9 -10 -20 15 -20 2 4 2 3

9 12 2 -20 20 -20 20 20 2 0

ThetaSPW

C
S
D
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1 2 3 4 5 6 7 8 9

1 0 2 0 12 19 18 0 1 4

2 2 -1 12 20 0 -4 -7 -3 8

3 0 2 3 5 4 6 -13 -8 -6

4 -9 -14 -11 0 5 8 1 20 -20

5 -6 2 -3 -4 2 -19 -20 -15 -9

6 -20 1 -20 -4 20 2 0 1 -20

7 2 8 20 0 19 1 2 0 -2

8 6 4 13 8 16 9 -1 2 4

9 2 -17 5 18 9 20 2 -3 2

1

0.5

0

Difference:
SPW-Theta

Causality analysis on LFP was quite useless, presumably because of the electric crosstalk. In contrast CSD 
channels were much more independent and applicable for causality analysis. While the color shows the 
connection strength, numbers in the boxes show the delay of the effect in time step (using 2kHz subsampled 
data) 

1

-1

0

Causality between the hippocampal layers



  

● A new causality analysis method was extended to be by time and delay 

dependent

● It was tested on simulated time series and applied to different types of 

neural data.

● In vitro slice preparation during evoked epileptic activity, the causal 

effect from LFP towards the IOS was captured, although the sampling 

frequency was 500 times lower for IOS than LFP. 

● The delay time of causal effect did not corresponds to the peaks of the 

cross correlation functions, actually the correlation was negligible at the 

delay time of the causal effect. 

● Based on the causality analysis, a formula was developed describing 

the temporal evolution of the of the IOS and its dependence on LFP. 

Summary I. X Y



  

● In human epileptic patients foramen ovale recordings, abrupt changes 

appeared in the connection structures at the initiation of the seizure.

● The connection patterns were conservative through different seizures.

● Some intra hippocampal connections stopped working at the seizure 

onset, while the majority of the intra hippocampal connections spread 

along the hippocampus and get stronger. Inter hippocampal connections 

dropped down during seizure.

Summary II. X Y



  

Revealing hidden common cause

Neither Granger’s nor Sugihara’s method is able to detect 

the existence of a hidden common cause or distinguish it 

from the direct interaction.

We have developed a new method which can!

It is based on the joint dimension measure:

X Y

Z

xt

Time series

Xt

yt Yt

Xt
Yt

Time delay
embedding

Joint state-space

Dj

Joint dimension

Time series

Dx

Dy
András Telcs

Ádám Zlatniczky

Zsigmond Benkő



  

How to measure the dimension of the manifold?

Let’s take two radii and count the number of points within 

the spheres: the exponent of the increase with respect to 

the radius gives us the dimension.

N(r) = N0·r
D



  

The consequence The cause and the consequence 
together in the joint space

The consequence formed a 2D manifold both in its own and the together with the 
cause in the joint state space. The lack of dimensionality increase in the joint 
dimension is the sign of the existing causal link (x depends on y).

yn+1=ryyn(1-yn)xn+1=rxxn((1-xn)+byxyn)

Key point: the cause does not increases the dimension of the consequence 
in the joint space, the information is already there! 

[xn;xn+1;xn+2] [xn;xn+1;yn]

Revealing hidden common cause



  

yn+1=ryyn(1-yn)

[yn;yn+1;xn][yn;yn+1;yn+2]

The cause formed a 1D manifold in its own, but a 2D manifold together 
with the consequence in the joint state space. The dimensionality 
increase in the joint state space is the sign of the independence (x 
contains different information compared to y, thus x does not cause y).

xn+1=rxxn((1-xn)+byxyn)

Revealing hidden common cause

The cause and the consequence 
together in the joint space

The cause



  

Revealing hidden common cause

Causal cases and the relations between the single and the joint dimensions:

X Y

Z

Unidirectional causality:

Circular causality:

Common  cause:

Dj = Dx+ Dy

Dj = Dy< Dx+ Dy

Independence: xt⊥ yt

xt→ yt

xt↔ yt Dj = Dx= Dy

Max( Dx ,Dy )< Dj < Dx+ Dy
xt ┅ yt

The type of the causal connection can be revealed by measuring the 

relations between the joint and the individual dimensions.  



  

1 - Time-delay embedding

2 - Joining manifolds

3 - Estimating dimensions

4 - Bootstrapping

5 - Calculating conditional
probabilities

6 – Calculating causal relation probabilities

Test I.  Coupled logistic maps



  

Test II.  Coupled Lorentz systems

• 3 Lorenz systems: X, Y, C
• Each subsystem has 3 coordinates
• They are related through the

first coordinates by a coupling

ẋ1=σ(x2−x1)+m y→x(x2− y1)+mz→x(x2−z1)
ẋ2=x1(ρ−x3)−x2
ẋ3=x1 x2−β x3

ẏ1=σ( y2− y1)+mx→ y( y2−x1)+mz→ y ( y2−z1)
ẏ2= y1(ρ− y3)− y2
ẏ3= y1 y2−β y3

ċ1=σ(c2−c1)
ċ2=c1(ρ−c3)−c2
ċ3=c1 c2−β c3

The system is defined by the following
differential equations:

Causal relation probabilities



  

Test III.  Analysis of EEG during fotostimulation

During baseline
there was an 
unidirectional coupling 
from C4 to C3.

While during 
stimulation, the 
analysis resulted in 
common cause



  

Interictal Seizure

Preliminary application: localization the origin of the epilepsy

The 20-year-old patient suffered 
from a drug resistant epilepsy with 
frequent seizures.
 
The finding of a cortical dysplasia 
(at GrF4 electrode site) raised the 
possibility of the surgical treatment

GrB6 and GrF4 were only slightly involved (red ellipses). Based on the 
pronounced seizure activity, and the sensitive position of GrB6, only the frontal 
and orbitobasal parts were cut (purple signs).
 



  

Preliminary 
application: 
localization 
the origin of 
the epilepsy
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