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Spectral methods 



Methods applicable to one time 
series 



The Fourier transformation



The Fourier transformation

Coordinates: projection (dot product)
onto the orthogonal unit vectors (base)
of the coordinate system  



The Fourier transformation



Example: Slow dynamics of the 
epileptic seizure

6s
10s

24s

An experimental epilepsy model: Generalized epilepsy evoked by 
local application of 4-Aminopyridin, ECoG: 

Three phases of the seizure can be distinguished, based on 
amplitudes, frequencies and waveforms. 



The Fourier spectrum

Frequency (Hz)



The Fourier spectrum

What about the frequency axis? How do we know, which spectrum 
element conrresponds to which frequency?

We need the sampling frequency: F, measured in Hertz.
The length of the Fourier spectrum is equal to the length of the original data set: 
N samples
The total length of the recording in sec is T=N/F 

The N-th spectrum line corresponds to the sampling frequency: F
Note: the spectrum is meaningfull only until F/2, the Nyquist frequency.
F/2 is the maximal frequency which could be mesured by F sampling 
frequency. 

Thus the frequency step, or the unit of the frequency axis is F/N=1/T



The Fourier spectrum

Fine details:
●The results of the FFT algorithm is a vector of complex numbers of length N.
●Real part corresponds to the cosine, the imaginary part for the sine functions. 
From their ratio, a phase can be calculated for all frequencies.
●The square of the absolute value is the power spectrum.  
●The first element of the spectrum is the 0 frequency, the offset constant or 
mean of the data series. It breaks the symmetry, as it only appears at the lower 
end of the spectrum.
●The real part of the rest N-1 element is symmetrical, the imaginary part is 
antisymmetrical.
●The frequencies above N/2 are also called negative frequencies, and can be 
drawn from -F/2 to 0. 
●For data series consist of even samples, the Nyquist frequency (F/2) appears 
only onece in the middle of the spectrum, while for odd samples if appears 
twice.



Wavelet-
transformation Ywes Meyer Abel-prize 2017



Wavelet-
transformation



Wavelet-transformation



Wavelet-transformation of the  ECoG
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How to find connection between 
data series?  

The traditional method: Correlation
(more precisely, the linear correlation coefficient)

USD vs GBP

2*EUR vs GBP
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How to find connection between 
data series?  

The traditional method: Correlation
(more precisely, the linear correlation coefficient)

2*EUR vs GBP
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What does the correlation tells us? 
Problem 1: it is possible, that there is a clear connection between the two time 
series, but the correlation is 0 because of the non-linear form of connection. 



Convolution, cross- and auto- correlation

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20206883







Coherence 



Correlation vs. Coherence

The linear correlation 
coefficient 

Coherence spectrum 



2 dimensional, 256 channel electrode system

Made possible parallel monitoring of the 
many subareas of the hippocampus and 
cc. 100 sorted and identified neurons.

8*300 μm

32
*5

0µ
m

Micro-electro imaging



The high frequency power map 
show the somatic layers, which 
corresponds to the positions of 
the sorted individual neuros. The 
fusion of this high frequency 
power map with the result of the 
coherence clustering resulted a 
detailed layering map of the 
hippocampus. This electro-
anatomical map corresponded 
well to the tissue histology.

Berényi et al. J Neurophysiology 
2014  

Micro-electro imaging
Micro-electro anatomy



Micro-electro anatomy

T=1 T=1000 T=2000

T=5000 T=10000 T=50000

Layer structure of the hippocampus are revealed under the assumption, 
that the channels in the same layer receive similar synaptic inputs, but 
with different temporal delays. Thus coherence and the coherence based 
clustering could reveal the anatomical layers.

Micro-electro imaging



Micro-electro anatomy:
512 channel electrode system in the neocortex

0 1

Coherence

Micro-electro imaging



Information theoretical methods 



Information theoretical measures

Entropy:

H X =−∑ x
px log  px 

Entropy is a measure of disorder and informaition content
P

x
 is the probability of state x

Depending on the state space, there are different entropies
Spectral entropy, approximate entropy... 



  

MRI with implanted subdural grid 
electrodes 

4*8 channels in the grid plus 2*8 channels
In two strip electrodes, 1024 Hz sampling 



  

AE
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0.36 AE

0

Pathology

bad channels

Corresponds very well to the pathology

Approximate entropy at the 1st sec of the seizure

*

Entropy of the ECoG during 
seizure initialization

The Approximate Entropy (AE) is significantly 
increased solely during the initial, low amplitude 
phase of the seizure, then AE is decreased below 
the baseline during the high amplitude phase of the 
seizure. The positions of the increased AE values 
during the first sec of the seizure corresponds very 
well to the seizure onset zone, 

Publisher on two conference posters: Hungarian Neuroscience Meeting 2015
and the Hungarian Neurosurgery Conference 2014



Information theoretical measures

Mutual information

I (X ;Y )=H (X )+H (Y )−H (X ,Y )

H (X )=−∑x px log( px )



Phase-space reconstruction

 The reconstructed pseudo-attractor in the state space, 
constructed from the data and its derivatives (a(t), a1(t), 
a2(t) ...) is topologically equivalent to the systems real 
attractor in its original state space, according to the 
Whitney theorem.

Derivation increases noise, so the (a(t), a(t+dt), 
a(t+2dt) ... delayed coordinates, return maps are used in 
stead: Takens’-theorem. 



A simple epilepsy 
model

The change in the relative  strength of 
the recurrent excitation and in 
inhibition results in: 
- spikes
- seizures with complex dynamics
- status epilepticus

The seizures can be eliminated by 
increasing the strength of the 
inhibition.



Reconstructed attractors from the 
simulated time series and their changes

The synaptic depression decreases the activation and drives the 
system into the regime of the irregular (chaotic) oscillation   



Comparison of the reconstructed 
attractors from the simulation and the 

epileptic ECoG 



Phase space reconstruction

What to do with the reconstructed attractors?

It is not easy to determine the type (topology) of the 
attractor, based on the noisy measurements.

It is possible to measure its dimension, for example: L2-
dimension. N=Ld where N is the number points in a 
sphere with radius L.
It is possible to measure the average Ljapunov-exponent, 
meaning the average instability of the paths.

What else? 



  

How to measure the dimension of the manifold?

Let’s take two radii and count the number of points within 

the spheres: the exponent of the increase with respect to 

the radius gives us the dimension.

N(r) = N0·r
D



Methods applicable to small 
number of data/time series



The cocktail-party problem and the 
principal component analysis (PCA) 

Y i ( t )=∑W ij X j (t )

Y
1

Y
2

X
1

X
2

Let's search for the 
directions correspond to 
maximal variance



Principal component analysis



Principal component network,
derivation of Oja's rule:



The cocktail-party problem and the 
independent component analysis (ICA) 

Y i ( t )=∑W ij X j (t )
Let's search for the most independent directions!
The basic idea is the central limit theorem:
Linear combination of two independent 
variables is closer to the Gaussian distribution 
than the original. Thus, let's search for the least 
Gaussian sources. How to measure the “non-
Gaussianity”? Eq: Skewness, entropy...



Y i ( t )=∑W ij X j (t )

Y
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The most independent 
directions:

The cocktail-party problem and the 
independent component analysis (ICA) 



Independent component analysis (ICA)



Independent component analysis (ICA)



Inputs of a neurons from different layers

The spike triggered average EC potential patterns have been decomposed into 9 
different independent components by ICA. Some of them clearly corresponds to the 
signals of specific pathways and mechanisms: component #2 corresponds to Schaffer 
collateral, #8 and #9 together correspond to the Theta.

A CA1 pyramid neuron (#86)

Micro-electro imaging

#1 #2 #3

#4 #5 #6

#7 #8 #9



Inputs of a neurons from 
different pathways: ICA

A CA1 interneuron (#8)

20ms

0.1s

Micro-electro imaging

20ms

0.1s



#1 #2 #3

#4 #5 #6

#7 #8 #9

Inputs of a neurons from 
different pathways: ICA

A CA1 interneuron (#8)

Micro-electro imaging

20ms

0.1s



#1 #2 #3

#4 #5 #6

#7 #8 #9

Inputs of a neurons from 
different pathways: ICA

Micro-electro imaging

20ms

0.1s

A CA3 pyramid neuron (#56)



#1 #2 #3

#4 #5 #6

#7 #8 #9

Inputs of a neurons from 
different pathways: ICA

Micro-electro imaging

20ms

0.1s

A DG neuron (#36)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

DG granular neurons (n=8)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

CA1 pyramidal neurons (n=29)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

CA3 pyramidal neurons (n=8)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

CA1 PV neurons (n=16)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

CA3 PV neurons (n=2)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

DG (CA3?) PV neurons (n=2)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

DG AxoAx neurons (n=4)



Cell type specific 
potentials

Reconstructed without 
theta

Micro-electro imaging

CA3 AxoAx neurons (n=1)



ARMA and ARIMA model fitting

X ( t )=∑ Ai X ( t−i )

X ( t )=∑ Ai X ( t−i )+ ∑ B j X' (t− j )

Partial autocorrelation



Directed effect, causality 
measures



Granger-causality
The original idea 
came from Norbert 
Winer 

x → y, if the inclusion 
of past x values 
improves the 
prediction quality on y

?
Clive Granger
Publication 1969

Nobel price in 
Economic Sciences 2003



Granger-causality

X t =∑i

p
a1 j  X  t− j 1t 

Y (t )=∑i

p
d1( j)Y (t− j )+η1(t)

X t =∑j

p
a2  j X t− j ∑ j

p
b2 j Y t− j 2t 

Y t =∑ j

p
c2 j  X  t− j ∑ j

p
d 2 j Y t− j 2 t 

Causality measures



Granger-causality

1=Var 1t 

1=Var 1t 

2=Var 2 t 

2=Var  2t 

FY→X=log (Σ1)−log (Σ2)

F X→Y=log (Γ1)− log (Γ2)

FYX=log 2 2−log 2
2
−cov2

 2t 2 t 

Causality measures



  

Model dependency can be ameliorated by using nonlinear extensions, kernel 

solutions or model free transfer entropy method.

But,

The problem implied by self-predictability and uncertain outcome for 

bidirectional coupling is inherent in the basic principle:

In case of circular coupling, the information contained by the second data 

series is already available in the system's own past.

Problems with the Granger-causality



Practice



stacksize(2e8)
getd ~/TANIT/SummerSchool15/PRACTICE
loadmatfile('~/TANIT/SummerSchool15/PRACTICE/Seizure1.mat');
st=1e3;
chn=43;
cm1=CorrFor(adat,1,5e3);
stn=floor(size(adat,1)/st);
scm=zeros(stn,chn);
cmm=zeros(stn*chn,chn);
for k=1:stn
l1=(k-1)*st+1;
l2=k*st;
[cm]=CorrFor(adat,l1,l2);
cmm((k-1)*chn+1:k*chn,:)=cm;
scm(k,:)=mean(cm,'r');
end

socol(24);
tplot(scm);

Practice
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