(Digital) Image processing

Kristóf KAPITÁNY, Ph.D.
BME, Faculty of Civil Engineering, Dept. Photogrammetry and Geoinformatics
kapitany.kristof@emk.bme.hu
The materials are based on the earlier lecturer prof. Árpád BARSİ

- Part 1: (6/12/2022) „Theory” of image processing
- Part 2: (13/12/2022) Practice with software examples
• Basic terms
• Image descriptions
• Image acquisition
• Resolutions
• Storage & software
• Manipulations: LUT, morphology, histogram operations
• Image filterings
• Color models
• Geometric manipulations
• Basic measurements
• Machine Learning Basics

Content
Is it interdisciplinary?

- Photography
- Mathematics
- Physics, optics
- Signal processing, electronics
- IT
- ...
- Application fields
Application fields

• Photography, documentation (from holiday to events)
• Cinema
• Design, marketing, advertisements
• Medicine, biology
• Industrial applications: robots, QA/QC, transportation...
• Physics, astronomy, measurement technologies
• Military applications
• Remote sensing, GIS
• And many more...

Semmelweis University PhD School „J. Szentágothai"
• Detection and recognition of known objects
• Obtaining geometric models of unknown objects
• Computing position and orientation of objects
• Measurement of spatial properties of objects (distances, sizes, etc.)
• Measurement of object motion
• Measurement of surface texture and color

Goals of image processing
Levels

- Image processing
 - E.g. image enhancement

- Image analysis
 - E.g. feature extraction

- Image understanding
 - E.g. semantics
Image and pixel

Semmelweis University PhD School „J. Szentágothai“
Image coordinate systems
Image acquisition procedure

1. Reality
2. Projection (optics)
3. Sampling
4. Quantization
5. Digital image
Image acquisition procedure
• An image is a function $f(x,y,b,t)$
• Resolution: geometric, radiometric, spectral, temporal
• Cut-off/mask: regular, arbitrary (ROI, AOI)
• Storage formats (color and BW; lossy and lossless)
• Features: descriptive data, statistics, histogram, sections
Geometric resolution

Original resolution
1/4 of original

1/8 of original
1/16 of original
Radiometric resolution

64 gray levels
16 gray levels
8 gray levels
4 gray levels
Spectral resolution
Temporal resolution
• Trigger (to have a single image not a video)
• Detector:
 • Single point – really fast
 • Small area (APD arrays)
 • Camera (CCD, CMOS)
• Photons → Electrons → Voltage → Dig. Number
• Parameters: Noise / Range / TimeFrame

Image acquisition
• Paper of A4 with 600 dpi
 • 210×297 mm
 • 4961×7016 pixel = $34\,806\,376$ pixel
 • à 24 bit (1 byte) = 99.6 MB
• Aerial image with 7 μm pixel size
 • 230×230 mm
 • $32\,857 \times 32\,857$ pixel = $1\,079\,582\,449$ pixel
 • à 24 bit = 3.02 GB
• Efficient algorithms to store information
 • Lossy or lossless methods

Image storage
• Graphics software:
 • PhotoShop, PhotoPaint, PaintShopPro, Kai, Photo DeLuxe, Gimp...

• General purpose development environments:
 • Khoros, **Matlab Image Processing Toolbox**, AVS, Image Vision Library, Halcon, ImageMagick, Rapidminer...

• Special application software:
 • ImageStation Imager, Erdas Imagine, GRASS, ImagePro Plus, Ilwis, **ImageJ**, Fiji, SNAP...
Software examples

Kai’s Power Tools

PhotoShop

GIMP

ILWIS

ImageJ
• Free Java based image processing software
• Download from: http://imagej.nih.gov/ij/
• Clear menu structure
• Numerous medical/biologic function
• Add-on possibility (plug-in)
• Well-documented (help, tutorials, videos)
- Classification
- Semantic segmentation
- Object detection
- Object localization

Image processing tasks
Wide variety of:
- Viewpoint
- Illumination
- Deformation
- Occlusion
- Clutter
- Intraclass Variation

• Transformation (Translation, Rotation, Cut, Resize, Denoise, Contrast enhancement, morphological transformations)
• Segmentation
• Registration (e.g. to fuse multiple images to the same CS)
• DICOM – Digital Imaging and Communication in Medicine
• Copyright at NEMA – National Electrical Manufacturers Association
• First standard: NEMA + Americal College of Radiology (1985)
• DICOM Standard Committee
• Providers: e.g. Agfa, Philips, Siemens, Zeiss...
• Users: e.g. American Academy of Ophthalmology, European Society of Cardiology, Deutsche Roentgengesellschaft...
• Other members: e.g. IT companies, health industry companies...
Quick Links To Popular Programs

<table>
<thead>
<tr>
<th>Display DICOM</th>
<th>Display DICOM</th>
<th>Display DICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Macintosh</td>
<td>Linux</td>
</tr>
<tr>
<td>1 Mango</td>
<td>OsiriX</td>
<td>Mango</td>
</tr>
<tr>
<td>2 MIPAV - Medical...</td>
<td>Mango</td>
<td>MIPAV - Medical...</td>
</tr>
<tr>
<td>3 Synedra View Pe...</td>
<td>MIPAV - Medical...</td>
<td>Aeskulap - DICO...</td>
</tr>
<tr>
<td>Full List of 96</td>
<td>Full List of 61</td>
<td>Full List of 61</td>
</tr>
<tr>
<td>79 Screen Captures</td>
<td>47 Screen Captures</td>
<td>47 Screen Captures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convert Files</th>
<th>Convert Files</th>
<th>Convert Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Macintosh</td>
<td>Linux</td>
</tr>
<tr>
<td>1 Mango</td>
<td>OsiriX</td>
<td>Mango</td>
</tr>
<tr>
<td>2 MIPAV - Medical...</td>
<td>Mango</td>
<td>MIPAV - Medical...</td>
</tr>
<tr>
<td>3 XMedCon</td>
<td>MIPAV - Medical...</td>
<td>Aeskulap - DICO...</td>
</tr>
<tr>
<td>Full List of 40</td>
<td>Full List of 23</td>
<td>Full List of 34</td>
</tr>
<tr>
<td>19 Screen Captures</td>
<td>11 Screen Captures</td>
<td>14 Screen Captures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PACS Client</th>
<th>PACS Client</th>
<th>PACS Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Macintosh</td>
<td>Linux</td>
</tr>
<tr>
<td>1 MIPAV - Medical...</td>
<td>OsiriX</td>
<td>Mango</td>
</tr>
<tr>
<td>2 Synedra View Pe...</td>
<td>MIPAV - Medical...</td>
<td>MIPAV - Medical...</td>
</tr>
<tr>
<td>3 ConQuest</td>
<td>CDMEDIC PACS</td>
<td>Aeskulap - DICO...</td>
</tr>
<tr>
<td>Full List of 39</td>
<td>Full List of 25</td>
<td>Full List of 27</td>
</tr>
<tr>
<td>29 Screen Captures</td>
<td>20 Screen Captures</td>
<td>21 Screen Captures</td>
</tr>
</tbody>
</table>

DICOM support

Semmelweis University PhD School „J. Szentágothai” 2022
DICOM example

Semmelweis University PhD School „J. Szentágothai”
• Descriptive data
 • #rows, #columns, capture date, exposition time...
• Statistics
 • Max, min, mean, median...
• Histogram
• Sections

Image features

Semmelweis University PhD School „J. Szentágothai“
Once more about histograms
Look-Up Table (LUT)
LUT cases

Semmelweis University PhD School „J. Szentágothai”
Binarization

Semmelweis University PhD School „J. Szentágothai“ 2022
Morphology

Erosion

Dilatation

Opening

Closing
Skeletonize

Semmelweis University PhD School „J. Szentágothai” 2022
Opening & closing with 5 pixel radius STREL

Grayscale morphology
Histogram stretch
Brightness functions

Semmelweis University PhD School „J. Szentágothai”
Contrast function
Image filtering

- Convolution
 - Smoothing
 - Edge detection
- Non-convolution
 - Special effects
- Filtering in frequency domain
 - Periodic noise removal
Convolution
Smoothing filter (mean)
Median-filter
Mean vs median filter
Laplace filtering

- $N=4, n=4$
- $N=4, n=5$
- $N=8, n=8$
- $N=8, n=9$
Find edges = Sobel filtering
• Additive models
 • E.g. RGB

• Subtractive models
 • E.g. CMY

Color models
RGB model
CMYK model
RGB model vs. Perceptual color model
Geometric manipulations
Basic measurements
• Traditional processing:

 Data + Program → Computation → Output

• ML driven processing:

 Data + Desired Output → Training → Program (The Model) → Output

New Data

Machine Learning

https://xkcd.com/1838/
AI - Artificial Intelligence: Anytime we use the Computer for something more than just processing the prewritten code
ML - Machine Learning: Adapting to a task, based on previous information, looking for patterns in a massive amount of data.
DL = ML + NN (Deep Neural Network)
Machine learning in ImageJ
Machine learning in Ilastik

Semmelweis University PhD School „J. Szentágothai”
Machine learning in Ilastik

Semmelweis University PhD School „J. Szentágothai“

2022
Deep learning in ImageJ

Semmelweis University PhD School „J. Szentágothai”

Source: https://www.biorxiv.org/content/10.1101/799270v3.full.pdf
Thanks for your attention!

To be continued...
The materials are based on the earlier lecturer prof. Árpád BARSİ, the references for his materials:

- Jähne, B.: Digital Image Processing
- Epstein, L.C.: Introduction to the Mathematics of Medical Imaging
- Suetens, P.: Fundamentals of Medical Imaging
- dicom.nema.org
- http://www.olympusmicro.com/

References for the extensions:

- https://commons.wikimedia.org/wiki/User:Datumizer
- https://vas3k.com/blog/machine_learning/
- https://imagej.net/plugins/tws/
- https://www.biorxiv.org/content/10.1101/799270v3.full.pdf