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Introduction

EEG toolboxes, EEG origins, rythms, headsets



Free EEG processing toolboxes

* MATLAB

e EEGLab: https://sccn.ucsd.edu/eeglab/index.php
* Brainstorm: https://neuroimage.usc.edu/brainstorm/Introduction
* Fieldtrip: https://www.fieldtriptoolbox.org/

* Python
* MNE toolbox: https://mne.tools/stable/index.html



EEG origins

* large cortical pyramidal neurons in deep
cortical layers play a major role in the
generation of the EEG

e postsynaptic potentials along the apical
dendrites (perpendicular to the cortical
surface) become electrical dipoles
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Siuly, S., Li, Y., & Zhang, Y. (2016). Electroencephalogram (EEG) and
Its Background. In EEG Signal Analysis and Classification (pp. 3-21).
Springer, Cham.



EEG rhythms

DELTA WAVES

THETA WAVES

ALPHA WAVES

BETA WAVES

GAMMA WAVES

RHYTHYM FREQUENCY AMPLITUDE STATE OF
RANGE (Hz) (uv) MIND
DELTA Upto4 High amplitude | Deep sleep
(20-200)

THETA 4-8 More than 20 Emotional
stress,
drowsiness and
sleep in adults

ALPHA 8-13 30-50 Relaxed
awareness

BETA 13-30 5-30 Active thinking,
active attention,
alert

GAMMA Above 31 Less than 5 Mechanism of

consciousness

Vaid, et al 2015




EEG headsets

Laboratory setups Portable EEG devices
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wireless-eeg-system-9-ch/



2 portable, 1 laboratory system

A Comparison of oty Skt
Electroencephalography Signals

Acquired from Conventional and
Mobile Systems
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Check the placement of
EEG electrodes in EEGLab

* Spherical and MNI coordinates are available
* MNI for source localization

aaaaaaaaaaaaa

aaaaaaaaaaaa

In GUI: Edit > Channel locations
In Command window: >>pop_chanedit([]); — .

 topoplot.m” function plots the electrode e
montage on scalp

» Sample data in EEGLab/sample locs

* Cartesian, spherical, polar coordinates were
applied

3 of 9 electrode locations shown

Click on electrodes to toggle namesnumber




Preprocessing EEG



EEG data structure

e Basic elements:

 Amplitude values (2/3D matrix;
channels*time points™ epochs)

 Channel labels
e Sampling frequency
 Reference

 Advanced elements:
e Filename
* Channel coordinates
Bad channels
Bad epochs
ICA weights
History

EEG =

setname:
filename:
filepath:
pnts:
nbchan:
trials:
srate:
wmin:
xmax:
data:
icawinwv:
icasphere:
icaweights:
icaact:
event:
epoch:
chanlocs:
comments:
averef:
rt:

eventdescription:
epochdescription:

specdata:
specicaact:
reject:
stats:
splinefile:
ref:
history:
urevent:
times:

EEGLAB struct

'Epoched from

"eelld

continuous""’

'eelldsquaresepochs.set’
' fhome/arno/eelld/)’

384

32

88

128

=il
1.95922

[32x384x868 double]

[32x32 double]
[32%32 double]
[32x32 double]

[]

[1x157 struct]
[1x86 struct]
[1x32 struct]
[8x15@ char]

"no’

[]

{1x5 cell}
i1

[]

[]
[1x1 struct]

[1x1 struct]
[]
' common '

[7x138 char]

[1x154 struct]
[1x384 double]



Continuous recordings versus event-related setup

Sleep EEG

Resting state EEG

Epileptic
interictal
EEG
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Event-related case: series of stimuli are sent to
the subject and we have the corresponding
triggers marked in the recordings

Continuous EEG recording
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Motamedi-Fakhr, Shayan, et al. "Signal processing techniques applied to human o
sleep EEG signals—A review." Biomedical Signal Processing and Control 10 (2014): mos
21-33. ron

Manual and automatic artefact filters are avaiable
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Performed outdoors

Portable-wearable-wireless device

Real EEG signals
Daily-life tasks

Simple electrical montage

Diry electrodes

Complex artifacts

Only EEG signals

Online

Single active channel

Performed oudoors

Portable-wearable-wireless device

Real EEG signals
Diaily-life tasks

Simple electrical montage

Diry electrodes

Complex artifacts

Only EEG signals

Online

Sin E,Ie active channel




Journal of Neuroscience Methods 192 (2010) 152-162

Contents lists available at ScienceDirect

gll'l CIENCE

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection™
H. Nolan!, R. Whelan*1, R.B. Reilly

Trinity Center for Bioengineering, Trinity College Dublin, Ireland

Adding Faster to EEGLab:

Download: https://sourceforge.net/projects/faster/

Unzip Faster to EEGLab>Plugins>Faster folder
Run EEGLab
Tools>FASTER


https://sourceforge.net/projects/faster/

H. Nolan et al. [ Journal of Neuroscience Methods 192 {2010) 152=162

Raw Reference
Data (Fz)
Filtering
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- Hurst exponent: measure the long range dependence within a ——

signals (i.e.:trends). Related to autocorrelation



H. Nolan et al. [ Journal of Neuroscience Methods 192 {2010) 152=162

Rayw Reforenco
Baseline Epoch [ Data l_'[ i)

Correct Data ¢

Variaren }—4{ "":)"’ \
Amplitude Mean across Z-score > ‘ - /
channels 3? ® m corr I*‘I ]*—— ineerpotate

R
ange \ 1 Mﬂl | l !«;; l ~

@ -> Epochs Variance ISR e rs &fcaten Remove
channels 3?
Channel Mean across Z-score >
deviation channels 3?

2) Remove bad epochs ==
- Online s = g
- Parameters: ® — 1
-  Mean amplitude range across channels: for movement artefact R o /
- Mean amplitude variance across channels: : for movement artefact e =
- Mean channel deviation across channels: for shifting channels T m}\
. ==

deviation 3?




Reference
A (Average)
Correlation Z-score >
with EOG chans 3?
Spatial Z-score >
kurtosis 3?
@ ” Independent Slope in Z-score >
Components filter band 3?
Hurst Z-score >
exponent 3?
Median Z-score >
gradient 3?

3) Substract independent components (ICs)

- Online

Subtract

- IC weights computed offline (~3 min recordings required for 62 channels)

- Eye Channels required! (Fp1, Fp2 applied now)

- Parameters:

H. Nolan et al. / Journal of Neuroscience Methods 192 {2010) 152162

==

Amplude ]_+ Meas scross I | Zatere >
Rorge h n 37

| l Mean aross | Il«ou:
channels 3?7

Moas across

Taconn >
n




Indipendent component
analysis (ICA) in EEGLab

* Indipendent component analysis produces the
maximally temporally independent signals
available in the channel data. These are, in

effect, information sources in the data whose
m|xtures via volume conduction, have been
recorded at the scalp channels.

e |In EEGLab:

. 1C) Calculate IC weights:Tools>Decompose data by
ICA

* 2) View&remove components: Tools>Adjust

* VVideo tutorial: BRI
https://www.youtube.com/watch?v=JOvhHSEt- - E e

ZU&ab_channel=mathetal



H. Nolan et al.{ Journal of Neuroscience Methods 192 (2010) 152=162
ICA Reference "
(Average) =} [ e
Correlation Z-score >
with EOG chans 3?
®
Spatial Z-score >
kurtosis 3?
Independent Slope in Z-score > - =
@ - Components filter band 3? Pt | /I e 1 e :x
©) tpors Q Vance | Memaons | 290> LA temave
Hurst | Z-score> Channet ——r— e
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3) Substract independent components (ICs)

Online
IC weights computed offline (~3 min recordings required for 62 channels)
Eye Channels required! (Fp1, Fp2 applied now)
Parameters:
- Correlation with EOG chans
- Spatial kurtosis: for single channel effects
- Slope in filter band: slope of the spectrum for eliminating white noise
- Hurst exponent
- Median gradient: if the IC have high frequency activity




H. Nolan et ol Journal of Neuroscience Methods 192 {2010) 152=162
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Downsample,filtering, re-referencing

* Downsample (smaller datasets, question of highest
frequency of interest)

4\ Filter the data -- pop_eegfiltnew()

* EEGLAB: Tools > Change sampling rate e et ot oo o b (1)
. . FIR Filter order (Mandatory even. Default is automatic*)
L4 F I Ite rl n g ;?ee hIeLp :_ext fora descriptior;‘ 0:1 the default filter order heuristic.
anual definition is recommended.
* Filtering the continuous data minimizes the introduction Notoh e th data nstead of pass and
of filtering artefacts at epoch boundaries. e i shase oniered causal ler (onnear: e
 EEGLAB: Tools > Filter the data > Basic FIR filter (new, R . ]
d efa It) OR channel labels or indices 4
u
* No phase distortion o EEE .
* Re-referencing
* Common/fixed reference: tip of the nose, mastoid, etc PR Tranggion gegion 005 |r— 0
* Average reference: eliminate the error caused by the 048 38| soopamd 8
noise of the reference : T | = e
* Tools > Re-reference the data € |_Passband | bv\/ g

Frequency (Hz) Frequency (Hz)



Basic features



ERP averages and plots

A: Data Acquisition B: Continuous EEG
* EEGLab: ) (Do 000
* pop_timtopo( EEG struct, latency); —_—
e GUI: Plot>Channel ERP> With scalp maps EEG T
« i 5 % = System e
Plotting time range (ms): - .
Scalp iap e (ms, NaN > max-RMS) T Q i C: Single Trials D: Average ERP
Plot title: ERP data and scalp maps o

Scalp map options (see >> help topoplot):

L Ao ‘
Help Cancel \ Ok | ‘ I ‘ J
Latency (ms) @g‘%’m P1

Potential (1V)
é"f

P2

e GUI: Plot>Channel ERP> In scalp/rect. array o
N2
(4 Topographic ERP plot - pop_plottopo() - u] X :‘/‘“““""" é&mz’t N1
Channels to plot 1:32
Plot title EEG Data epochs b w1 Ko
Plot single trials [J(set=yes) | -5 pan) S i
Plot in rect. array [ (set=yes) e B S -y ga) =
Other plot options (see help) 'ydir', 1 i — ——— ) M

Help Cancel Ok ! AU S .,__. o i sk



Power spectrum In EEGLab:

Plot>Channel spectra maps

e Describes the distribution of e B
power into frequency e o [
components composing that Frequencesto pot 2 scap maps (o) 5102
Sig n a | Apply to EEG|ERP|BOTH: EEG

* Plotting frequency range [lo_Hz hi_Hz]: 295
Spectral and scalp map options (see topoplot): ‘electrodes’,'o
* Absolute power: " B e
* integral of all of the power _Heb Cancel | Ok
values within its frequency |
range

* Relative power:

* Express the power in a
frequency band as a percentage
of the total power

 Correction for absolute
differences among the subjects
in EEG




Some advanced features



Time-frequency analysis

* Time/frequency analysis characterizes
changes or perturbations in the spectral
content of the data considered as a sum
of windowed sinusoidal functions (i.e.
sinusoidal wavelets).

* Accurate time and frequency resolution

* For trials with triggers:

* ERSP (event-related spectral perturbation):
measures average dynamic changes in
amplitude of the broad band EEG frequency
spectrum as a function of time relative to an
experimental event.

* ITC (inter-trial coherence): indicates that the
EEG activity at a given time and frequency in
single trials becomes phase-locked

EEGLAB:
Plot > Time frequency transforms > Channel
time-frequency

File Edit View Insert

Nade &

Tools Desktop

OEB k[E

Window Help
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Phase amplitude coupling (PAC)

Biological relevance: )
- The current view is that PAC facilitates effective | = = & @ @ Mean Vector Length
interactions between neurons with similar 90°
phase preferences. I I
- Memory processing R e IERRERE
- E.g.: Phase-amplitude coupling of sleep slow i . ...i.rﬁé.d[.i(.t.zifééh.: ...... é"z({:‘;g'g')" (-)180° 2
oscillatory and spindle activity correlates with R A T
overnight memory consolidation poor b
Mean vector length: R R -90°
- phase of slow; the amplitude of fast rhythm 90°
- length of the complex vector: each . . - A
instantaneous fast oscillation amplitude \ I\ fy /0
component in time "-ga It \ f " f (-)180° a
- vector angle: slow oscillation phase of the iikf“,;;‘i ‘.-’;J.Jp';’i ‘«W‘x;‘,};‘h
same time point is represented by the ; L "
- PAC= mean vector length ~--.'.‘,“'.”“"’:‘f-»~f:,".‘:“:‘J'L'T’;’.';r.n- il -90°
Code: 1 WY W

https://neuroimage.usc.edu/brainstorm/Tutorials/
Tii1+Pac



Functional networks in the brain

* Nodes and edges
* Nodes: recording sites or brain areas (e.g.: source EEG, fMRI)
* Edges: relation between brain areas (structural or functional)

Resting state EEG recording Correlation matrix

codes_: https://sites.google.com/site/bctnet/measures/list



Functional connectivity methods

* Functional connectivity (non-directed):

e Correlation

* Phase lagindex (PLI):
e asymmetry of the sign of the phase difference

* Effective connectivity (directed): 2 P
. . X = E X — i E X _ i+ E
* Linear (Granger-causality): e j 1A11"‘? ! j}—i_j 1}112”'I )R
* based on autoregression,

- ifa siFnaI X, "Granger-causes" (or "G-causes") a » »
X,, then past values of Xa(should contain Xo(t) = Zﬂzl,jxl(f i)+ Z Ao ; X (t — §) + Ea(2)
j=1

PLI = |(sign[Ad(t)])|

signa
@n%ormat!on that helps predict X, above and beyond the :
information contained in past values of X, alone. =1

* Nonlinear (e.g.: Transfer entropy):
* measures the increased predictability of Y signal caused
by an additional X signal as the difference between the

Shannon Entropy of Y conditioned on its own past _
values and the Shannon Entropy of Y conditioned its Tx,y =H (Yf | Y: 1:t—L) -
own and X signal’s past

—~H(Y: | Vi1, Xe-14-1),

Codes/help:https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity



Local network parameters

* Express the role of the individual node

* Comparisons can be made between nodes, or
states/conditions/groups

Examples (centrality measures):

* Node strength: sum of weights of links connected
to the node

* Betweeness centrality: the fraction of all shortest
paths in the network that contain a given node

* Local connectedness: sum of weights of links in
the neighbouring nodes

* Modular hubs: strong connections within a
module

TRENDS in Cognitiv



Global network organizations

Community structure | Q -Express the state of the
nonoverlapping (Overlapping) whole brain network
Densely connected subnetworks T LT -Comparisons can be made
N between
states/conditions/groups

Clustering coefficient:

Average path length:

Small-world network




Global network organizations

Community structure

nonoverlapping (Overlapping)

Densely connected subnetworks HEALTHY BRAIN

Clustering coefficient:

Average path length:

\ Small-world network }




EEG In practice



EEG Iin practice

* Medical application:
 Epilepsy (diagnosis, seizure prediction, focus localization,...)
* Brain tumor
* Brain damage from head injury
* Brain dysfunction that can have a variety of causes (encephalopathy)
Inflammation of the brain (encephalitis)
Stroke
Sleep disorders

* Brain computer interface (non-invasive[EEG], invasive [ECoG] )



Applications of BCI

* replace functions
e ,Locked-in syndrome” (e.g.: Amyotrophic
lateral sclerosis, Brainstem (pons) stroke)
* restore functions:
 stroke rehabilitation

* improve functions:

* Memory improvement using wearable EEG
headset by identifing poorly or well-memorized
words from parito-occipital power

semantically coherent
incoherent

Patient G, female, 36. Chronical polyneuritis since 1995. Total locked-
in syndrome since 1996. No controlled eye movements.
Completely intact ERPs in ALL TASKS.

Prof Gyorgy Karmos



EEG-BCI

DRAWBACKS:
* poor spatial resolution

* low signal-to-noise ratio (any
evoked response which gets
embedded within on-going
background activity)

ADVANTAGES:

* excellent _
temporal resolution of less than a
millisecond

* portable devices available
* Low cost

Artefacts Temporal,

rejection, spectral, spatial

filtering, etc  features

11001 Digitalized

P Pre-processing{—' Feature-Extraction

R

Classification

Translation into command

v

Communication Environmental control R g

® ;&
e N
- B o wn

Feedback

Figure 2: Model of a BCI System

Vaid et al 2015



1) Slow cortical potentials (SCP)

* l[ow frequency potentials (e.g., less
than 1 Hz) recorded from the scalp

* Patients are trained to modify SCPs
based on feedback and use this

paradigm for BCl-based
communication (Prof. Niels Birbaumer,

Thought Translation Device).

Baseline Baseline

(offline) (online) ~——— rejection response require
-10p selection response require

ball movemen t
10 L 7 SO VA T
00 ©8 106 1.9 20 20 S0 I 49 45

passive phase time [s] active phase

Trial Letter Bank on the Screen Response Type
| ENIRSTAHDUGLCBMF lectio

ENIRSTAH
ENIR Non-response
! STAH
> ST Non-response
6 AH
7 A N I
8 H

Prof Gyorgy Karmos



2) Sensorimotor rhythms (SMR) paradigms

Overview BJS HTd
* Defined as the imagination of movements of large body parts '

1500

Left Hand
— Rest

* causes event-related desynchronization (ERD) in mu (8—12 Hz) and beta )l
rhythms (18—-26 Hz) in the contralateral central electrodes (motor cortex) .

* Require training (weeks, months) 500
Analysis and classification methods ™
* SVM outperforms the other classifiers in SMR features classification i * - = "

* time-frequency features could better depict the non-stationary nature of
EEG SMR LEFT

Applications @) _ C3Blectrode

1500

Frequency (Hz)

— Right Hand

* one-dimensional computer cursor movement —Rest

«  1000f

* Open and close a prosthetic hand with imagined right or left-hand 5

movement. = _/\\
* restore hand grasp in a patient with tetraplegia \\

* control objects such as quadcopters ’ - ; % . ” »
‘requency (Hz)

Abiri et al 2019




BCl — based on the activity of motor cortex
(invasive)

&
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; 2 7 )
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Prof Gyorgy Karmos



3) Imagined body kinematics paradigms

Overview

* low-frequency components of EEG signals (<2 Hz) located over motor cortex carry kinematic information
* subject is asked to imagine the continuous movement of only one body part in multi-dimensional space
Analysis and classification methods

e wrist rotation and extension at fast and slow speeds.

* EEG signals were Iow—lpass filtered at 2 Hz and the negative slope 2 s before the movement onset known as
Bereitschaftspotential (BP).

* BP has two parts, the NS1 (Negative Slope of early BP) and the NS2 (steeper Negative Slope of late BP). The NS1, NS2, and
the mu (8-12 H25 and beta rhythms (18—26 Hz) constituted the feature space in their study

* By comparing the decoding performance
with and without EOG contaminated brain signals, they found
that eye movement plays a significant role in IBK tasks

Applications
e poor decoding of EEG signals
* can be operated with zero-training

Abiri et al 2019



4) Visual P300 paradigms

Overview
* P300componentis elicited in response to infrequently presented events using what is known as an ‘oddball paradigm’
* Advantege:
*  subjects can use it with very high accuracy and it can be calibrated in minutes
* Disadvanteges:
» fatigue from the high level of attention and visual focus
* inability for people with visual impairments to use the system
Analysis and classification methods
*  Farwell and Donchin P300 speller
* speed/accuracy trade-off: presenting multiple trials and averaging the EEG response is required to increase the signal-to-noise ratio
* extract an analog control signal with a single-trial approach using a genetic algorithm
* adding occipital electrode locations to the p300 speller (central midline) significantly improved the discriminability of data samples
* language model to enhance typing speed was utilized
Applications
* keyboards to provide a pathway of communication for disabled patients
* navigate a wheelchair

* his paradigm was also employed to control a computer cursor in 2D space by paralyzed patients.

Potential (pV)
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Abiri et al 2019
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5) Steady state visual evoked potential

paradigms

Overview

Analysis and classification methods

shift gaze and as well as their attention to flickering stimuli, which requires
highly accurate eye control

strong correlation between flicker frequency and the observed frequency of
the EEG in visual areas

no-training paradigm that can be used by many subjects

flickering stimuli could lead to fatigue for the subject, mainly when using low
flickering frequency (high-frequency flicker (60—100 Hz) is preferred)

SSVEP is less vulnerable to artifacts -> mobile applications can be developed

Fast information transfer rate: P300 or SMR paradigms reach 4—-60 bits min-1
information transfer, SSVEP-based BCls yield 100 bits min-1

determination of user-specific optimal stimulation duration and phase interval

Application

control a humanoid robot

exoskeleton could be accurately controlled
used to allow a cockroach to navigate the desired path

navigate in a two-dimensional BCl game

-

gori-i
. J ! |
2 ATy : /\, |
1 \J 1‘ 1 A 'l'\
; ‘ ' \ | | AT L
<0 '
5 10 15 20 25 30 35
Frequency (H2)
(@)
= 4
Baft
g |
i 2
2 4
4
< 0
5 10 15 20 25 30 35
Frequency (H2)
D)

Amplitude spectrum of SSVEP to 7 Hz stimulation
a: single trial spectrum
b: average of 40 trials, vertical lines give SD

Abiri et al 2019
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6) Error-related potential (ErrP)

ErrP occurs when there is a mismatch

between a subject’s intention to perform a
grl]ven task and the response provided by = sl
the BCI. e | &

frontal and central lobes and has a latency [ e
of 200—-700ms e

The ErrP can be used to adjust the input @ T o
control signals to the device : :

Problems: N v
* In contrast to a traditional control system, in —— s e
which error signal can be sensed in - e
milliseconds, the brain does not produce an
ErrP until 200 ms—700ms after the subject
receives feedback: makes real-time
implementation difficult.

* ErrP does not contain any information about
direction or magnitude

Abiri et al 2019



Cybathlon —

Bionic Olimpics

oy

Application Time to market
Control of devices 5-10 yrs

User state monitoring 3-5 yrs
Evaluation 1-3 yrs

Training and education 3-5 yrs

Gaming and entertainment Now

Cognitive improvement 3-5 yrs

Safety and security 5-10 yrs

Table 1. BCI market overview

Bularka et al, 2016



Traditional localization of the seizure onset
zone

* occurrence of unprovoked seizures and affects ~1% of
the world’s population

* approximately one-third of people with epilepsy
continue to have seizures despite taking medications

* in such cases, one treatment option is surgical resection
of the brain tissue responsible for seizures

* depends critically on accurate localization of the
pathological brain tissue, which is referred to as the
seizure onset zone (SOZ)

* SOZ localization requires implanting of electrodes for
intracranial EEG (iEEG) that Is recorded over several days
to allow suffcient time for spontaneous seizures to occur

Mmmwwmw
: m

A ummummmanmtwmmmmmmmmmm
* Long (several days) monitoring MW“W

* Problem with seizure initialization:

* Low number of seizures | ‘W‘MW‘W T
. . T ' s Lo
Heterogenous seizure initialization e

20 25

Seizure onset seizure



Interictal electrophysiological biomarkers of
epilepsy

Univariate biomarkers (on single channels)
* HFOs (high-frequency oscillations)

* interictal epileptiform discharges (IEDs)

* PAC (Phase-amplitude coupling)

* CFC (Cross-frequency coupling)

Bivariate biomarkers (on multiple channels)
* Functional/effective connectivity

* Network parameters



1) Integrating artificial intelligence with real-time
intracranial EEG monitoring to automate interictal
identification of seizure onset zones in focal eobilepsy

Univariate biomarkers (on single
channels)

* HFOs (high-frequency oscillations)
* neurons firing asynchronously

 >80Hz, EEG needs to be sampled at
least at 2kHz

* interictal epileptiform discharges
(IEDs)

* diverse ligand-gated mechanisms
activate |IEDs and lead to network
hyperexcitability

e PAC (Phase-amplitude coupling)

‘°°“M al, 2012

200 ms

WW

a Interictal spike; b group of interictal spikes from neocortical dysplasia, ¢ sharp
wave from a lesional partial epilepsy; d fast activity (brushes) riding on a spike
recorded from a Taylor type Il focal cortical dysplasia; e paroxysmal slow activity
superimposed to slow spikes recorded in a lesional partial epilepsy.

Human HFO

1'raw’ .
‘,/\/\’*\/ . ‘ Yogatheesan
2'80 Hz :
""\MWNWM g Varatharajah et
3250 Hz' ﬂ al 2018
ol o Zijilmans et al,
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4'wavelet map’ 2012




Detection of HFOs, PAC, |EDs T

Low gamma ( 30-60Mz)

5
e

)

»~
n

 HFO (Cimbalnik et al 2016):

* Oscillations that have an amplitude of three standard deviations

[ T3] Highgammalco-100u] ’
above the mean and lasting for W»’W\ﬁ il
more than one complete cycle in low-gamma (30—60 Hz), high-

gammaé60—100 Hz), and ripple (100-150 Hz) bands are WWWI;\T\”W”‘”A’M”“W.,n,.,,w...
) 05 — T S —

detecte

« PAC (Canolty, et al, 2006): [ ] Detectea HFO

* correlating instantaneous phase of the low-frequency signal with
the corresponding amplitude of a high frequency signal

* 0.1-30 Hz was chosen as the low-frequency (modulating)

~
n

Amplitude [norm.)

o,
o=

X*

%k %
* 65-115 Hz was chosen as the high-frequency
(modulated)
* The specific phase of Low Frequency Oscillation modulates and
promotes the amplitude of HFOs in tune surge ,and strengthen |
the synchronization of HFOs.

* |ED (Barkmeier et al 2012 ):

* Spike detection algorithm
e 4.times SD of the baseline

1 second % Detected Spike
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Full dataset:
N = 82 subjects (4966 electrodes)
P = 36 features

Generalized
performance metrics

10-fold (A)
Randomized shuffling
Stratified data partitioning
Training: 60%

Testing: 40%

Leave-1-out (B)

Training: 81 subjects
Testing: 1 subject

J

| v
| Training Testing
| I Support Vector Machine Classifier I
| : Inner CV loop (C) i (D)
| Task: Goodness of fit
| : Hyper-parameter optimization FR— 1 AUC_
: : 2. Sensitivity
| : 3. Specificity [
| : Output: : 4. Accuracy
: Classifier with optimal hyper-parameters 3. Precision
| : (selected based on cross-validated AUC) 6 Recall
| : : 7 Fl-score

Sensitivity Specificity
Bio-marker Method AUC (%) (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)
10-fold CV
All SVM-LIN  0.56(0.03) 32.20(4.17)  75.09(0.02)  67.23(0.78) 22.42(2.31) 32.2(4.17) 26.43(3.01)
All SVM-RBF 0.79(0.01) 70.36(1.78)  75.09(0.00)  74.22(0.33) 38.79(0.60)  70.36(1.78) 50.01(0.95)
HFO SVM-RBF 0.68(0.01) 53.71(1.70)  75.16(0.09)  71.23(0.29) 32.66(0.66)  53.71(1.70) 40.62(1.00)
IED SVM-RBF 0.68(0.01) 55.11(2.53)  75.07(0.03)  71.41(0.45) 33.14(1.01)  55.11(2.53) 41.39(1.50)
PAC SVM-RBF 0.73(0.01) 60.63(2.74)  75.09(0.02)  72.44(0.51) 35.31(1.03)  60.63(2.74) 44.,63(1.57)
ALL RATE 0.58(0.01) 3591(2.03) 75.09(0.02) 67.91(0.37) 24.43(1.03)  35.91(2.03) 29.07(1.40)
HFO RATE 0.56(0.01) 32.39(2.20)  76.31(0.62)  68.26(0.77) 23.48(1.46)  32.39(2.20) 27.22(1.74)
IED RATE 0.58(0.01) 35.19(1.42)  75.18(0.09)  67.85(0.27) 24.14(0.74)  35.19(1.42) 28.63(0.99)
PAC RATE 0.62(0.01) 43.76(2.25)  75.27(0.12)  69.49(0.42) 28.41(1.03)  43.76(2.25) 34.45(1.46)
Leave one (subject) out CV
ALL SVM-RBF 0.73(0.02) 57.45(2.82)  79.49(0.57) 73.3(0.90) 38.71(2.45)  57.45(2.82) 43.49(1.99)
HFO SVM-RBF 0.63(0.01) 35.53(2.89) 84.16(0.86)  73.10(1.00) 34.63(2.72)  35.53(2.89) 35.09(2.11)
IED SVM-RBF 0.60(0.01) 33.50(2.22)  80.77(0.66)  69.47(0.89) 30.55(2.42)  33.50(2.22) 29.16(1.55)
PAC SVM-RBF 0.69(0.01) 47.70(2.81)  81.03(0.63)  72.63(0.93) 36.23(2.39)  47.70(2.81) 39.06(1.94)

-accuracy of approximately 70% on 82 patients, using

interictal iEEG

-recordings durations less than 2 h is enough for localization
-combination of multiple parameters results in a better
performance



2) Interictal localization in iEEG recordings
applying functional connectivity parameters

Graph parameters on
ECoG functional network

Functional network




Effective graph parameters for localizing EZ
in interictal iIEEG recordings

First author of | Applied Graph Journal

[year of | patients functional parameters published

publication connectivity connected to the

method EZ
Consequences: schevon, 2007 |

Phase coherency Local Neurolmage

synchronization
1,) Hub measurements Ortega, 2008 5 correlation BC (MST) Neurosci. Lett.,
- nodal strength 1 DTF Strength Epilepsia

-BC Wilke, 2011 2 DTF BC Epilepsia

1
5
16 DTF Outflow Seizure
i h
2.) Local connections strengt
10
0

PDC Outflow Neurolmage
strength, BC

. . Varotto, 2012
- local synchronization -

Palmigiano, 2 correlation Stability of the PLoS ONE

3.) Directionality of the connectivity
-outflow

2012 local

Mierlo, 2012
strength

8
Kim, 2014 4 PLV BC Brain Dev.

synchronization

swADTF Outflow Epilepsia



Ictal/Intracranial EEG for epileptic patients

i
* 6 presurgery

patients
e 1 unsuccessful
surgery

* Available
recordings:

* |nterictal

* FOls: &
* gamma (30-45 Hz) 5 Unsugcgessful
 Epoching: *""35?‘\
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Phase lag index

Electrode i Electrode |
Analitic signal
2(t) = x(t) + iX(t) 1 4 / MJ\A ”\/
I h b
frrlplisontandRC W VY W VY VYV Vi /MMAMM/A
f th | = / E;E
o) rcan <0 SVVVVVYYYL = VYVVVVVVYY
X(t) 3 3
Phase difference between % N~V
the 2 signals: (AD(t)) :f"-? | 1]
¥

Histogram of the
phase difference

PLI=|<sign[AD(t,)]>|
Goal: Elimination of volume conduction

Stam CJ1, Nolte G, Daffertshofer A. (2007):



Epileptic changes in the small-world
configuration in higher frequency bands

Global network changes Local network changes
Clusterin _
. J Interictal — small world
coefficient . ?
NV
1.12E . /&!Lj%
% . ,
, -I :? “‘“‘?‘fix. &%
0.96 = .2\‘\ fﬁ T
£ 'S l’/’#\?‘g ?
- - Loss of long- Strengthen the
Avg. Path range local
Iength connections connections

096 - The epileptic network may has high local
o ﬂ 55’“’4 modular hubs in the epileptic zone:

j - High within module degree
. - Low between modul connectivity
rf’ ~ v@ﬁ’f

Ictal — orded Intreictal/Ictal iEEG: Ponten, 2007

Interlcta
Ictal



Local modular hubs (interictal, gamma band)
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3) Interictal localization in foramen ovale recordings
applying functional connectivity parameters

* 12 patients with unilateral (7 left, 5 right) mesial
temporal lobe epilepsy

* 5 separate, 60 seconds long, interictal EEG and
FO recordings
for each patient during sleep

* Filtered to gamma band (30-45 Hz), segmented to
0.5 sec epochs

* Phase lag index was calculated between electrode
contacts on the same side

* PLI(affected side)-PLI(healthy side) predicts the
epileptic focus




Interictal FO phase synchronization predicts

GROUP LEVEL RESULTS
the lateralization of MTL epilepsy
No PLI threshold PLI threshold = 0.01 PLI threshold = 0.02
. 1
Increased FO local connectivity %)
cC =z
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E 0.03 l ] 3
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:f 0.02 |:I !
n.' 0.015 = s
2 o001 & 8
& 0.005 5 7
% 0
|
o 0 Separate EEG segments Separate EEG segments Separate EEG segments
" No PLI threshold PLI threshold = 0.01 PLI Threshold = 0.02
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. Successful . Unsuccessful The algorithm
prediction prediction cannot decide
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