

Computational Neuroscience

Structure – Dynamics – Implementation – Algorithm – Computation - Function

Learning at psychological level

●Classical conditioning

Hebb's rule

When an axon of cell A is near enough to excite cell
B, and repeatedly or consistently takes part in firing
it, some growth process or metabolic change takes
part in one or both cells such that A's efficiency, as
one of cell firing B, is increased"
(Hebb, The Organization of Behavior, 1949)

Hebb's rule (?) in an experiment at
population level

LTP – long term potentation LTD – long term depression

Plasticity in the neural system
● Position of the plasticity: synapses, firing thresholds of the postsynaptic neurons (excitability)
● Potentiation, depression
● STP: Calcium dynamics,

transmitter depletion
range < 1 minute

● LTP: genexpression (induction,
expression, maintenance),
NMDA magnesium-block
range > 1 minute

● Correlation between the

molecular and the psychological

level

Spike-time dependent plasticity (STDP)
● Timing-dependent plasticity:

● If the postsynaptic spike follows the presinaptic in short

time window (causal order) the connection strength

increases
● Spiking in the anticausal order decreases the connection

strength
● Many more variables

● A Hebb-szabály formalizációja:

lineáris ráta-modellben

w
d w
dt

=v u

Stabilized Hebb rules
● Problems with the Hebb rule:

● Weights can only increse
● No competition between the synapses – inputselectivity can not be

implemented
● Simple solution: ceiling to the weights
● BCM: stabilizing with postsynaptic excitability

● Sinaptic normalization
● Substractive normalization

Global rule, but results in observed connection patterns (Ocular dominance)
● Oja-rule

Local rule, but can generate the observed patterns

w
d w
dt

=v u v−u 

d u

dt
=v2

−u

w
d w
dt

=v u−
v 1⋅u1
N u

w
d w
dt

=v u− v
2
u

Rate-based
and
spike-time
dependent
learning rules

The mathematical formaization

● Tuning of tha modell parameters based on data
● Two level dynamics

● Variables (input-output transformation) - fast
● Parameters - slow

● Memory vs learning
● Memory is a simple recall, without change of the

representation
● Learning, continuous refinement of the representation

accopanyed by output generation
● Main task: prediction of the future, based on the past

Three basic types of learning
● Supervised

● data: input output pairs
● Aim, function approximation,

classification
● Reinforcement

● data: observed states, rewards
● Aim: optimal strategy stratégia for

maximization of reward
● Unsupervised, representational

● Data: set of imput
● Aim: optimal representation / model

finding
● Combination of them

Learning in neural systems

● Single neuron
● Feedforward network
● Recurrent network
● today: rate model

● Parameters: weights, thresholds
● Transfer functions

– Step function: H (Heavyside)
– Sigmoid
– Linear neuron

y=f (xw−θ)

Tanulásra alkalmas neurális
rendszerek

Perceptron

● Binary neurons: linear separation
● In two dimension, the separator line:

● Logical functions

= x1w1 x2w2 x2=
−w1

w2

x1


w2

Error-correcting learning rules

Rosenblatt-algorithm – a binary neuron

W1

W2 Q

W1

W2

b
1

The threshold is transformed out by introducing a constant 1 input b=-Q (bias)
Learning the bias is equivalent to the learning of a weight.

y=H(w1+w2-Q) y=H(w1+w2+b)

Error-correcting learning rules

● Using the actual and the correct answer, and the
distance between them

● Rosenblatt-algorithm – binary neurons

● Delta-rule
● Continuous activity – gradient-method

approximation for linear neurons:

● Minsky-paper 1969: the neural networks can solve
only linear problems

w(t+ 1)=w(t)+ ϵ(tm− y (xm))xm

wb(t+ 1)=wb(t)−ϵ
∂ E
∂wb

E=
1
2 ∑m

Ns
(tm− y (xm))

2 ∂ E
∂wb

=−∑m

N s

(tm− y (xm)) xm

w(t+ 1)=w+ ϵ(tm− y (xm))xm

Error-correcting learning rules

Rosenblatt-algorithm – binary neurons
wwvm−v umum

Input um

Required output:
vm=1

good W

Wrong W

Input um

Required output:
vm=0

Wrong W

Good W

wwvm−v umum

Input um

Required output:
vm=1 Good W

Wrong W

Input um

Required output:
vm=0

Wrong W

Cone of solutions,
Konvex problem

Error-correcting learning rules

Rosenblatt-algorithm – a binary neuron

Multi-Layer Perceptron

● Nonlinear separation
● regression
● Dense in l2 with only 1

hidden layer
● Its representational

capabilities is increasing
by the number of hidden
layers

● Feedforward structures
in the neural system,
exaple: visual system

What could be represented by a simple,
 one layered, feed forward network called perceptron?

Problem:
The linearly inseparable functions are more numerous as the dimension

 of the problem increases.

It is able to learn many functions,
but there are some exceptions
such as XOR.

In two dimensions the problem can be
transformed: this requires a two layered network

The weights and the thresholds
appropriate to the XOR solution:

With this two layered network,
all the two dimensional
Boolean-functions can be learned.

But in higher dimensions?

A possible solution: increasing the embedding
dimension

In three dimension the XOR problem is linearly separable. As the
 embedding dimension increases, the fraction of linearly inseparable

logical functions vanishes

Soft-max output layer,
to represent probabilities

pi= y i=
e
zi
T

∑ e
zi
T

A softmax layer is a generalization of the logistic function for multiple variables:

The logistic function mas the activation onto the [0, 1] interval:

y=f (z)=
1

(1+ e− z)

Non local, the activity of the neurons depends
on the input of all neurons, not only its own input

T: tempereture parameter
T->inf: uniform distribution
T->0: converge to Max function

Its derivative is smooth and local,
Simmilar to the derivaive of the logistic function

∂ y i
∂ zi

= y i(1− y i)

Error backpropagation
● Input: z

● Required output (target): tn

● Actual output: y

● Partial derivatives of the error
function:

● Gradient method, which
converges to a local minimum of
the error function.

dy
dz

= y (1− y)

∂E
∂wbi

=
∂E
∂ y

∂ y
∂ z

∂ z
∂wbi

w i(t+ 1)=wi(t)+ (y−t n) y (1− y) xi

δ j= y j (1− y j)∑ w jq δq

z=xw+ b

y=f (z)=
1

(1+ e− z)

∂E
∂ y

=t n− y (x)

∂ z
∂w i

=x i

Slow convergence along highly
correlated variables

Problem:
In case of strongly correlated variables, the gradien is many times almost
Perpendicular to the direction of the minimum.

Possible solutions:

Momentum method,

Hessian matrix

Hessian free optimalizator

Conjugate gradient method

Adaptive steplegth

Recurrent Networks
Reservoir computing:

Context reverberation

Echo state network

Fluid state networks

Possible learning techniques:

Error-back propagation in time

Fixed reservoir,
trainable perceptron

(Long short term memory:
Edge-of-chaos)

Principal component analysis

Principal component network,
derivation of Oja's rule:

y=wTx=xTw

Δw=α(xy−y2w)

Δw=α(xxTw−wTxxTww)

Cw−wTCww=0

The Oja-rule and the pricipal component analysis

y output
x input
w weight matrix

Oja's rule

Substituting y:

Assuming mean(x)=0 & averaging over the input => xxT = C

The convergence point: Δw=0

wTCw is scalar!This is an eigenvector equation!

Δw=α(xy3−w)
E modification
for Indenpendent
Component analysis

If C=1

Independent component analysis (ICA)

Independent component analysis (ICA)

The somatosensory map

Kohonen's self-organizing map

Winner take all

Kohonen's self-organizing map
Generates feature maps Captures the structure in the inputs

Associative memory

● Heteroassociation
● Exampe: place-object

● Autoassociation
● From partial pattern the original

● Difference between the

memory of a computer and

an AM is the addressing

● Capacity: how many patterns can be stored and retrived
(non-unique definition)

● Stability: for each patterns, we want the most simmilar
(non-unique definition)

Attractor networks

● Types of attractors
● Fixed points
● Periodic
● Chaotic

● Basin of attractions
● Implementation: recurrent neural networks
● Attractor formation: synaptic weights

● Offline learning
● Online learning
● One-shot learning

● Retrieval: convergence from an initial condition

 W. J. Freeman

Hopfield-networks

● Associative memory
● Binary MCP-neurons
● Patterns: binary vectors
● Symmetric weight matrix
● Dale's law is violated: a cell

can be excitatory and
inhibitory parallel

● Recurrent networks in the
brain (dominantly):
hippocampus CA3 region, ...

● Offline learning
patterns to learn:
 Hebb s rule

● Itterations: synchronous or sequential

x t1=sgn Wx t−  xk
t+ 1

=sgn(∑i

K
W ik x i

t
−θk)

W ij=
1
N ∑n

N
si
n
s j
n

{s1 sN }

The dynamics of the Hopfield
network

● Stabiliy-analysis of a nonlinear system: The definition of the
„energy” of a state by introducing a Lyapunov-function:

● Bounded
● The itterative dynamics always decreases (or increases) it.

It it exists, that we showed, that the system will converge to a
fixed point for every input patterns

● The Lyapunov-function of the Hopfield network:

● The learning builds attractors at the stored patterns, but not
only there (spurious attractors)

● The HN can be used to optimize probles with quadratic forms

E=−
1
2
x
T
Wx− x

The capacity of the HN
● Information theoretical capacity

● The patterns can be considered as a set of random variables from Bernoulli-
distribution

● The convergence is requires for all patterns

● Than in can be shown (with many approximation) that

● In case of the CA3 hippocampal subregion
● Cc. 200000 neurons, cc. 6000 patterns to store

● Different estimations
● Let us consider the sparsity of the patterns

P  si
n
=1=P si

n
=0 =0.5

lim n∞ P  sa=sgn Wsa=1 ∀ a=1M

M≈
N

2 log 2N

M≈N
1

 log2
1
P  si

n
=1=

Boltzmann machine

● To represent probability distributions – ststistical
interdependences between variables

● Stochastic state transition

● The limit distribution

Energy: Boltzmann-distribution:

I=WuMv P va
t1

=1=
1

1e− Ia

E v =−v
T
Wu

1
2
v
T
Mv P v =

e−E v 

∑v
e−E v 

Learning with Boltzmann machine
● Supervised learnig, only for W, similarly M
● Error: Kullback-Leibler-divergency between the targeted and actualy

generated distribution
 independent of W

averagon the the inputs: (in stead of the weighted outputs)

● Gradient descent – for only one input

 from the Boltzmann-distribution

● Delta-rule – the average for the all possible outputs is approximated with the actual one

two phases: Hebbian anti-Hebbian
● Unsupervised

DKL[P v∣u , P v∣u ,W ]=∑v
P v∣u ln

P v∣u

P v∣u ,W 

P v∣u 

〈DKL〉=−
1
N s

∑ ln P v
m∣u

m
,W−K

∂ ln P vm∣um ,W 

∂W ij

=v i
mu j

m
−∑v

P v∣um ,W v i u j
m

W ijW ijw v i
mu j

m
−v i u

m
u j

m


DKL[P u , P u ,W ]

Reinforcement Learning

● State space: the possible values of the sensory (or other input) variables
● Reward: in certain states we get information from the success
● Actions: the agent realizes a state transition (at least tries)
● aim: to maximize the reward in long run
● Value function: the utility of the states
● Representation of the value function:

● Table (machine learning)
● General function approximator, for example a feed-forward neural network

– (embedden supervised learning)

Reinforcement learning

Solutions
● Model-based: state and state-transition representation value

function and action policy

Types: Direct utility estimation (DUE)

Adaptive dynamic programming (ADP)

Temporal difference (TD)

● Model-free:

Q-learning: state-action pair value association

Strategy searching

Temporal difference learning
● Using the prediction error for the learning
● Updateing the value function in a neural representation:

● Calculation of the prediction error:
● (IN principle we need to know the full reward in the future)
● On step local approximation

● If the environment is suitable, it converges to an optimal strategy
● The error can be back prpagated to the prvious states as

well (eligibility trace, simmilar to the error back-propagation)
● Acion selection: exploration vs. exploitation

w  w  t u t−  t=∑
r t−v t 

∑
r t−v t ≈r t v t1

TD with feed-forward neural network

● Gerald Tesauro: TD-Gammon
● Feedforward network
● Input: the states which can be

achived by the possible actions
● Output: values (winning probabilities)

● In each step, the error is calculated
● Based on the reward signal

● Result: comparable
with the best human palyers

The effect of reward
in dopaminerg cell

of basal ganglia
An interpretation:

Dopamine cells signals the difference
between the expected and received
reward.

Problems to solve in learning
systems

● Bias-variance dilemma
● Structural error: the model (even with optimal parameters) can differ

from the function to approximate (eg. Linear model fitting for cubic data)
● Approximation error: infinite datapoints are needed for precise

parameter tuning

● Accuracy vs. Predictive
power

● The models with too much
parametres fits well, but
generalize poorly

● May have lower
explanatory ability

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

