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Introduction

The first part of this work will focus on how network analytic tools helped the understanding 
of the brain, more specifically the cerebral cortex functions. The second part of the introduction is 
to describe the mathematical basis of the tools mentioned in the first part and also those, which are 
relevant to our studies.

I. Biological aspects

I.1. Organization of the multilevel cerebral cortical circuitry: from neurons to regions

The complex network of the human brain especially the cerebral cortex is capable of 
performing simultaneously several functional tasks, such as learning, planning, storing and recalling
memories, integrating information of the external word and many more [22]. A wealth of 
information has been gained about the biochemical functioning of the individual neurons, which 
establish the dynamic network of the brain by communicating via action potentials [22]. According 
to the neuron doctrine approximation, the functional unit of the brain is the neuron cell [12] [23]. 
However, the neuron doctrine has its limitations in explaining brain functions [23]. It e.g. cannot 
explain the irregular responding of neurons to repeated sensory stimuli and their spontaneous 
activity without stimuli, which is much better understood at the system level [45]. Accordingly, in 
recent neuroscience the emerging new paradigm is that neuronal ensembles rather than single 
neurons form the functional units of the brain [12]. This shift in paradigm about brain functioning 
calls for new approaches most notably he studying and analyzing neuronal networks. Considering 
the huge number of neurons, enormous amounts of functional neuronal connection combinations 
are possible, forming motifs to perform specific tasks in the brain and also in the cortex.  In the 
cerebral cortex locally connected neuronal microcircuits modeled by the canonical microcircuit 
form the basic building blocks of the neural network [24]. These cortical microcircuits form 
columns, which are well known example of the neuronal connectome forming at a larger scale brain
wide subnetworks of functionally connected neuronal clusters [24].A cortical column is vertically 
organized by locally interconnected neurons across the layers of the cortex. [25] [13].  The 
columnar organization is maintained by physiological mechanisms largely based on the afferent 
inflow signal. The cortical columns are prevalent throughout the cortex, as the columnar 
organization can be observed e.g. in the visual cortex, as in the auditory cortex, also in the higher 
order associational cortical areas. As shown in the sensory cortices columns represent elementary 
functional units and form a horizontal pattern of connections with other columns across all cortical 
areas. Underlining the limitation of the neuron doctrine at the higher levels of brain functions, 
neurons and columns of associational areas represent complex features combined by the simple 
features represented by the neurons at the lower level of brain functions as seen in case of the 
sensory systems [13]. However, apart from the local neighborhood restricted to a tiny brain or 
cortical tissue up to a cortical area, there is a huge gap in our knowledge in regard to the 
organization of the brain circuitry at the neuronal or even at the mesoscale population (columnar) 
level.

At the large-scale functions of the brain are studied by non-invasive techniques allowing 
full-brain scanning, which aid determining regional interactions comprising millions of neurons 
both at the structural and functional domains [26]. Functional neuro-imaging techniques are used to 
investigate brain area activation during cognitive tasks and resting state [27] [28]. Positron emission
tomography (PET), and especially functional magnetic resonance imaging (fMRI) based on the 
recording of changes in blood flow and other metabolic demands, provide relatively good spatial 
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resolution. For high temporal resolution methods detecting electric and magnetic field changes are 
used, such that magnetoencephalography  (MEG) or electroencephalography (EEG). 

Depending on the methods used, different neural networks can be constructed. To determine 
physical connections between brain areas water molecule diffusion based techniques, such as 
diffusion tensor imaging (DTI) and related techniques can be used with magnetic resonance 
imaging (MRI) to localize the connecting axonal bundles of the white matter. The network 
reconstructed by using DTI is called anatomical network [26]. Combined with functional imaging 
during resting state or also in cognition, main cognitive networks involved e.g. in spatial attention, 
explicit memory (long term memory requiring conscious thoughts), object recognition, and in 
executive functions, the functional relationship between the activated brain regions could be 
mapped, thereby defining the so called functional and effective networks [26].

Physical connections can also be mapped via tract tracing [29]. It is an invasive technique, 
based on the capability of neurons to take up certain substances and transport into certain directions:
either retrogradely from the axon terminals to the soma or anterogradely from the cell body towards
the axon terminals. In case of bulk labeling, as opposed to injecting single cells or a small groups of
them, tract tracing allows the mapping of directed connections between brain areas. However, in 
contrast to the imaging methods  this technique also provides high spatial resolution at the level of 
single neurons or even synapses by allowing the reconstruction of single axonal fibers. Due to these
advantages tract tracing is intensely used in the non-human primates to better understand the 
organizational features of the cortical circuits in the primate brain.

I.2. Networks of the brain

The first step to construct a network to analyze from the biological data, is to determine the 
nodes and the measure of association between the nodes giving the association matrix. Applying a 
threshold on the elements of the association matrix a binary matrix can be constructed, and can be 
used as the adjacency matrix of an unweighted graph. Network parameters then can be determined 
and analyzed. The magnitude of the threshold is related to the density and sparsity of the graph 
generated [14]. At EEG and MEG the nodes are the individual sensors or electrodes, but minimizing
the covariance between the sensors is a condition often used. With the different methods of data 
acquisition one can get different types of connectivity, hence brain network. As mentioned above, 
structural or anatomical connectivity represents the neuronal, i.e. axonal connections, while 
functional connectivity uses the symmetrical statistical association or dependency between the 
nodes, for example correlations, coherence, and mutual information in their activity, which 
constructs undirected graphs. Mathematical models of effective connectivity between brain regions 
estimate the casual influence that each element exerts on the behavior of others. Thus, effective 
connectivity models, unlike many functional connectivity models, which are based on symmetrical 
measures of association, result directed networks to analyze [14] [26]. 

 Most of our knowledge about the brain network originates from the results of studying the 
large scale cortical networks. This paragraph provides a short overview about these findings. In the 
cerebral cortex about 80% of the anatomical connectivity is formed within the areas. The remaining 
20% inter-areal connection forms the large scale cortical network [32] .

Neuronal networks of the cortex show non-random connectivity and varying number of 
synaptic contacts with different synaptic strengths [16] [18]. Also recent observations of tract 
tracing studies indicate that at the large scale connection weights related to the number of synaptic 
contacts between areas has log-normal distribution and exhibit exponential decay with distance 
between two areas [16] [18]. The constraints of the spatial organization may have strong 
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contribution to the exponential distance rule [16]. Similar connectional density was found in the 
mouse whole-brain connectome datasets [16]. The connection density being in dependence with the 
spatial distance of the connected areas is corresponding again with the spatial embeddedness and 
with the cost of the long-range connections [16] [30]. Overall inter-areal connection density in 
graph theoretic terms (see in the II. paragraph) in the macaque cortex was 67% [16].

In the mammalian neocortex synaptic connections tend to be reciprocal [14]. Extensive 
studies in the macaque monkey suggest distributed and reciprocal connections between the 
identified cortical areas [31] [32] [13]. Similarly in the human, high proportion of reciprocal (bi-
directional) connections are observed between cortical areas [2]. In the human motor cortex 75% of 
the effective connectivity connections were reciprocal, also it was shown that the proportion of 
reciprocal connections is decreasing with the distance of brain areas [2].

With the connection density and the reciprocity noted above, the cortical network, especially
the structural, which has a large number of nodes forms a complex network, thus the understanding 
of the cortical networks requires exact network analytic tools [14] . Network theoretic tools, e.g. 
clustering measures, allow to determine properties, like the relative dense connectedness of close 
areas. For example, a clustering measure computed here is the Clustering Coefficient (see below) 
determines the proportion of triangle motifs in the network, can be used to quantify the 
connectedness of neighboring areas.

Structural connectivity places constraints on which functional interactions can occur in the 
network.  Anatomically close areas share functional properties and are usually connected to each 
other [16]. Computational models offer methods to investigate the structure-function relationship. 
Empirically derived structural brain networks were used (e.g. the surface of the macaque cortex 
with 47 nodes) to simulate the dynamic behavior with physiologically motivated dynamic 
equations. The data from these simulations yielded the functional brain networks to analyze. 
Functional network with almost identical topological features to the anatomical network was 
derived on the long time-scale, while on shorter time samples or at high frequencies the functional 
networks were less correlating with the structural organization [14]. 

Analyzing community structure of fMRI functional networks showed functionally related 
brain regions to be densely interconnected with a relatively few connections between other clusters 
supporting the results derived from anatomical networks [14]. Accordingly, these functional 
features strongly depend on the clustering and convergence/divergence properties of the network 
elements, which largely determine their synchronization abilities. 

Local connectedness is an abundant property of the dense cortical network in many scales 
[18]. According to the wiring cost constraint, wiring length should be globally minimized, using the
shortest paths have evolutionary gain [30]. Spatial distance between brain areas have significance 
with signal transmission time and energy consumption. Also evolutionary pressure exist to build up 
fast communication, and keep material use low due to metabolic costs resulting in wiring length 
optimization [14]. It's a pressure to keep wiring length minimal, long connections are more 
vulnerable and have more expense metabolically. As it is a pressure to keep wiring length minimal, 
long connections are more vulnerable and have more expense metabolically. Studies on wiring 
length optimization by punishing physically long connections in the network showed that there are 
more optimal arrangements of the cortical areas. However, with the expense of some long pathways
cortical network evolved to keep the average shortest paths in the brain minimal. 

The wiring length minimization justifies the quantification of the the average shortest path 
(ASP, see below) during the network analysis of the cortex. Accordingly, ASP is important in 
determining the resilience of the cortical network and also in identifying the network indices best 
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characterizing the cortex. 

Cortical hierarchy

Experimental studies provided compelling evidence in favor of the hierarchical organization 
of brain structure and function at the large scale [18] [31]. It is a major question how this hierarchy 
is represented at the level of networks, it is hard to catch the topological correlate of the realistic 
hierarchical organization of the brain. 

Hierarchical signal propagation is known to be responsible for complex performances such as 
object recognition and cognition. Signal propagation in object recognition is starting from the 
hierarchically low ordered retinal receptor cells, then goes trough the visual areas reaching higher 
order cortical areas [30]. Between the higher order cortical areas and the primary sensory areas 
segregated bi-directional counter-stream pathways can be observed, thought to play feed-forward 
(FF) and feed-back (FB) signal transmitting roles in the cortical hierarchy [18] [34].  

The physiological sign of the hierarchical organization is captured among others by the 
receptive field properties of neurons in areas at different levels of hierarchy [31] [35]. Generally, on 
the low hierarchical levels individual neurons have restricted receptive fields, with a characteristic 
feature specificity as e.g. the orientation tuning [22]. Some somato-sensory neurons sensitive to a 
certain skin area, providing a spatial representation of the body in the brain [22]. Higher order 
neurons, for example in the visual cortex, have large receptive fields, sometimes spanning the full 
visual field and react to more complex features of the stimuli as e.g. faces. Overall, progressively 
more complex receptive field properties observed in the hierarchically organized areas. However, it 
should be noted that the elaboration of the receptive field properties and therefore the information 
flow is not strictly sequential from the bottom to the highest levels of the cortical hierarchy. Instead,
the areas form a complex network via their multiple interconnections with each other. Their 
influence on each other is substantially depend on the convergence and divergence of connections 
within the network of areas. 

The application of network analytic tools, especially those related to the understanding of the 
convergence/divergence properties of the network elements  are inevitable in understanding the 
hierarchical nature of the cortical organization and functioning. To identify the edges of hierarchy 
the measure of Convergence Degree (see below) is introduced here, and used to determine the role 
of these connections in the network robustness of the cortical organization.

The role of hierarchy in cortical processing

Dynamical models derived from structural data showed that low level early sensory areas 
showed transient responses, while higher associational areas, as the prefrontal cortex, integrate 
input over time with persistent activity, which makes it suitable for  the more complex working 
memory and decision making processes [16].  

Feed-forward pathways with sensory input assumed to have driving function in the network, 
while feed-back recurrent pathways might play modulator, regulator functions [18]. Axons with 
identified driving function showed faster conduction times and stronger synaptic activation than the 
modulatory connections. Reverse hierarchy theory suggest the initial role of higher order areas in 
the activation of the cortical network using categorical level representation for a quick identification
of the input signals and match this activity pattern to that in the lower level areas to generate 
prediction error if necessary [36]. Related idea is the role of FB-FF circular connections is to 
resolve sensory ambiguity. The cortical inter-areal hierarchical organization and its interaction with 
local circuits thought to play role in predictive coding, while the prediction (expectation) signal 
descend, while the prediction errors ascend on the hierarchy network [16]. This model suggest the 
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perceptual processes depending on the expectation and experience of the perceiver [37]. Then the 
two types of perception, bottom-up (stimulus driven) and top-down (inference driven) can be 
distinguished and the internal representation is constructed both from the sensory input and the prior
knowledge and FB connections are to disambiguate and explain the earlier representations. In this 
notion rather the unexpected features what signaled to the next stage of hierarchy, the function of 
FB and FF connections is to transmit the prediction and prediction error respectively. 
Mathematically prediction error can be expressed as free-energy principle, the “surprise” and the 
prediction/representation is adapted to minimize this quantity [38].

I.3. Synchrony: the fundamental characteristics of brain operation

Function

At zero or near-zero phase synchronization activity is modulated synchronously without 
temporal delay, or with delay much smaller than conduction times. Most neural synchronous 
activity fall into these categories [15]. Only very few and highly specialized models were able to 
account for zero lag synchrony in networks coupled with delay, which is substantial in neuronal 
networks due to e.g. conduction times, synaptic delays etc. 

Mechanisms to zero-lag synchronization include entrainment trough common drive from a 
single source. Some cortical and sub-cortical areas or in local networks pacemaker cells may can 
serve sources like that [15]. It is important to note the limitations of a common drive, since an 
entrainment like that determines both the rhythm and synchronization among the target cells [15]. 
This entrainment via an auxiliary hub can always, with an addition of a lower bound to the coupling
strength, can synchronize activity for any other arbitrary coupling. The minimal coupling strength 
were found to be the function of the type of coupling between the hub and the network, but also 
dependent on the network properties. So modifying these factors allow a a dynamic synchronization
process [15]. 

In addition to a common input synchrony can also emerge via convergence of the inputs to a 
common target. Interestingly, in the cerebral cortex divergent branches of axons of the different, 
even neighboring neurons typically do not converge on the same target regions [18]. Accordingly, 
neuronal synchronization fundamentally depends on the convergence/divergence of the cortical 
connections. Although, it is known that connections in the cortex are not randomly arranged, the 
understanding how convergence/divergence is organized is not clear. 

Network robustness and synchronizability are strongly linked as it is known from spectral 
graph theoretic approaches. Using the targeted attack procedure, we will show how different 
network indices affect these features. 

Fast brain synchronization and to keep the synchronization sufficiently long time is important 
for proper functioning. The synchronous activity in the brain network can be modeled with coupled 
oscillators (see below at II.3.), but it is hard to provide consistent data from the dynamical 
processing. The different functioning of the brain can be viewed as the special synchronized states 
varying in time [39].

In this work the robustness of the cortical synchronization properties trough the spectral 
analysis of the connection matrices derived from structural data are examined by 
convergence/divergence related attack strategies, to analyze the relation of signal 
convergence/divergence and synchronization.
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The role of synchronous activities in the brain

Synchronous activation of brain areas or neuronal groups is widely observed on different 
scales of the neural organization. Oscillatory timing is important in neural plasticity with forming 
functional motifs by enhancing connections promoting the coherent firing couplings [3]. Neural 
synchronization may give the answer to the question, how the brain is able to process numerous 
computation simultaneously in spatially segregated areas [39]. Phase-locked high frequency 
oscillations may span the spatially distinct brain regions [14]. Phase locking synchronization 
between distant neuronal assemblies e.g. during feature binding support these ideas [15]. 

Recordings in human subject supports the relation between the shorter wavelength 
synchronous oscillatory activity during a variety of cognitive functions. Synchrony of distributed 
neural discharges establish temporal relations by systematic phase-lag. In the debated model of 
neural synchrony as contextual framework sensory stimuli interact with internally generated signals 
for building up predictions about the world. They suspect oscillatory responses to be linked to 
general cognitive functions as selective attention, short- and long-term memory and multi-sensory 
integration [15]. 

Physiology and dynamics

Coherent periodic activations provides a temporal window to the ongoing firings on the phase 
of the oscillation [39] [40]. A couple of neural groups are able to communicate if they're in an 
excitable state at the time their signals meet. These requirements meet if two oscillating elements 
are phase-locked [8]. There is phase-lock properties e.g. inside the cortical areas around the gamma-
frequency range (30-100 Hz) and between cortical areas in the beta-frequency range (15-25 Hz) or 
lower [8]. Phase-locking should be present in a selective manner, modifying coherence of brain 
areas is a need in cognitive flexibility to switch functional tasks, global or irregularly high 
proportion of phase-locking is pathologic, can be observed during epilepsy [8]. Slower frequency 
ranges are also prominent in large-scale network dynamics, alpha rhythms around 10 Hz, theta 
between 4 and 8, and the delta is around between 1 to 3 Hz [8]. Possibly oscillation coherence have 
a role on selective attention by phase-locking to the preferred stimuli [8]. Inverse correlation 
between the frequency of oscillation and the distance of the synchronous activity was found [3].

Cellular functional networks exhibit transient synchronization, and perform metastable 
dynamic changes in less than 1s time scales [14]. This suggests that fast changes in functional 
linkages are made possible by the underlying pattern of connectivity of the brain. However, the 
relevant network features at the large scale are unclear. While the brain activity shows spontaneous 
fluctuations the functional networks form robust resting state phases, which is a non-random pattern
of activity based on the interaction of a define set of areas [14].

In the brain zero-lag synchronization is arising from the interaction of the excitatory and 
inhibitory neurons [15] [8]. Fast oscillations can be the result of the instantaneous, electrical gap 
junction coupling of the inhibitory neurons making the connected inhibitory subnetwork highly 
synchronous. As the consequence, this will result in the synchronous activity of the principal 
excitatory cells in the cerebral cortex. If both electrical and synaptic couplings present weakly they 
show similar behavior and add up linearly. But probably more than one mechanism contribute and 
impact the dynamic zero-lag synchronization process. At a larger scale it is suggested that reciprocal
coupling of cortical areas with the different thalamic nuclei may support the coordination of 
distributed cortical processing [15]. The divergent reciprocal connectivity of thalamic cell groups to
different cortical neuronal populations could redistribute ongoing cortical activity and synchrony. It 
was shown that this configuration to support zero phase lag synchronization for any conduction 
delay [15]. In this case the central element is key for the communication, but does not dictate the 
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dynamics [15]. 
If the oscillation is present with consistent phase difference one can talk about near-zero lag 

synchronization [15]. The relative phase difference can take place due to the relative delay to the 
global synchronized dynamics. A possible explanation of near-zero lag synchrony is detuning, 
which is ensued from the heterogeneity of the oscillating elements, which have intrinsically 
differing properties, such as different resonant frequencies [15]. Phase differences also serve as 
temporal code in brain information processing [15]. Coding mechanisms based on phase lag has 
been observed in the theta (4-8 Hz) range in the hippocampus and in the gamma range (>40 Hz) in 
the neocortex. These oscillations are seem to be generated by internal mechanisms independently of
the stimulus timing. Furthermore, oscillation in the theta frequency range are also observed in the 
neocortex where they coexist with faster oscillations [15].

Two ways of synchronous temporal information coding about stimuli are proposed. One is that
the modulation of the strength of synchronization serves as signal information about the relatedness 
of e.g. the visual features that activate those neurons, the so called binding [15]. A second way of 
coding is stood in the phase differences or delays among the participating neurons and similar to 
what can be observed in the hippocampus [15]. In the neocortex neurons are rarely synchronized 
with exact zero delays. These delays are up to ~15ms scale and do not reflect conduction delay as 
they vary as a function of stimulus properties [15]. A major question is how the 
convergence/divergence properties of the cortical network determine these oscillatory properties 
and the synchronous dynamics. 

I.4. Vulnerability of brain networks

Synaptic connections of neurons are shows plasticity and can be altered by the learning rules 
of the brain [12]. The network of neuron assemble is capable of changing its connection pattern 
over time. It has an effect on the formation of memory trough learning and can compensate 
impaired connections. The brain stays functional and show plasticity to small damage, like to 
damage in the axons, which are known to be highly vulnerable to injury.

Structural and functional connectivity in cellular networks undergo dynamic changes. In 
general, structural rewiring takes longer than the time needed for changes in synaptic strengths, but 
the degree and time scale of synaptic connectivity changes is debated [17] [41]. Regarding 
functional connectivity, where spontaneous fluctuations are observed and the network is highly 
responsive to perturbations on the time scale of hundreds of milliseconds  induced by e.g sensory 
input or cognitive tasks. Though on longer timescales, from seconds to minutes, functional 
networks also tend to show robustness [14].

However, the flexibility and rearrangement of large scale neural pathways is not significant in 
normal circumstances only in case of lesion and in the long time scales [17] [41]. A striking 
example of neural plasticity is resulted by sensory deprivation, when a route of sensory input is 
impaired and the brain network undergoes reorganization resulting in changes of cortical functions 
as e.g. seen in early blind subjects whose visual cortex becomes responsive to other sensory 
modalities like touch and hearing [17]. Primary sensory cortices associated with the deprived 
modality became governed by  the remaining modalities, the phenomena called cross-modal 
plasticity. Plastic changes vary widely across brain systems giving rise to specific alterations. This 
process results in increased spine and neuron density in the auditory cortex after deprivation of 
other modalities in rats and mice [17]. It was found that plastic changes lack the effects on absolute 
sensitivity of the remaining modalities, instead it led to differences in performance on more 
complex tasks [17]. The cerebral cortex play primary role in these compensatory changes [17]. 
Growing evidence suggest that after sensory deprivation the reorganization of polymodal 
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associational areas are mediated by mechanisms similar to those that operate during normal 
development, such that the competition between different inputs [17]. Human studies showed 
posterior visual areas being active during somato-sensory processing in blind and similar results 
were shown to the other modalities [17].

Reorganization of connections might be due to alteration in local connectivity or due to 
alterations of long-range sub-cortical connectivity, however the latter seem to be limited to the 
development or takes place in very long time span in adults [17] [41]. The removal of sub-cortical 
connections do less harm in the developing organism as opposed to that in adulthood. 

Feed-back pathways seem play significant role in the reorganization of connections e.g. in 
cross-modal plasticity. These type of rearrangements seem to be more likely to be modifiable even 
in adulthood. [17]

Some neural systems, like word and object recognition, do not seem to be constrained by 
sensitive periods of development and can be modified throughout lifetime [17]. Altogether, it is a 
major questions which are the major areas and connections involved in these compensatory changes
in the brain. 

Pathological cortical organizations

Abnormalities in neural structure and synchrony were shown in some symptoms of psychiatric
disorders, like schizophrenia and Autism Spectrum Disorder [15]. In schizophrenic patients the 
reduction in phase-locking of oscillations in the beta and gamma band can be observed [15]. Also it 
is suggested that the abnormal generation of internal experiences (positive symptoms: illusions, 
hallucinations etc.) are related to increased beta and gamma activity and it is associated with 
enhanced white matter connectivity in temporal regions of the  cortex. Patients with autism 
spectrum disorder show reduced functional connectivity throughout the cortical language system 
and they also showed reduced neural synchrony [15].

To determine the structural robustness, i.e. the connectedness of the cortical network, and the 
synchronizability, network analytic tools were used. Among other methods to investigate 
vulnerability and the support of synchronous dynamics in the system, spectral analyses of the 
special connection matrix of the brain network, the Laplacian (see below), were performed. 
Combined with other measures like the nr. of connected components in the network, the 
vulnerability and the measures of vulnerability can be analyzed.

II. Network analyses

II.1. The structural and functional organization of complex systems

Network analyses is aimed to uncover functionally meaningful structural properties of 
complex systems with numerous interrelated components. Analysis of real world or artificial 
networks is based on graph theoretic tools. In the following part of this section some of the major 
indices used in network analyses will be introduced. 

Network representation of complex systems

A graph G(V,E) is the set of vertices V, and their set of connections, the edges, E. Thus, an 
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edge is described with a pair of nodes E → (V1,V2),  if the order of nodes in the assignment is 
irrelevant, the graph is undirected, and it is directed otherwise. Self-loops are edges that connect a 
vertex to itself. Multiedges are repeated edges between the same pair of nodes. Furthermore only 
graphs without self-loops or multiedges will be considered. As independent of the physical distance 
between the connecting elements a graphs are considered to be topological objects. Graph topology 
can be described with a varieties of measures.

A convenient way to describe graph topology is with matrix representation, and it can be 
generated by several ways. The Incidence matrix, Iij, is a NxM dimensional matrix, where N is the 
number of vertices and M is that of the edges. The entry Iij is 1 if node i incident in edge j, 0 
otherwise. Every column in Iij has two entries, because each edge is connecting to two vertices.
If the graph is directed, distinction of head and tail nodes can be made as an edge leaving the node it
takes the value 1 and -1 if it’s arriving to it.
In Iij 2M non-zero elements are stored on N*M digits.

Another way of matrix representation is with the adjacency matrix Aij, where both matrix 
indexes representing the same set of nodes so Aij is a square matrix. It’s elements in the presence of 
edges between I and j is 1, and 0 if I and j not connected. In the case of undirected graphs the order 
of the indexes are irrelevant, Aij=Aji, the adjacency matrix is symmetric. If the graph is directed Aij 

represents an edge coming from i to j. In a graph without self-loops the main diagonal elements Aii 
don't carry information about the graph, since it is known it is always 0. The adjacency matrix can 
be expanded by filling in these, only vertex specific diagonal places. 

The degree matrix Dij is a diagonal matrix, where the non-zero elements at i=j represents the 
degree of vertex i.

Laplacian matrix  L=D-A for a directed network D with containing the out-degrees will 
preserve the row sum of the Laplacian to be zero. Notice the connection between the Laplacian and 
the Incidence matrix for undirected graphs,

I⋅I T
=L

 
The usefulness of these different matrix forms will be shown later. 

Network properties
General characteristics

Network density is the ratio of existing edges to all the possible edges, and can be calculated 
by 

η=
|E|

|V|⋅(|V|−1)

Density is often related with the physical cost of the network, as seen for example in the brain with 
more edges  requiring higher the metabolic demands [14].

The reciprocity, also called cohesion index, of a directed graph is given by the proportion of 
bidirectional connections to all connections in the graph. It gives the probability, that a chosen edge 
has a connection existing in the other direction as well. Importantly, the cortical network is highly 
reciprocal, but there are non-reciprocated connections as well, which makes the total network 
directed (especially in its binary representation).  
Reciprocity can be calculated by the element-wise product of the adjacency matrix and it is 
transpose, T=A.*AT. The proportion of the sum of all elements of T and the sum of the adjacency 
matrix elements quantifies the reciprocity.
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The number of connections a vertex has is the degree (ki). In the case of directed graphs we 
can make a difference between incoming and outgoing edges, so then we can define the in-degree 
and out-degree of a vertex. 
With matrix representation the degree can be expressed as,

k i =∑
j=1

n

A ij

which formula, if Aij is the adjacency matrix of a directed graph, gives the in-degree of the graph. 
The out-degree can be calculated by summing columns of A. 
High degree nodes are often considered to play important roles in the network, those kind of nodes 
are called the hubs. 

The net flow, is the in-degree minus the out-degree. It resembles the direction of local 
information flow through the node. By applying it to an edge e=i → j it can be defined as the in-
degree of node i minus the out-degree of node j.

A basic topological characterization of a graph is its degree distribution, which be defined by 
the number of vertices having a certain degree. For comparability across different networks the 
degree is usually normalized with the number of vertices in the graph.
The degree distribution is useful to identify the different kind of network topologies. For some 
example, in a random network, where all connections are equally probable the result is a 
symmetrically centered Gaussian distribution. Another noted degree distribution called the scale-
free, which follows a power-law distribution [14]. 

Assortativity gives the correlation of the node degrees: positive assortativity means that the 
high degree nodes tend to connect with nodes of high degrees as well [14].

A path can be described as a sequence of connected vertices and edges without repetition. The 
length of these paths is the number of edges in it. The shortest paths (spij) of pairs of nodes can be 
determined, it is also called the geodesics.

If there is an edge from the end node to the starting node of the path, it is addressed as a cycle 
with the order of the path length plus one. An element of the k matrix product of the adjacency 
matrix Ak

ij gives the number of k length walks between vertex i and j. The trace of the k matrix 
product,  tr(Ak)=ΣiAk

ii gives the number of k-cycles in the graph multiplied by k, because all cycles 
are counted k times with every node in it. In the case of undirected paths it is also multiplied with 
two, because the two directions are identical.

In the brain shortest paths play an important role in transport and communication within a 
network. Because wiring length should be globally minimized, using the shortest paths have 
evolutionary gain. Information processing in the first order is expected to be fast, and the fastest 
way of travel is trough the shortest paths. The nature of information spreading on these routes may 
important to functional processing in the brain, longer path can be useful e.g. after damage 
providing adaptive features in the brain.

An important characteristics of network is the average shortest path length, asp, or 
characteristic path length,

asp =

∑
i=1

|V|

∑
i≠ j=1

|V|

sp ij

|V|⋅(|V|−1)
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It’s important to note that the above definition is only giving sensible values if the graph is 
connected. It’s possible to manage the asp for disconnected graph if we only consider paths between
the connected components, or giving the disconnected pairs of nodes an artificial high sp value, e.g. 
|V|-1 is the highest possible sp value in a graph.

The average shortest path length describes how fast is the signal propagation in a graph, with 
other words it describes the efficiency of the information transfer in the graph. The relationship is 
inverse, as networks with small asp-s have high efficiency [14] [9]. Random networks, and many 
real-world complex networks, like the brain, have small average shortest paths, while regular 
lattices possess high asp values [14]. Asp changes mostly logarithmically as a function of the 
network size [9]. The diameter is the length of the longest shortest path.

In the brain ASP can describe the level of global integration and is a measure of global 
connectivity. Small ASP means distributed/integrated information processing. ASP have an inverse 
relation with the efficiency of parallel information processing, a property important in the brain 
functioning [46]. Due to energy (metabolic) cost minimizing in the brain ASP minimizing is 
demanded. Thus, the investigation of the ASP and it as a vulnerability measure is a good method of 
analyzing the brain function.

An undirected graph is connected, if there's a path between every pair of nodes. In a directed 
graphs, if a directed or undirected path exist between all pairs of vertices, the graph is weakly 
connected. If there's a directed path between every pairs of nodes in both direction, than the graph 
is strongly connected. The number of weakly connected components can only be smaller or equal 
to the nr. of strongly connected components because if a network is strongly connected, than it is 
also weakly connected. If a graph is weakly connected can be determined from it is connectivity 
matrix. A directed graph looses weak connectivity when the undirected graph constructed by 
considering its directed edges undirected becomes unconnected. If a graph is strongly connected, 
there exist an at least k=|V|-1 length of path from all vertex i to j, therefore all i!=j entry of the 
Σk(Ak)ij should be non-zero.

The clustering coefficient, also known as transitivity, a local measure (cci) if it is the 
proportion of the connected nearest neighbors of a node to all the possible connections varieties of 
the neighbors [14] [9]. 

The global clustering coefficient (CC) provides the probability that two neighboring nodes of 
the same node are also adjacent. It gives information about the proportion of cycles with the length 
of three, which can be quantified as the ratio of the triangles to all possible connected triples. It will 
be shown that the adjacency matrix and also the local Overlapping of an edges can be used to give 
the number of 3-cycles.

Random networks have low clustering coefficient compared to many real-world networks, like
the brain, where the interaction of neighboring nodes supports the local information transfer 
efficiency [14]. 

CC, as the describing the presence of the triangle motifs in a graph, is a measure of local 
connectivity and useful to quantify clustering, e.g. in brain networks, where clustering is compatible
with segregated/modular processing. It is known that neighboring cortical areas innervate each 
other, while distant areas are less likely to be connected [46]. Also, wiring cost minimizing of the 
brain is related to maximizing clustering, thus its a good measure to describe a part of brain 
functionality. CC is also related to the local efficiency of fault tolerance [46], suggesting it to be a 
good quantity of vulnerability.

Centrality, the importance of network elements
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Centrality measures allow us to determine the relative importance of an edge or a node in the 
network. Node centrality measure for example the degree, but also the closeness centrality giving 
the (reciprocal of the) average geodesic length from a vertex to every other [19]. Betweenness 
centrality, highlighted below, measuring the fraction of geodesics from all which a vertex takes part 
in [19]. Betweenness centralities are important measure of the control a network element exerts on 
the information flow if we assume information flows on the shortest possible paths.

While degree centrality is a local measure of the network quantities employing the shortest 
paths, like the edge betweenness and the convergence degree, detailed below, are the function of 
global structural properties.

Edge betweenness (EBe) is the measure of how important an edge is by considering the 
amount of shortest paths going through it.

EBe =∑
k=1

|V|

∑
k ≠l=1

|V| e mkl
sp

mkl
sp

 where emsp
kl is the is the number of geodesics between node k and l going trough the edge e, and 

msp
kl  is the number of any shortest paths between k and l.

Convergence/divergence of connections is an important part of network functioning, but it 
describes local signal propagation. By considering the convergence of shortest paths in a measure of
global structural properties can be made.

Convergence Degree

This chapter is based strongly on the findings in [4].

CDe defines the convergence or divergence of the shortest paths going trough an edge. Let Ine 
be the set of vertices starting the path in spe, and Oute be the set of the arriving vertices. Notice, that 
Ine and Oute can be defined only on directed graphs, since the directionality of e is required, 
otherwise In and Out is identical. If e is part of a chorless cycle, Ine and Oute may overlap, so lets 
define Ovle =Ine ∩Oute and SIne =Ine\Ovle and SOute =Oute \Ovle .

It is also possible to determine a less global version of these sets, if we restrict spe based on it 
is natural stratification in respect to the distance of the node from the e edge. Without the 
overlapping areas, this builds up a tree-like structure with the roots being the incoming shortest 
paths, the stem is the edge, and the outgoing shortest paths making up the branches of areas reached
by the signal transmitted by e. Connections between different strata are not allowed, because it 
would alter the shortest paths. If only the first neighbors are used in spe , the cardinality of Ine, |Ine 

=ij|, gives the in-degree of node i, |Oute=ij| is the out-degree of j, |Ovle | is the number of 3-cycles that 
edge e the part of, thus it is related to the clustering coefficient. The node i in e=i->j is the only part 
of the zeroth strata of Ine, and j in the zeroth strata of Oute respectively. The local convergence 
degree using up to the first strata gives the net flow of an edge.

To eliminate the dependence of the network size, the measures SIne and SOute are determined 
relative to all amount of vertices participated in shortest paths going through e. The normalizing 
factors then, |SIn U SOut U Ovl| = |In U Out|, and
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RIn=
|SIn|

|In∪Out|
ROut=

|SOut|
|In∪Out|

ROvl=
|Ovl|

|In∪Out|

ROvle is the Relative Overlapping Set of edge e, often just referred as the Overlapping. Then, the 
Covergence Degree can be defined as CDe = RIne - ROute. 

CD value close to -1 means that the edge injects information from small amount of node to 
wide range  of areas, the edge disperses the sign going through it. Edges with CD value close to 1 
means it integrates the sign arrived from extended range of nodes, and transmit it to fewer others. 
High Overlapping means, the edge mostly transmit sign in feedback cycles setting up the 
reverberation of information. An edge to have a non-empty Overlapping Set it is necessary be on a 
chordless cycle. The relationship of CD and Ovl can be formulated with |CD|<1-ROvl. Note, that in 
this form ROvl is analogous to the Jaccard coefficient, the value used to determine similarity of 
sets.

The sum of the Convergence Degree of all edges describes an average ejected signal how will 
travel trough the graph in the long time scale. Positive CD sum means the graph rather absorbs the 
information going trough it, negative CD sum indicates the graph overall disperses the signal 
ejected into. The normalized version of the CD sum is the average CD of the edges, the Average 
Convergence Degree.

As EB of an edge is proportional to the amount of shortest paths going trough an edge, this 
increases |InUOut|, but since CD is normalized with this factor high EB do not indicates high CD.  
CD and edge-betweenness are uncorrelated and therefore independent edge-based measures [8]. 

Node reduced CD flow

To represent information flow properties trough nodes, the node reduced Convergence Degree 
was constructed. It' based on separating both the incoming and outgoing edges of a node by the sign
of their CD to positive (convergent) and negative (divergent) and sum it to

in σ i
+
=∑

j=1

din

CD ji
out σ i

+
=∑

j=1

d out

CD ij

if CD > 0, and

inσ i
- =∑

j=1

din

CD ji
out σ i

- =∑
j=1

d out

CD ij

if CD < 0.
Then the CD flow Ф(i) is written as,

Фi =
in σ i

+
+

out σ i
+
+

in σ i
-
+

out σ i
-

II.2. Characteristics of network architectures and topologies

It is general to compare the parameters of the analyzed networks with the (null) distribution of
equivalent parameters estimated in random networks with the same nr. of nodes and edges, thus 
analyzing random networks is important to determine the characteristics of complex systems.
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Random neworks

An Erdős-Rényi random graph (ER) (Bernoulli random graphs) is a graph constructed with 
even independent probabilities p to every edge in the graph to exist  [19].Constructing networks 
with this method gives a phase transition at pc=1/n, where above the critical p values a connected 
component forms with the size dependent of n, while below pc small groups of vertices remains 
unconnected independent of n [19] [9]. Other method of construction is adding edges between 
evenly chosen pair of nodes, until a desired number of edges reached.

The average degree of an ER graph can be formulated by <k>=p*(n-1) [19].
Estimating the diameter, the average shortest path length, and the clustering coefficient is 

possible in the case of sufficiently high mean degree providing enough connection density at 
n*p>=ln(n), with the following forms [9].

diam =
ln(n)

ln( p⋅n)
asp∼diam C =

p⋅k (k−1)

2
⋅

2
k (k−1)

= p=
⟨k ⟩

n

The number of edges present, 

m ~(n2)⋅p

The ER graph has Binomial degree distribution, 

Pb(k )= (n−1
k )⋅pk

⋅(1−p)
n−1−k

Than the expected value of the degree can be given with <x>=ΣxxP(x), and with the use of the 
derivate of the binomial formula

n(a+b)
n−1

= ∑
m=0

n
m
a (n

m)am
⋅bn−m

substituting b=1-a, the form of the expected value turns up in the equation n=<k>/p, so the mean 
degree expressed as <k>=n*p, which for sufficiently large n corresponds to the previously stated 
<k>.

For large N and fixed <k> the degree distribution is well approximated with the Poisson 
degree distribution [9],

Pp(k )=e−⟨k ⟩ ⟨k ⟩
k

k !

For a ER graph with large number of nodes, and in the limit of large mean degree <k>, e.g. dense 
graphs, the Binomial degree distribution tends to the Gaussian degree-distribution [14].

Pg(k )=
1

√2π ⟨k ⟩
⋅e

−(k−⟨k ⟩)
2

2 ⟨k⟩
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It is possible to construct a graph with arbitrary degree-distribution with having the set of 
nodes having certain degrees noted with half connections on each, called the studs. Then one can 
connect a studs with evenly choosing two to connect until all the connections established [19]. This 
method is resembles to another method of  graph construction with arbitrary degree-distribution, in 
which with rewiring a predefined graph with sufficiently enough steps, by exchanging edges 
without generating multiple edges or self-loops. The method will give a randomized graph with a 
distinct degree-distribution.

The clustering coefficient can be estimated to a random graph with arbitrary degree-
distribution with the average <d> and deviation of the degrees  σd in the following way,

C =
⟨d ⟩

N [ ⟨d2
⟩−⟨d ⟩

⟨d ⟩
2 ]

2

=
⟨d ⟩

N [( σ d

⟨d ⟩ )
2

−
⟨d ⟩−1
⟨d ⟩ ]

2

Natural networks typically reveal different regime of properties than what is seen at artificially
generated random networks. Different categories of network topologies can be determined by these 
coherent set of properties.

Small-world properties

In natural networks the combination of small average shortest path length and high clustering 
is frequently observed, placing high proportion of natural graphs into the regime of small-word 
networks. Small-world graphs are intermediate between regular lattices and random graphs. They 
possess significantly smaller average shortest path lengths than a regular lattice with similar 
clustering and show high clustering compared to a random graph with the same asp [14] [9]. Small-
world properties help efficient communication between the elements, in a D dimensioned lattice the 
average nr. of vertices needed to pass by in order to reach an arbitrary chosen node grows with the 
lattice size as N1/D. Related to asp, with the logarithmical dependence on the network size in SW 
graphs this stays small even at high number of nodes [9].  A specific approach to characterize the 
natural small-world properties is defining the level of clustering with the clustering coefficient, its 
proportion to the average shortest path length gives the measure of global efficiency. Economical 
small-word topology denotes small-world features, but with the relatively low local connection 
densities, referring to the 'cost' natural networks often have to support their connections [14]. 
However, it is important to differentiate the origin of small-world properties, as dense networks may
hold short path length and high clustering trough the high connection density, so the small-world 
property may arise from the high density instead of being an independent property of the network 
topology [18]->[15]. 

Spatially embedded networks should minimize long range connections while keeping efficient
communication, thus small-word organization should be a suitable topology for those. Furthermore, 
in the face of signal propagation, SW network are suitable to optimize the integration and 
segregation of the transmitting sign [42] [43] [44]. 

By the analyses of species-specific connection matrices, e.g. macaque visual cortex, cat 
thalamo-cortical systems, sets high clustering of functionally related areas with small average 
shortest path length, suggesting the small-word properties of the network, but furthermore, with the 
low connection densities of the long-range connections in the macaque monkey, the small-world 
topological feature proposed is rather considered economical small-word organization [14]. Also, 
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mapping of the structural networks of the human brain show small-world architecture and revealed 
significant overlap between anatomical network modules and the functional systems in the cortex 
[14].

The small-world network architecture parallel supports segregated (with high clustering) and 
distributed (with small ASP) information processing and is a suitable topology for dynamic 
complexity [46]. By minimizing wiring and energy costs simultaneously and show high slobal and 
local efficiency with low cost [46], SW topology seems to be a applicable organization to the brain 
network, and worth to investigate.

Scale-free networks

Scale-free networks are special to the the heterogeneity of node degrees. A SF network is 
abundant with nodes of small degree and have a few nodes of high degrees. The degree distribution 
of a SF network power law correspondence, p(d)~1/dα, often in biological networks with the 
exponent 2<α<3. The distribution has the property of f(a*x)=b*f(x), thus rescaling the function on 
the x axis won't result structural change, it is scale-free [9]. This topology is present in many natural
networks, like the Internet and the World Wide Web, and it is often related to growing networks 
with preferential attachment, which means that choosing a connection partner to a node is not 
evenly distributed, but nodes connect with higher probability to high-degree nodes [19][14]. 

High degree nodes are constrained in spatially embedded networks since the number of edges,
that can be connected to a node is limited by the physical space [9]. Furthermore connection cost 
limits having high degree nodes, thus network with these properties posses and altered power-low 
degree-distribution, called exponentially truncated power-law degree-distribution [14].

Structural and functional networks of the brain shows scale-free-like properties [7]. Macaque 
and cat functional networks was found to exhibit exponentially truncated power-law degree 
distribution, and highlighted the high degree characteristics of the multi-modal association cortical 
areas [14].

Network architectures subserving hierarchically organized parallel distributed processing

Convergence and divergence of lines of information transfer probably plays important role in 
how the brain select input signals for further information processing [15]. It characterizes 
segregation (working on different specific tasks in parallel, e.g. elementary features of an object) 
and integration (integrating or binding related information processed in parallel circuits) which are 
fundamental parts of the brain and especially cortical functions. Integrity of a network architecture 
by the combination and integration of signals related to the convergent properties of the signal flow,
while segregation can be associated with the divergence of the routes of signal transfer. Control 
properties associated with recurrent information processing, with connections being part of loops 
and cycles, related to the overlapping of information.

As divergent edges spread information from smaller to larger amount of areas, these kind of 
connections can play a role in adjusting node activation and enhancing synchronization with 
transferring effects to high proportion of areas. Determining connections based on the convergence 
and divergence of signal flow and integrate it on nodes can be useful to build up the hierarchical 
organization of brain areas. Neural network circularity also plays significant role in the information 
processing, chord-less circles gives information about signal reverberation, measures used here with
the overlapping of shortest paths may help to uncover this property as well.
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If nodes contribute to the network dynamics differently asymmetry in signal processing 
emerge, information propagation have a global direction, a hierarchical ranking of network 
elements can be made. Hierarchy can be observed in many self-organized and evolutionary 
propagated networks. It is a global structural feature of the dynamic network function. However to 
detect and distinguish different forms of hierarchies is a difficult task as in many networks due to 
connections against the flow of hierarchy, e.g. laminar or backward, are often present [20]. 

To determine hierarchy in [5] the proportion of edges, which is not part of any cycles is used. 
In [20] the proportion of the number of nodes reachable were determined as the rank of hierarchy. 
And [6] uses the convergence/divergence of edges leaving and terminating a node to determine its 
hierarchical level. Because edges having non-zero Overlapping needs to be on a cycle, and an edge 
with higher Overlapping posses smaller absolute CD, due to the normalization, these quantities can 
be used to identify the hierarchies in a network. However hierarchy is not always obvious specially 
in the case of complex networks. Asymmetry in node connections, the condition needed for 
hierarchy, are often disrupted with cycles and backward connections [5] . In the brain feed-back and
feed-forward connections, even if in the binary matrix representation show symmetry, the 
connections reveal functional differences, thus the asymmetry needed for hierarchical categorizing 
is present.

Hierarchy can be built up through the shortest paths. Related property the Convergence 
Degree, especially the integrated edge CD can be used to determine the hierarchical organization. 
Lower order areas performing information source, segregating functions, which is supported by 
divergent outgoing edges. Higher order areas receiving signal trough this divergent feed-forward 
connections from the lower areas and provide convergent feed-back, this performs information 
sinking to the lower areas [4]. Representing nodes on a two dimensional coordinate system of the 
CD flow, with the x axis being the incoming σ, the y axis the outgoing σ, every node gets plotted 
separately in every quadrant representing different convergent characteristics of the input/output 
combinations (-in/-out, +in/+out, +in/-out, -in/+out), and by analyzing the placement of the nodes, 
the type of information flow it posses preferably can be determined. See figure 5. in [6]. The upper 
left quadrant by giving the amount of divergent incoming edges combined with convergent 
outgoing ones, tells about the information sinking nature of the node, related to allocating or 
boardcasting properties. The lower right quadrant describes the amount of convergent incoming and
divergent outgoing edges the node have, the node is provides/injects information to the network, 
therefore serves as a source of information. The lower left and upper right parts corresponding to 
divergent and convergent relay properties. 

In real world network, specially in neural network, nodes tend to place around y=1/x curve in 
the bottom left, top right “relay” quadrants, and around the y=-x curve in the top left, bottom right 
quadrants. The negative correlation of the CD with the incoming and outgoing edges is pronounced,
meaning the typical opposing CD sign of the efferents and afferents (i.e. reciprocal connections) of 
an area. Cortical networks typically posses less router or “relay” nodes, possibly due to high 
evolutionary costs compared to the strength of functionality [4] [6].

II.3. Spectral analysis and network dynamics

Spectral graph theory

The set eigenvalues μi i=1..n, where n=|V|, of the adjacency matrix of G is often called the 
spectrum of G and along with the eigenvalues λi of the Laplacian matrix important consequences 
about the network structure and function can be deduced. The following section we use to 
summarize some spectral properties of A and L related to our studies.
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If the graph is undirected A and L is symmetrical, therefore it’s eigenvalues are real and the 
corresponding eigenvectors are orthogonal. If G is directed the eigenvalues can have imaginary part
[9],  but the assumption of matrices with high reciprocity standing close to undirected matrices with
small imaginary parts can be  investigated . If A and L are a reducible matrices, than the 
corresponding matrix is not strongly connected.

 The number of distinct eigenvalues of the adjacency matrix A is an upper bound for the 
diameter of G [9].

The Perron-Frobenius theorem states, that an irreducible non-negative matrix A (as the 
adjacency matrix of a connected graph) have an eigenvalue μN, with the multiplicity of one, such 
that |μ|< μN holds for all eigenvalues μ of A. The value of  μN can only decrease when vertices or 
edges are removed from the graph [9].

It’s been shown though the Perron-Frobenius theorem, that the second smallest eigenvalue, the
algebraic connectivity, λ2 of the symmetric Laplacian matrix L, is zero if and only if the 
corresponding graph is not connected. And that removing edges from an undirected graph can not 
increase λ2.

By Courant’s theorem the second smallest eigenvalue of a positive semidefinite matrix with a 
row-sums zero can be expressed as,

λ2=minx x⃗T L x⃗

where x is all the column vectors perpendicular to the vector [1,1,1,…,1]T, while the largest 
eigenvalue is proved to be,

λN=max x x⃗T L x⃗

Upper bounds of  λ2  are possible to determine with the size of the vertex set |V|=n with the minimal 
degree kmin or with the size of the vertex and edge set |E|=m in the following form,

λ2⩽
n

n−1
kmin

⩽
2⋅m
n−1

Its shown, that λN can not increase by removing elements of the graph, and is bounded by,

n
n−1

kmax
⩽λN⩽2⋅k max

Furthermore let’s consider the vertex connectivity vc and edge connectivity ec, as the minimal 
number of vertices and edges needed to remove to disconnect the graph. Then the following 
statements can be made [10],

λ2⩽vc λ2⩽ec

To the eigenratio λ2/ λN , by the previous relations the following upper bounds can be stated,

λ2

λN
 ⩽  

k min

k max

 ⩽  2
m
n
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Because row sum of L being equal to 0, the following equation can be built up.

L⋅⃗1=0⋅1⃗

L is a singular matrix with the 0 eigenvalue and the [111..] eigenvector.
Generally the eigen-equation,

L⋅⃗v=λ i⋅v⃗ i

 If there's a nonzero solution, then λi is the ith eigenvalue, and vi is the corresponding eigenvector of
λi to L. The eigenvalues of the Laplacian matrix is the feature of the graph connectivity, the 
eigenvector tells about the partitioning of the graph [9]. With reorganizing the equation it is possible
to solve it for λi.

(L−λ i⋅I )⋅⃗v i
=0

than,
det (L−λ i⋅I )=0

where I is the identity matrix.
By solving the characteristic polynomial, this N-th order polynomial equation for λ will have n 
solution including the repetitive ones. If a solution λi occurs m times in the eigenvalue list, than the 
multiplicity of λi is m. As it was shown L has the eigenvalue 0 and the [111..] eigenvector. This is 
emerges from the structure of L, and is true for all Laplacians. If a real valued matrix have complex 
eigenvalues, than it is the complex conjugate is also an eigenvalue of the matrix and this is true to 
the eigenvectors as well.

Using the properties of the Laplacian and the Incidence matrix, some implications can be 
made about the graph. The eigen-equation can be written in the following form,

I⋅I T
⋅⃗v=λ⋅v⃗

multiplying it from the left with vT, i.e. the transpose of v,

[ v⃗ T
⋅I ]⋅[ IT

⋅⃗v ]=λ⋅⃗v T
⋅⃗v

 by substituing y=IT*v,

y⃗ T
⋅y⃗=λ⋅⃗v T

⋅⃗v

and because the vT*v dot product of a vector v gives the square of it is norm, λ can be expressed in 
the following way,

λi =
|y⃗ i|

2

|v⃗ i|
2

y has the dimension of |E|=m, and

I T
⋅⃗v e=ij = v⃗ ( i)− v⃗ ( j)

than λ can be written as

λ =

∑
e=1

M

( v⃗ (i)−v⃗ ( j))2

∑
i=1

N

v⃗ (i)2
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Because λ is produced by the division of two non-negative number, it is always non-negative, thus 
L is positive semi-definit matrix. Also the 0 solution at v(i)=v(j) for every i->j edge can be seen. 
This also explains why the multiplicity of 0 in the eigenvalues gives the number of connected 
components. Nodes, which are reachable to each other had to have v values equal, we get a plus 
degree of freedom in choosing v with every plus independent connected component. 

Network Dynamics

The dynamics of the signal flow are the characteristics of the network function with the 
constrain of the network structure. Signal transfer between nodes happening trough the paths, but to
take account all the possible path between all pairs of nodes, would require high computational 
times, so for efficient working only the shortest paths could be assumed to take relevant part in the 
signal processing. 

Synchrony

Synchrony is the feature of a system dynamics, described by equality of state variables in the 
course of time. First, synchronization in periodic system was investigated, like hanging pendulum 
clocks synchronizing their oscillating phase, but recently chaotic systems got more attention with 
their possibility of different kind of oscillations.

Several types of synchronization regimes can be determined, e.g. complete and general 
synchronization assumes identical elements activating together, or together in connected 
subsystems. Although, non-identical oscillating elements can reach phase-synchronization with 
differing amplitudes, but with the same phase of activation. If the oscillations are not in the same 
phase, but still has the same periodic time, than it is a phase-lag synchronization, with a constant 
difference lag time τ in the phase. In a chaotic dynamical system this regimes can combine specially
where information needs to be stored and processed, like in the brain.
Master stability approach, [9] is used to model the system of coupled oscillators, and have the form,

i ẋ=F ( i x)−σ∑
j=1

N

Lij H ( j x)

where ix is the state variable of the node i, F is the internal dynamics function, H is the coupling 
function, σ is the coupling strength, and L resembles the Laplacian matrix of the network.
For small coupling strength the oscillators work on their own frequencies, for high values with the 
strong connections the nodes can synchronize more. Theres a threshold from incoherency to 
synchronization at the critical coupling strength σc

The Kuramato order parameter, |z|, can be used to measure the synchrony of the system by it is 
current state, not the structural organization. it is small close to the asynchronous state and also if it 
is balanced with synchronous subsystems in opposing state. 

z=
1
N
∑
j=1

N

e i x j

Constituting the current state with the deviation from a particular synchronous state xi=δxi+x*, 
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identical nodes and so invariant x* is assumed, than the above equation can be written in the form,

˙δX=[1N×JF−σ L×JH ]δX δX=∑
i=1

N

v⃗ i×ξ i( t)

where J is the Jacobian operator, and vi is the transverse eigenvector of the symmetric L. With 
applying vT

j from the left side,

˙δξ j=[JF (x*)−σ λ j JH (x*)]δξk

where, λk is the eigenvalues of L.
To investigate the effects of the structure, L, the Lyapunov exponents of the above differential 
equation have to be searched, in the function of the eigenvalues and the coupling strength Λ(σλ). It 
determines how fast the system reaches the x* synchronized state. The largest exponent is called the
master stability function. A system to reach a stable synchronized state is accounted λN/λ2 to be 
small [9].

Synchronizability

Upon the structural foundation of convergence and divergence, synchronizability also 
determined by neurophysiological factors. Synchronizability, the stability of a synchronized state. 
Maximal in unweighted fully random networks with uniform degree distribution. By optimizing 
with wiring length an optimal synchronizable network falls into the small-world regime [7].  
In a computational model of phase synchronization between coupled neurons the balance between 
high clustering and short average path length, properties associated with small-world characteristics
influenced the proportion of local to global synchronizations [14]. 

The largest absolute eigenvalue of a matrix is called the spectral radius, ρ. For the Laplacian it
is inversely proportional to the critical coupling strength σc ~ 1/λmax  [7]. The higher the maximal 
eigenvalue, the smaller σc , thus the network can reach the synchronization regime easier.  

The more spread out the eigenvalues of L, the more likely the synchronous state will be 
unstable [9]. By the eigenvalues of symmetric Laplacians, a measure for the spreadness of the 
eigenvalues can be estimated by the ratio of the largest and smallest non-zero eigenvalues, the 
closer it is getting to 1, the more stable the synchronous state in the system [9].

II.3. The role of targeted attacks in studying networks

Robustness and vulnerability

By deleting edges or nodes from anatomical and functional networks with random deletions or
with targeted attacks different vulnerabilities of the network can be determined. Inspecting the 
malfunctioning of networks while removing of it’s elements has an important practical use. Many 
natural networks have to keep up it’s function in a noisy environment, where nodes and edges can 
be easily failed. Nodes and edges for which removing the network function sensitive to can have 
and important role, and identifying these elements are important in understanding the network 
operation. A deletion is called an attack if it’s targeted to a particular class of network elements. 
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These elements can be a class of nodes or edges determined by the aid of network analyses, e.g. 
shortest paths encode information about the network structure, constructing global centrality 
measures based on shortest path properties then identifying vulnerable edges and nodes is a method 
can be used to begin the robustness analyses.

Different measures of robustness can be originated depending on weather it is referred to the 
changes in structural integrity after edge or node deletion, or to the effects of perturbation on 
network states [14]. Vulnerability of a network can be studied by investigating some quantities at 
each deleting step. These vulnerability characterizing quantity changes include average shortest 
paths or diameter to increase faster, or decreasing transiency related to decreasing clustering 
coefficient. Or change of dynamical properties as less synchronizability are a way of vulnerability 
characterization. Resilient networks show less change in these quantities after deletion.

Static tolerance of the network refers to the robustness without the need of redistributing 
quantities, while in dynamical robustness the dynamics of redistribution of flows are taken into 
account [9].  Robustness can be analyzed with percolation theory, since the connectedness of the 
network to a giant component is marker of functional network communication [9].

Some network quantities followed during the elimination can be related, as the average 
geodesic have a natural connection with the diameter and statements can be made about the 
connected components e.g. during edge elimination a directed graph first will loose it is strongly 
connectedness, then at a later elimination the weakly. Also relation between the algebraic 
connectivity and the nr. of connected components are assumed. The algebraic connectivity is a good
measure of vulnerability of undirected graphs because it is magnitude indicates connectedness. If λ2 
small, less edges are needed to remove to disconnect the graph. If it is 0 the graph is disconnected. 
Though it is proven for undirected graphs, the relation of undirected λ2 and connectivity is not well 
known. Assumptions can be made with reconciling the nr. of connected components with the real 
part of the directed λ2.

Different network topologies show different attack vulnerabilities and natural adaptive 
networks should possess special robustness to these sensitive targets, e.g. scale-free networks show 
resilience to random targeting, but tend to be vulnerable to targeting of high degree nodes, while 
brain functional networks lacking the high degree nodes with the exponentially truncated power law
degree distribution, thus they are less vulnerable to high degree targeting  [14]. Also the cortex was 
shown to be resilient against random attack [14], robust to random edge removal [11].

Node elimination is a widespread method to investigate neural network functions, e.g. cortical 
hierarchies, in [18] driving function of the pathways were tested and feed-back connections were  
identified.

Goals

Network properties and their use as Vulnerability Measures

Network properties as the degree distribution, ASP, the diameter and the Clustering 
Coefficient together with the eignevalues of the Laplacian is by itself interesting to analyze, how the
quantities retrieved from the cortical network of the macaque preserve after randomizing the 
network. With the two types of randomizing, one with rewiring the connection but keeping the 
original degree distribution, and another with Erdős-Rényi type random networks with same nr. of 
nodes and edges allows to examine how the quantities relate to the degree distribution of the 
network.
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The changes in the important network quantities such as the ASP, diam, and CC to removing 
edges from a graph will describe its vulnerability to the remove bias and it’s a good matter of 
question which quantity change describes well the network vulnerability.

 Centralities

A question also examined is how different centrality measures relate in effects of vulnerability.
Centrality measures like EB, CD and Overlapping was introduced here, a question is what are the 
sensitive centrality measures, i.e. attack strategies to certain vulnerability measures, and also in 
what extent the effect of the centrality measures resembles each other.

Topologies
Different centrality measure as an attack strategy can have different effect on the network 

depending on the topology of the network. To unfold the impact of the special degree distribution of
the cortical organization on the different resilience attributes we compare its robustness to a similar 
ER random graph. 

Also the certain vulnerability measures the graphs sensitive or resilient to can describe the 
network topology so it is a matter of question we investigate.

The question of the effects of the disturbance in the cortical hierarchy is examined by 
removing selectively convergent and divergent edges of the signal propagation, expressed by the 
CD for each edge of the network.
By the three type of network analyzed here we raise the question how a random network with a 
special degree distribution relate to the well known Erdős-Rényi random graph and then how the 
natural network of the large scale representation of the macaque cortex being one instance of that 
special set of degree sequence relate to its randomized version.
 
Robustness

Robustness can be derived form the vulnerability measures stated above, but an obvious 
degree of vulnerability is when a network separates, thus falls to disconnected components. Thus, 
robustness will be studied here by analyzing the nr. of connected components, moreover working 
with directed networks, the nr. of strongly connected components and the nr. of weakly connected 
components as the measure of robustness will be analyzed separately.  

The relation between the algebraic connectivity, i.e. the second smallest eigenvalue of the 
Laplacian, and robustness is known and discussed in the introduction, thus algebraic connectivity 
could be a good measure of robustness to analyze. Although, it should be noticed, that in directed 
graphs the eigenvalues are more complex and less understood. To understand more the relation 
between the real part of the directed algebraic connectivity and connectedness, the changes of the 
algebraic connectivity and the nr. of connected components will be analyzed collectively.

Synchronizability
As it was shown, synchronizability of a network can be resembled to the spreadedness of the 

eigenvalues of the Laplacian, represented by the eigenratio. Thus, here to understand the 
vulnerability of the synchronizability, a function well needed to cortical processing, we investigate 
the changes in the eigenratio to removing certain class of edges, with a special interest to 
convergent/divergent edges which are known to play role in synchronization.

Methods
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In this works generally graphs without self-loops were used. The macaque visuo-tactile 
cortical network were analyzed, consisting of 44 nodes and 630 directed edges. The underlying 
adjacency matrix representation was based on unweighted connectivity data published originally in 
tract-tracing studies [6].  In addition 30-30 instances of randomized networks with and without 
conserving the cortical degree distributions is used for comparison, average values are plotted with 
deviation.

For the illustrations, simulations and computations the GNUplot, Octave and the R 
environment was used with the addition of the free igraph package [http://igraph.org/r/] for graph 
generations, randomizations and shortest path calculations. 

If a graph is not strongly connected, there's at least one pair of nodes where there's no path 
between, so we have to decide how to interpret shortest path in the computation. Igraph offers two 
methods, with method A we only consider the existing paths in the average, with method B we 
assign to the nonexistent paths the number of vertices in the graph, which is one greater than the 
longest path possible in the graph.

Two types of random graphs were used in this work, both with the aid of the R igraph package
. The rewired random graph were used with the rewire function of the package 
[http://cneurocvs.rmki.kfki.hu/igraph/doc/R/rewire.html] with preserving the degree distribution of 
the original, cortical, graph. The number of iteration of the rewiring were 10 time the nr. of edges in 
the graph. For the Erdős-Rényi random graph igraph offers a function of network generation 
[http://igraph.org/r/doc/erdos.renyi.game.html] called erdos.renyi.game, and the “gnm” type were 
used, with the parameters, node nr. n=44 and edge number m=630, resembeling the original cortical
graph.

Here when giving the clustering coefficient directed graphs are considered as undirected, this 
means all topologically different triangle motifs considered, the 111, 11-1, 110, -110, 1-10, 001 000,
where the minus means the other direction in the cycle, 0s are the reciprocal connections. Also, 
given a node with k neighbors, the number of possible links in the neighborhood is k(k-1). Note that 
this would result in a division by zero if k = 1 (i.e., if the node has only one neighbor), hence we 
excluded all the vertices with degree less than two from the clustering coeffitcient calculations.

Edge deletion

In this work the method of understanding the importance of edge properties in the function of 
the network is trough characterizing its vulnerability with targeted and random edge removal. 
The edges selected to remove by their assigned measures based on their shortest path properties. 
Edges with the highest values of the following quantities were removed,

• Edge Betweenness (i.) 
• Convergence Degree (ii.) 

• absolute value (a) 
• maximum value (b) 
• minimum value (c) 

• Overlapping Set (iii.) 
And to compare network vulnerability with edges chosen without any bias, in each case we 
performed an attack with randomly picked edges too (iv.). 

It is important to decide whether to quantify the edge properties in each iteration or to use the 
ones calculated from the initial network. Recomputing was chosen, as removal of the edges alter 
structure, important edges by the initial computing can loose significance, and the attack strategy 
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looses to pronounce vulnerability [1]. Also brain plasticity after lesions suggest the adaptation of 
functioning to the small changes in the structure, therefore the importance of the connections should
be determined by the actual network structure. 

Then to determine the attack damage and reorganization of the cortical network, changes were
compared by means of computing various network properties, as average shortest path, diameter, 
clustering coefficient, the number of strongly/ weakly connected components, the second 
smallest/largest eigenvalues of the Laplacian matrix, to reveal the changes in the global signal 
propagating properties the changes in the convergence degree sum were illustrated.

The independence of variables (x) of the control networks (the rewired and ER) were tested 
with independent t-test in the following form,

t=
x̄ ER− x̄rew

√ sER
2

−srew
2

N sample

where in the nominator the differences of the mean sample variables, s is the standard error of the 
sample and N is the sample size = 30 in our case.
If the calculated t value is larger than the critical t value the independence probably hold true with 
p=1-α (α see below).
With the degrees of freedom (the sum of the two sample size minus two, df=58) and the alpha level 
(α) the critical t value can be identified from the t table. With α=0.05 the critical t value is 2 and it 
stays below 2.7 at  α=0.001.

Results and Discussion

Comparison of the  cortical and random networks, network properties and their use as vulnerability
measures

Data are summarized in [Table 1- 3.].

Table 1.
density diam asp clustering coeff

cortical 0.33 3 1.775 0.616
rewire 0.33 3.27 +- 0.45 1.712 +- 0.009 0.616 +- 0.009
ER 0.33 3 +- 0 1.671 +- 0.002 0.554 +- 0.009

Table 2.
λmax cdsum

cortical 2.84 30.0796 0.0944 -24.4
rewire 4.05 +- 0.05 29.77 +- 0.11 0.136 +- 0.002 -30.5 +- 3.09
ER 8.27 +- 1.28 21.64 +- 1.26 0.383 +- 0.065 -0.008 +- 3.633

λ2 λ2/λmax
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All the random variables after
the t-test were found to be
independent, i.e. at p=0.05
significance the control random
network measures examined were
found to be distinct, had a higher t
value, than tc =2 [Table 4- 5.].

The reciprocity of the macaque network was found to be 0.77, i.e. 77% of the connections 
were reciprocal. The number of nodes and edges was preserved in the random networks, so the 
density is. The density of the cortical network was higher than in [11] where it was found to be 0.16
of macaque networks with average shortest paths to be 2.2 and clustering coefficient to 0.46. To the 
higher density smaller average shortest path and higher clustering is expected, and found here.

The average shortest path length were found to decrease after randomizing the cortical 
network, taking the smallest value for the ER, consistent with the known small ASP of ER random 
networks. The higher ASP in the natural network can be well related to the spatial constraint of such
a networks.

The diameter was highest in the rewired network, smaller in the ER. Interestingly in the 
cortical network was smaller than in the rewired, despite the ASP showing different relation. 
Though, the differences are not prominent.

The clustering coefficient was higher in the rewired network than in the ER. In the cortical 
was found to be identical as in its rewired version. For both randomized networks, the deviation was
very small. The to three decimal places identical CC of the cortical and rewired networks can hold 
in the preserved degree distribution and in the preserved density, but as the density was the same in 
the ER as well, the relation could be in the special degree distribution.

The cortical network had a heterogeneous 
degree distribution [Fig. 1.]. The distribution
represented here contains both the in and out
degrees, thus the maximal possible degree is
(N-1)*2=86. In the macaque the maximal
degree kmax =59, while kmin=8. 

With the maximal and minimal degrees its
possible to estimate the eigenvalues of the
undirected Laplacian of the cortical network.
The estimation gave λ2 < 8.19 < 29.3 and 60,37
< λmax < 118 and  λ2/λmax < 0.13 < 28.64. These
estimations are  partly fitting with the results,
being valid  to the second smallest eigenvalue

Table 3.
inital extreme edge values

EB Cdabs Cdmax Cdmin Ovl
cortical 43.01 +- 0.95 0.95 -0.94 0.26
rewire 46.6 +- 10.1  0.94 +- 0.01 0.93 +- 0.01 -0.93 +- 0.01 0.36 +- 0.05
ER 10.9 +- 1.3 0.65 +- 0.07 0.61 +- 0.07 0.61 +- 0.06 0.39 +- 0.04

Table 4.
variable t values
diameter 3.3
asp (agp) 25.6
cc (clustering) 82.4
λ2 18.1
λmax 35.5
λ2/λmax 20.8
cdsum 87.4

Table 5.
variable t values

in
ita

l e
xt

re
m

e EB 19.5
Cdabs 22.9
Cdmax 25.3
Cdmin 19.6
Ovl 5.5

Figure 1. Degree distribution of the cortical 
network
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and the eigenratio, showing the difficulties of identifying the directed eigenvalues.

The highest EB was significantly smaller in the ER random than in the rewired cortical, as 
usually expected to have more homogeneously distributed edge properties in the ER graphs. The 
cortical network was fallen into the rewired regime. Similar results were found to the CD values. 
The diverse degree distribution can explain the larger EB and CD values in the cortical and rewired 
cortical networks. 

Through the 1-|CD|<Ovl relationship, the lower limit in the rewired is decreasing compared to 
ER, which was seen as the maximal Overlapping values were smaller. In the cortical network the 
maximal Overlapping was prominently smaller than for the random networks. 

As expected due to symmetry of the edge generation to the directions the CD sum of all edges 
was nearly zero for the ER network. Oppose to that the cortical networks were significantly 
asymmetrical with negative CD sum. The high negative CD sum in the cortical network could mean
higher amount of divergent connections, and/or could mean more divergent connections. During the
CD minimal and maximal target deletion [Fig. 4-5]  the edges got removed had similar magnitude 
in minimal and maximal CD values, only showed difference at the placing of the marked behaviors 
in the removing process, indicating the assumption of having the asymmetry in the higher nr. of 
divergent edges, then having similar distribution of convergent/divergent edges in number, but them
being overall more divergent. In the macaque network the CD sum was lower negative value then 
that was seen in the rewired network.

The algebraic connectivity of the ER graphs was twice than that of the rewired random graph, 
and the cortical network had the smallest value, half of the rewired. The deviation of the 
eigenvalues [Table 2] being at least one order smaller to the rewired networks with fixed degrees 
shows how the fixed degree sequence puts a large constraint on the eigenvalues, thus the 
connectedness.

The λmax associated with the ER graph was the smallest, and λmax was slightly higher in the 
cortical than in the rewired networks. The maximal eigenvalues also showed the decrease in the 
deviation in the rewired compared to the ER network.

The ratio of eigenvalues λmax/λ2 was the closest to 1 in ER, the rewired had less than that and 
the cortical got the smallest value. Thus indicating the strongest synchronizability for the ER, and 
the least synchronizability as indicated by the ratio was exhibited by the cortical network.
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The inhomogeneous structure, i.e. higher extreme edge values, the well clustered form and the small
λ2 of the macaque network indicate less well connected structure, which is easier to disconnect than 
a random network, and while it is seem to be contrary with the needs of a resilient brain network, 
the restriction of the physical embeddedness can make this property understood. Diverse CD values 
allow a more complex information processing, beneficial for the complex brain function. 

As the measure of complete synchronizability, the eigenratios indicate that the randomized 
networks, specially the ER networks is the easiest to synchronize. This confirms the inverse relation
between synchronizability and the heterogeneity of a degree distribution [21]. These 
synchronizability properties are denote complete synchronization, which is in a healthy bran is a 
pathological form and only can be seen during epilepsy [8]. Thus the brain structure rather should 
avoid this regime and should be able to maintain a less complete, more complex synchronization 
manifold with easily changing states while performing different cognitive functions.

Targeted edge removing

While for the ER networks most of the properties showed symmetrical change in minimal and 
maximal CD based removing, the networks with the cortical degree distribution was asymmetric in 

Figure 2. EB of the edge removed in the 
function of the nr. of edges removed (at EB 
target)

Figure 3. Absolute CD of the edge removed in 
the function of the nr. of edges removed (at CD 
abs target)
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the convergent and divergent edge remove.

Extreme edge values, i.e. values of the edges removed

 In the ER networks the EB and CD abs values of the removed edges are smaller than in the 
networks with cortical degree distributions [Fig. 1-2.]. Edge Betweenness values in the cortical 
network resembles to the rewired with occasional peaks of high valued edges.

CD absolute values in the ER were more homogeneous and smaller as in the rewired 
networks. CDs in the rewired were close to the maximal value 1 with small deviation [Table 3.], and
as the less edge stays in the rewired graph the CD decrease and its the deviation increase, while in 
the ER it stays consistent through the whole process [Figure 3.]. The cortical network had a very 
similar form in the CD absolute values as the rewired.

The high deviations are due to the change of the maximal CD absolute during the separation 
of the graph. The peaks in the maximal CD abs., what's present in the individual case of the cortical 
network, are corresponding to the disconnection of the network. The CD abs increase to the peak 
and falls after the separation of the network. The peaks averaged on several networks can result the 

Figure 5. CD of the edge removed in the 
function of the nr. of edges removed at minimal 
CD target

Figure 4. The CD of the edge removed in the 
function of the nr. of edges removed at minimal 
CD target
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large deviation.

The rewired network had slightly higher
means of Overlapping than the ER and showed
higher deviation, which was increasing as the
more edges got removed. The cortical
Overlapping values were prominently smaller
with peaks of high valued edges.

After removing more than half of the edges
with the highest Overlapping Set, 51.7% from
the  rewired and 53% from the ER, will result in
a drop to zero Ovl values, meaning the lack of
chordless cycles in the network after that point
[Fig. 6.]. The change in the highest overlapping
set shows very similar form in the ER graph and
in the rewired, just the ER shows higher mean at
the first steady part before the sudden decrease.
Although, the cortical network values were
smaller, almost the half of the rewired with
averaging it can fit to the rewired regime.
Though, the cortical seem to reach the
overlapping set free state sooner, after 40.6% of
the edges removed.

The absolute CD values of the edges
removed  at the maximal CD and minimal CD
target  are smaller in the ER and than in the
rewired [Fig. 4 and Fig. 5], and the cortical
network resembles the rewired. 

In the signed CD values a local minimum
and maximum can be seen in the function curve. 
Thought, the ER is symmetric in the amplitude
of the values and in the place of the local
extremes, in the rewired graphs an asymmetry in
the place of the extremes can be seen, as at
convergent (CD max) target it reaches it approx.
60 edge removing (~10% of the all edges) earlier. 

From the higher CD and EB values of the edges deleted, the cortical and its rewired networks 
are not only more heterogeneous in the node degrees, but in the convergence degree of the edges as 
well. Combined with smaller Overlapping in the cortical and in the rewired a more directed 
information processing can be assumed, than what is present in the ER networks. This is supporting 
the cortical network to be more hierarchical with the aid of the degree distribution.  

Vulnerability by the average shortest path length

To the ASP vulnerability measure EB was the mast
effective target, while to random and Overlapping based attack
showed high resilience in all 3 types of networks. Convergence
Degree based targets had similar effect to each other and was

Figure 6. Overlapping of the edge removed in 
the function of the edges removed at highest 
overlapping target

Key 1. Color code for target 
measures used and illustrated 
together in the following 
chapters
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an effective target to decrease ASP, but was not as strong as to EB.
The rewired compared to the ER network seemed to be more sensitive to the EB and CD 

based targets. Asymmetry in the ASP vulnerability was present at the rewired network and was 
more sensitive to the convergent edge target.

By analyzing the cortical network during edge remove individual characteristics can be seen, 
e.g. the ASP in the cortical network in both method used at some steps the functions changes fast 
[Fig. 7. and Fig. 8]. This can be seen as a toothed structure with method A, and staged layout with B
both caused by a connected component loosing it is connectivity at a specific edge, strong or weak. 
When this specific edge is deleted a set of nodes becomes unable to reach another, so all those path 
existing before the deletion connecting distant nodes with method A becomes excluded from the 

average, the ASP drops. Then the slow increase continues with the edge deletions until another 
specific edge is found. With B method the structure becomes staged, with the specific parts identical
to the ones in method A. It is because the paths that gets excluded from the average in case A 
increases the asp with |V| at method B, |V| is the maximal path length possible plus one. Than it is 
clear that all the simulations with method B converges to 45, and to 0 at A. With method B the 

Figure 7. Changes of the ASP (method A) in 
the function of the nr. of edges removed at 
different targets [Key. 1.]

Figure 8. Changes of the ASP (method B) in 
the function of the nr. of edges removed at 
different targets [Key. 1.]
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increase is continuous, the surface under the curve proportional to the damage, what the edge 
removal cause with the specific target.

The most effective target being the edge betweenness, is understandable, because, the higher 
the edge betweenness, the more shortest paths goes through that edge, so by deleting it more 
shortest paths have to increase. ASP resilience to random edge remove was prominent compared to 
other targets. That is not a surprise, because all other measures depends on the shortest paths. 

Similarity with the diameter

As predicted for the ER graphs ASP ~ diam can be seen on the similar figures of ASP method 
A and the diameter [Fig. 7. and Fig 9.]. This was present also at the rewired random networks. 
Interestingly, a region was present for both random networks where diam=2 with very small 
deviation was. Otherwise, similar consequences as from the analysis of the ASP can be made. 

Clustering coefficient resilience

Figure 9. The changing of the diameter in the 
function of the nr. of edges removed with 
different targets [Key 1.]

Figure 10. The changes of the Clustering 
Coefficient in the function of the nr. of edges 
removed at different attack strategies [Key 1.]
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By the Overlapping and random target was the most effective to reduce CC in the networks 
[Fig. 10.]. Removing edges with the highest CD absolute had an outstanding effect with increasing 
CC. Edge betweenness and the signed CD targets showed similar results, but removing convergent 
edges from the rewired network had stronger effect then the EB target. In the rewired network more 
increase could be seen than in ER at CD absolute target. Interestingly, on the cortical network EB 
had stronger effect than after rewiring the network.

These effects can be the result of taking out Overlapping nodes when constructing the 
convergence degree. After 1>Ovl+|CD|, removing edges with high CD will leave edges with high 
Overlapping, which is proportional to the
number of cycles containing an edge, including
triangles, which determines the CC. Then,
targeting edges based on their Overlapping
expected to be an effective strategy to decrease
the CC, but also bigger cycles can contribute to
the Overlapping Set.

In the networks with cortical degree
distributions at CD abs target the CC will
increase to higher values. By the draw of the
CD values of the removed edge [Fig. 3] it is
known that from the rewired network higher
CD absolute values were removed, which can
be in relation with the higher increase of CC in
[Fig. 10].

Figure 11. The nr. of strongly connected 
components in the function of the nr. of edges 
removed at different attack strategies [Key 1.]

Table 7. The nr. of the edge where the network 
weakly disconnects

Wconn=2 1.06<nr.of wconn comp<=2.06
cortical rewired ER

eb 107 – 429 10 – 28 440 – 461
cdabs 13 – 16 11 – 23 21 – 41
cdmax 501 – 504 485 – 535 434 – 492
cdmin 480 – 496 492 – 538 420 – 495
ovl 284 – 329 414 – 500 324 – 414
random 451 – 533 429 – 528 506 – 548

Table 6. The nr. of the edges where the network 
strongly disconnects

Sconn=2 1.06<nr.of sconn comp<=2.06
cortical rewired ER

eb 2 2 6 – 13
cdabs 2 – 11 4 – 19 15 – 39
cdmax 2 – 8 2 – 7 11 – 30
cdmin 6 – 21 10 – 21 10 – 28
ovl 19 – 70 11 – 85 18 – 92
random 200 – 390 6 – 254 339 – 448
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The increasing number of connected components

Strongly connected

At the loosing of strong connectedness, the one way separation of the graph, the network were
the most vulnerable to EB but showed high vulnerability to the signed CD based deletions as well, 
which were more efficient then the CD absolute target [Fig. 11.]. CD absolute target was in the 
middle in the strongness of the vulnerability range.

Interestingly, in the cortical network the signed CD deletions were the most vulnerable attack 
strategies to strong connectivity in the later parts of edge removes, while in the beginning it is not 
obvious, EB CD abs. Min. and max. had similar efficiency. The rewired network specially at the 
beginning of the attack process were more sensitive to EB and to CD derived quantities than the ER
network. In the ER to the CD min and max targets the effects were symmetrical and had smaller 
steepness compared to the rewired networks, where the network was more vulnerable to the CD 
maximum based deletion. For random edge removing all networks showed high resilience.

EB target reaches the maximum strongly
connected components in the ER network
slightly sooner than in the rewire.  

After removing edges with the highest
Overlapping the network separates first slow and
then very fast gets close to the maximal nr. of
strongly connected components. When the
network runs out of edges with non-empty
Overlapping Set, the strong connectivity
function converges slowly to the total separation,
showing a phase-transition like behaviour.

If the graph contains clusters of vertices
with increased amount of connections in the
clusters, and a few connections between them,
the shortest paths between the nodes in different
clusters can go only through the few inter-cluster
connection, which then will have increased edge
betweenness, and gets deleted sooner, enhancing
the clustering, then, the segregation of the
network. This can reason the highest gradient of
EB based removing on the nr. of strongly
connected components.

A network having the maximal nr. of
strongly connected components is lack of
reciprocal connections, because the two node
connected with the reciprocal connection are
strongly connected.

When maximal strong connectivity is
reached during edges removed by their signed
CD, the signed CD values of the edge removed
in the transforming network start to converge to
zero [Fig. 4. and Fig. 5. Fig. 11]. 

Figure 12. The nr. of weakly connected 
components in the function of the nr. of edges 
removed at different attack strategies [Key 1.]
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The local extremes of the CD minimal and maximal values during the edge removes [Fig. 4-5]
is at the point when the network reaches the maximal number of strongly connected components |
V|, thus all pair of nodes can be connected only in one direction. This requires the absence of 
reciprocal and recurrent connections in the network.  

At EB targeting the CC decrease with increasing gradient until the maximal EB gets close to 1
[Fig. 1.]. To this point the network also reached the maximal nr. of strongly connected components. 
Where the small CC possibly corresponds to the low proportion of (11-1) motifs. Other motifs are 
not allowed, because they have edges with EB>1 or contains reciprocal connections, which is not 
allowed, because then the nr. of strongly connected component would be <|V|.

Weakly connected

To loose the weak connectivity, so to result the network complete disconnection, absolute CD 
based removing was markedly the most effective [Fig. 12], and it had very similar results on strong 
and weak connectivity with similar gradient, which was slightly higher in the rwired than in the ER 
network. EB target did separated the rewired and cortical networks, but was not causing serious 
damage. All the other targets were separating the graph weakly at the end of the edge deletion.

In the rewired network to remove approx. 5% of the edges was enough to separate the graph to
a few weakly connected components at absolute CD and EB target, but to further separations EB 
targeting was ineffective. The ER graphs did not disconnect until ~70% of the edges got removed 
with EB target. In the macaque network after removing 13 edge (2% of all) with the highest 
absolute CD the network separated to two unconnected components, while at EB target 107 edges 
(17%) were needed to be removed [Fig. 12.]. 

Independently from the type of network after 73% of the edges removed with EB based edge 
deletion, the maximal EB will not go much above the minimal 1 [Fig. 2.]. Before this point the 
nodes are still connected because the nr. of weakly connected components are small. With removing
an edge the shortest paths that edge was part of had to go on another route and it will put a divided 
load on other edges, increasing their EB in the new structure. If the removed edge was a bottleneck 
in one direction, it will have a high EB value, and removing it will cause a drop in the maximal EB 
value. This process can be seen as the peaks in the macaque network are consistent with the strong 
(one directional) disconnecting.

EB, the signed CDs and the Overlapping first attack the strongly connectedness, while giving 
no effect on weakly connectedness. Only after getting close to the maximal nr. of strongly 
connected components will effect the weakly connectedness. Thus to total disconnect a directed 
network these measures are not efficient, while CD absolute is a good target to total disconnect the 
graph.
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Changes in the convergence degree sum during
elimination

Removing edges with the highest CD
absolute, as expected, will result the CD sum fast
convergence to zero, while with random
targeting it converges slow [Fig. 13.]. Signed CD
target increase the CD sum to the reverse sign,
which is understood, removing convergent edges
will make the network overall more divergent,
and the other way with divergent edges.
Interestingly, after reaching an extremum the CD
sum changes sign fast and reaches another local
extremum with the same sign as the target CD
sign.

For the ER network minimal and maximal
targeting had symmetrical results, while with the
cortical degree distribution the inflexion point
come earlier at convergent edge target, which
supports the surmise of the higher number of
divergent edges in the initial network. 

Interestingly, at the rewired network the EB
target got the CD sum more negative and
reached zero later at the removing process, while
in the ER no prominent results could be seen.
During Overlapping based deletion ER graphs
showed effects in the second phase towards a
positive sum, although at that time only zero
overlapping edges were removed.
The asymmetry in [Fig. 4-5] suggest the less
convergent organization of the cortical degree
distribution, and the CD sum being negative iof
the rewired network seem to verify it.

Figure 13. Changes in the CD sum of the 
edges in the function of the nr. of edges 
removed at different attack strategies [Key 1.]



39

Spectral analyses during elimination: 
CD as a sensitive measure of the robustness and dynamical properties of the cortical network  

λ2 vulnerability to the different
targets

Sensitive targets to the
algebraic connectivity were mainly 
the minimum CD, absolute CD and
edge betweenness [Fig. 14].
Random edge elimination were
somewhat featureless with
converging to zero with a
consistent small steepness.
Overlapping showed behavior close
to the random targets, but
somewhat closer to the vulnerable
targets. Eliminating edges of high
positive CD, i.e. convergent edges,
showed an interesting behavior
with either giving increasing, or no
or less effect than the random
elimination.

In the ER random network the
algebraic connectivity became 0
first with the absolute CD target,
while in the rewired cortical
random network CD absolute and
minimal along with EB showed
similar behavior in the
vulnerability [Fig. 15.].
Interestingly the macaque network
showed resilience to the EB based
target [Fig. 14].

In the cortical network at
almost all targets λ2 

real  becomes
zero less or more sooner than in its
rewired network, and knowing the
smaller initial λ2 

real  it is can be
explained. An interesting exception
is the EB target, where  λ2 

real 

decrease later (reach zero at
removing 13.6% of edges) than as
it is in the rewired networks (at
4.8%) [Fig. 15]. 

In the cortical and rewired networks Overlapping target was closer in behavior to the random 
target than in the ER networks. This suppose the higher resilience of the recurrent pathways of the 
connectedness in cortical-like networks, because its target behaves like a random removing. On the 
contrary the EB based target was more λ2

real vulnerable in the rewired networks, but not in the 

Figure 14. The algebraic connectivity in the function of the nr. 
of edges removed by different attack strategies [Key 1.]
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macaque. Initially the cortical and rewired networks had edges with higher EB values [Fig 1.], 
removing them can cause bigger damage.

Convergent, i.e. CD max,
edge target had a similar effect in
both random types, if we look at
the ER deleting after λ2

real<4 [Fig.
14.]. In the macaque an increase
can be seen in λ2

real at convergent
edge removes, which is contrary to
what's known about undirected
graphs. A consistent λ2

real=4 region
without deviation is present during
convergent edge elimination in the
rewired network, and it is also
present in the macaque network
and must be a specific value of
λ2

real, since that is the values  λ2
real 

show the “prohibited” increase.

λ2  relation to connected
components

To determine the relation of
the undirected λ2 and the
connectivity on the spectral
vulnerability graphics the number
of connected components are noted
with the beginnings and with the
ends of regions, where 1.06<nr. of
connected components<2.06 [Table
6. and Table 7.]. Cycles note if it is
weak, squares if it is a strong
disconnected components [Fig. 14
and Fig. 15]. In the case of the
macaque network the signs denote
the region where the nr. of
connected components exactly 2.

All networks were vulnerable
to the absolute CD target, its strong
and weak disconnecting regions
were somewhat overlapping,
suggesting the immediate weak
disconnecting after the strong
disconnect. This is also confirmed
with the similar steepness of the nr.
of strong/weak connected
components [Fig. 12. and Fig. 11.]. Overall at CD absolute target the connectivity correlated well 
with λ2

real reaching 0 [Fig. 15]. 
At Overlapping based and random targets the region strong disconnecting is expanded, 

Figure 15. The algebraic connectivity in the function of the nr. 
of edges removed by different attac strategies [Key 1.] at the 
first part of the removing process
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implying their random behavior on the directed disconnecting, also generally with these targets λ2
real 

reached 0 close or in the region of the weak (total) disconnecting.
Signed CD remove show similar regions for both signs to strong and weak separations, they 

separates strongly at the beginning of the attack, and disconnects fully at the end phase, but λ2
real had

very different acts depending on if convergent or divergent edges gets removed. λ2
real decrease fast if

divergent edges got removed, while the network stays weakly connected until the end of the 
deletion. Removing divergent edges at first will decrease the algebraic connectivity slowly in ER 
and converge to 4 at the cortical degree distribution [Fig. 14.]. After removing around half of the 
edges will λ2

real have a steep fall. This suggest, that  λ2
real   above the connectivity properties of the 

network might include properties
about the signal propagation, e.g.
divergence.

For all targets the regions of
strong (one-directional)
disconnectedness and the λ2=0 comes
later in ER then in the rewired
networks ( λ2=0 is with the exception
of the Overlapping and convergent
edge target). The later decrease of λ2

and the slower disconnecting can be
in relation with the higher λ2

real values.
Higher  λ2 

 suppose a better connected
structure, where more edges needs to
be removed from to disconnect the
graph. Though, this was not holding
to the weak (total) disconnecting
regions, suggesting the importance of
directed connectedness in the
magnitude of  λ2

real. 
The strongly disconnecting

regions of the cortical are fitting in its
rewired randomized regions. In the
strong disconnecting there is no sign
of the deviant EB behavior, but the
weak disconnecting region shows the
difference, it comes later than in the
rewired network with conserved
degree-distribution. This might 
suggests a degree sequence
independent resilience of the cortical
network to busy connections with
high EB.

The eigenratio

The maximal value the
eigenratio, λ2/λmax can take is 1,
means an even spectrum, indicating a Figure 16. The eigenratio (second smallest eigenvalue 

devided by the larges eigenvalue) in the function of the nr. 
of edges removed at different attack strategies [Key 1.]
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stable synchronization manifold. The eigneratio becomes zero when λ2. 
The behavior [Fig. 16.] of the ratio resembles very well to what was seen at λ2 [Fig. 14], but 

pronounced increase can be seen in the eigenratio at all types of networks during convergent edge 
remove, suggesting the role of divergent edges in the support of synchronization. The increase is 
much pronounced in the rewired networks, though it had initially lower λ2/λmax [Table 2.].

If edges removed with the maximum CD, then the proportion of edges converging signals 
decrease, information disperse routes increase. Since then an average signal can reach higher 
amount of nodes, a signal going trough an edge have higher influence on other nodes. The bigger 
influence nodes have on each other, the advanced the synchronizability is. If spreading edges gets 
deleted, the number of convergent connections increase, passing signals got sunk in these, making it
though to synchronize nodes, and explanation what can be made to the high eigenratio vulnerability 
of the divergent target [Fig. 16.].

Effects on the largest eigenvalue

The strongest effect on the means of
decreasing the largest eigenvalue was by the
CD maximum target, which was specially
pronounced by the cortical rewired network
[Fig. 17.]. Meanwhile divergent and
overlapping target had little effect on
decreasing  λmax. An interesting difference in
the behavior by the EB target could be seen
between the cortical rewired and the ER
network, the cortical rewired network seem
to show vulnerability, while in the ER
random graph EB target had little effect in
the decrease of the largest eigenvalue.

Changes in the steepness can be seen
at several target bias, like high steepness,
small steepness regions coming alternately,
e.g. in maximal CD, EB, minimal CD and
Overlapping targets, but often in a different
manner. Interestingly, random edge
elimination was similar to the absolute CD
target by lacking this change in steepness
and giving a similar rate of decresing in λmax.

Figure 17. The largest eigenvalue of the Laplacian 
in the function of the nr. of edges removed by 
different attack strategies [Key 1.]
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Conclusions

Network properties

Compared to the ER network a more clustered structure of the rewired, and cortical network 
can be derived from the higher ASP and CC values, also more  heterogeneity by the edge values, 
like EB and CDs can be stated. The smaller Overlapping values, and that the network reaching the 
overlapping-free state sooner indicates less recurrent connections in the network. Less connected 
structure is also assumed from the edge values and the algebraic connectivity. 

The cortical network showed prominent differences mostly in the smaller algebraic 
connectivity values.

Higher amount of divergent edges were also pointed out, meaning the moderate predominance
of Feed-Forward connections in the brain, as the cortical degree distribution holds the difference in 
convergent and divergent edge properties. Higher amount of divergent edges is assumed to be 
present after the negative average CD of the initial network and after the more divergent edges 
needed to remove to reach the zero average CD. The highest valued convergent and divergent edges
removed had very similar absolute value, and with knowing the heterogeneity of 
convergent/divergent edges in the cortical networks, the higher amount of divergent edges, and not 
edges with higher negative convergence degree are assumed. Divergent edges identified as the feed-
forward connections in the cortical hierarchy, thus the the increased nr. of FF connections can be 
stated.

Centralities

Edge betweenness was shown again to be a good target of vulnerability, specially in increasing
the average shortest paths and to separate the graph to strongly connected components.

Convergence Degree derived measures were specially vulnerable targets in some instances, 
where other measures, like EB, were otherwise less efficient. Absolute CD target was prominently 
effective in weakly separating a network and increasing the Clustering Coefficient.

Both CD absolute and minimum (divergent edge) targets were highly efficient to reduce the 
algebraic connectivity, while CD maximal (convergent) edge target had the special effect of 
increasing the quantity.

In the first pars of the edge deletion processes Overlapping was not a specially efficient target,
in most cases networks were resilient against it, but interestingly at later periods network 
vulnerability measures, e.g. strong connectivity showed a phase-transition-like behavior with fast, 
strong effects. Indicates, that network are resilient to remove Overlapping, recurrent, pathways, but 
removing almost all routes like that cause big harm to the network structure.

Topologies

While the directed ER graphs, with the same amount of nodes and edges, showed symmetrical
properties for both negative and positive CD based deletion, the cortical network were more 
vulnerable to convergent edge deletion. Those are mostly the feed-back connections integrating 
information from higher order areas, playing an important role in the signal processing.

Heterogeneous CD values and the smaller Overlapping in the rewired network indicated a 
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more directed information processing and a more hierarchical organization.
The rewired network was more sensitive to EB and CD based targets compared to ER, which 

might be due to the heterogeneity of these values in the network.

Some properties of the cortical network are connected to the degree distribution, like the 
higher clustering and the eigenvalues are also seemed to be constrained by the degree distribution.
The higher average shortest path and the less connected structure trough the algebraic connectivity 
of the cortical network is supposed to be derived from the spatial constrains, i.e. the spatial 
embeddedness of the network.

Robustness, synchronizability and spectral properties

The decrease of λ2
real shows correlation with the network disconnecting, but it is depending on 

the target edge property. In the randomized networks for random edge removes generally the 
network disconnected in one direction when λ2

real was small enough (~ λ2
real <2), and λ2

real became 
zero in the weakly disconnecting region.  Similar behavior was seen at Overlapping target as well, 
but with strong disconnecting sooner, i.e. at higher λ2

real values. Note that these targets don't contain 
divergence properties, so their effect on λ2

real might correlate well with connectivity features because
it fails to pronounce the effects on divergence. 

λ2
real was very vulnerable and its decrease is correlated very well to disconnecting at CD 

absolute target. With removing negative and positive high CD edges, also divergent edges got 
removed, along with injuring connectivity effectively, thus resulting the correlation to disconnecting
and fast decrease of λ2

real.
In some instances, 4 seem to be a characteristic value of λ2

real, since removing convergent 
edges from a network with initial λ2

real smaller and bigger than 4 will result the convergence of λ2
real 

to 4.  This also implies the possibility to increase the real value of the directed algebraic 
connectivity by removing edges if the graph is directed, which is not allowed in undirected graphs.
From the pronouncedly different behavior of λ2

real to convergent and divergent edge removes, the 
directed algebraic connectivity can be concluded to contain path divergence properties of the 
network, besides the properties of the connectivity.

A directed graph can have non-zero λ2
real and be disconnected bi-directionally as well, 

pronouncing the differing eigenvalue meanings from the ones derived from the undirected spectral 
analyses. 

The ER was found to be the easiest to synchronize, the most suitable to hold stable 
synchronization from the three examined networks by the eigenratios. This moreover fits to the 
needs of the cortical networks since the brain rather need to hold transient and partial 
synchronizations.
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