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Abstract

Mismatch negativity (MMN) is a component of the event-related potential (ERP)
to an odd stimulus in a sequence of stimuli. It has been found in different forms, in
different regions of the brain. The common point in all is that they include a so-called
surprise enhancement or the genuine mismatch, due to learning by error. The repetition
suppression is a reduction of neural response which is also present in the feedback.

In our work, we analysed the response of the brain areas whilst the animal had been
presented bimodal (auditory and visual) stimulus. My main objective was to create
such analysing equipment that can help our understanding about the data and to draw
preliminary biological conclusions about the main features of the results – in the aspect
of signal processing. These results should be brief, concise and straightforward while
keeping the maximum amount of information.

These methods were the following: simple point-by-point statistical testing between the
temporal signals, analysis of the activity of the previously identified neural cells, hypothe-
sis testing on the difference of the frequency spectra and measuring the spatial coherence
inside and between the primary visual and anterolateral cortices. All of them showed
the effect of fatigue and the non-novel mismatches such as visual, auditory and bimodal.
We also noticed the emergence of a possible conditional mismatch negativity, which
denotes the dependence between the sensory inputs. Stimulus specific adaptation was also
present and the effect of varied inter-stimulus interval on the neurons excitatory state, too.

These methods are ready to be tested on multiple animals and our theories will either
be confirmed or disproved. On a larger scale, these are only dependent on the animal in
terms of frequency bands, therefore are easily applicable for others also.
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1 Introduction

The perception and signal processing of the brain have been under constant research for
decades. Many aspects have been explored, yet, more are to be discovered. Analyses of
the neural responses under outer stimulation helped us to get a deeper knowledge about
signal processing but only few of them consisted the connection of multiple sensory inputs.

The novelty our experiment carries within itself is the effect of bimodal stimulation of the
brain. Mice were presented an auditory and visual stimuli at the same time under different
paradigms. Paradigms consisted of full mismatch detection task (traditional oddball
sequences), equiprobable series and an only standard session, where the inter-stimulus
interval (ISI) was 12 seconds instead of 1.5.

This thesis concentrates on the evaluation and analysing process in signal processing
terms. Many more tools and sets of parameters could have been useful, too, but these
were the one which found the same effects for this particular animal. To draw biological
conclusions it will be inevitable to run these methods on multiple animals to overcome
problems which we will discuss later.

1.1 Goals

Primary objectives for this project were generating a scheme that helps us gather an
overall picture of the mismatch types (auditory, visual and bimodal), the methodical
differences (traditional, genuine mismatch and the role of ISI) and the cortices of
the brain. We had to create a framework that is applicable for more animals, yet,
capable to create a ground truth at the same time. The main challenge therefore
yields itself; create brief explanatory results that provides us the most available in-
formation. To achieve this, one shall utilise multiple tools in order not to lose any message.

Throughout the document I will elaborate on simple temporal significance detection via
hypothesis testing and firing rates of individual (previously identified) neuronal cells.
Later, with the Fourier transform of the signals, hypothesis testing is going to done once
more on the raw absolute value of the frequency spectra of channels, and finally, coherence
inside and in between the brain regions are going to be calculated to reveal those effects
which either affect both of the cortices or all of the brain.

1.2 From brain to neuron

The human brain is one of the most amazing organs the nature has developed with its
complexity and adaptability. Made up of about 86 billion neurons and the same amount
of other non-neuronal cells [1] it is believed to consume one-fifth of the body’s total
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Figure 1. Anatomy of the human brain. On the left hand side the structure of the
brain is visible, and on the right hand side the functional connectivity. Source: Matthew
Hoffman, MD © 2014 WebMD, LLC

energy needs whilst awake [2]. Due its complexity, very little information is known about
how it processes the input. However, animal experiments seem to resolve this mysterious
organ using the similarities between a human’s and other animals’ brain. Since we gather
information from the outer world in multiple channels, we need to dig deeper in the
connection between the inputs. We are familiar with various aspects of information
processing (e.g., hierarchical, predictive, etc.) but not so much with the multimodal
integration of them.

The brain is part of the central nervous system and consists of the cerebrum (including
the cerebral cortex and the basal ganglia), the brainstem and the cerebellum. There
are four lobes within the cerebrum (frontal, temporal, parietal and occipital) in which
areas are defined as they are associated with specific functions, such as the sensory,
motor and association regions (fig. 1.). Even though the two hemispheres of the brain are
more-or-less similar in structure and function, there are functions which are associated
with only one side, e.g., language in the left and visual-spatial ability in the right.
Underneath the cerebral cortex there are numerous systems such as the thalamus, the
hypothalamus or the amygdala.

The basic computational unit of the brain is the neuron. These nerve cells have the
capability of being electrically excitable [3] and communicating with each other via
specialised connections called synapses. A typical neuron consists of three parts which are
the soma (cell body), dendrites and one axon. The soma is the core element creating a
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(a) An approximate plot of a typical ac-
tion potential with its 6 phases The elec-
trical membrane potential is seen in the as-
pect of time which takes about 3-5 millisec-
onds. Source: [4].

(b) Illustration of a neuron. Credit: David
Baillot / UC San Diego

Figure 2. Figures about a neuron.

bridge between its filaments, the axon and the dendrites. The soma is the key element by
thresholding the inputs and calculating its outputs. Dendrites typically branch towards
other cells and extend a few hundred micrometers from the soma. The axon is the output
compartment carrying the stimulus and can reach up to centimetres. We can divide the
neurons based on their activity into two groups: excitatory and inhibitory. Excitatory
cells can be principal cells whose axons leave their original area and connect to others
(pyramidal cells of the 5th layer). Inhibitor neurons are interneurons and typically do not
leave their neighbourhoods. However, there are exceptions; the Purkinje cells do leave the
cerebellum and spiny stellate cells stay in the sensory cortex. The main neurotransmitters
are the glutamate for excitatory and GABA for inhibitory cells.

Signalling process is elicited by a change in the electro-chemical potentials. Neurons are
electrically excitable, due to maintenance of voltage gradients across their membranes.
Chemical processes are mediated through ion-channels, mainly potassium, sodium and
chlorine channels. A quick and sufficiently powerful change in the potential causes the
neuron to generate an all-or-nothing electrochemical pulse termed action potential (fig.
2a.). Once it reaches a synapse through the axon, the signal is then passed on to the
dendrite of an other cell. Action potentials in neurons are also known as nerve impulses or
spikes, and the temporal sequence of action potentials generated by a neuron is called its
spike train. A neuron that emits an action potential, or nerve impulse, is often said to fire.

Multiple neurons communicating with each other forms a neural circuit. Due to the
additivity of electrical charge, these circuits can form a longer temporal signal. Depending
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on the number of neurons and the outer circumstances, these signals can last up to
seconds. The change in the local field potential (LFP) is an overall summary of the
neurons (or neuron populations). Most basic characteristics of a neuron include for
example summing the input voltages from its inputs then firing depending on the result
of that. These tend to be in the range of millivolts.

1.3 Monitoring brain activity

With the help of electroencephalographic (EEG) devices the electric potential of the
brain can be measured directly. Non-invasive EEG-s measure the potential on the scalp
while the invasive ones’ sensors are placed onto the cortex (electrocorticographs). To
measure the LFP intracranial electrodes are often put inside the brain, which are most of
the times spikes or shanks having an efficient setup to measure layer-specific phenomena.
EEG is mainly used for medical purposes, however, lately it has become a tool for
commercial purposes (apart from the scientific); e.g., what are the brain’s responses to
different advertisements or for gaming and military uses. Observing brain activity via
electric potential gives us the opportunity to look deep into its functional behaviour. In
the field of medical use, among many others, EEG can be a beneficial to detect sleeping
disorders as well as the depth of anaesthesia during a surgery but is mainly utilised when
an epileptic patient needs a surgery and drugs no longer work. Often one can create the
so-called evoked potential which are time-locked to an outer stimulus; these stimuli can
be visual, tactile or auditory. Event-related potentials are different from the evoked ones
in such a way that there is a cognitive or motor process that is being measured. ERPs
are caused directly by an outer stimulus while the evoked potentials are supposed to
have the source inside the brain. These ERPs can influence the brain waves.

An event-related potential (ERP) is the measured brain response that is the direct re-
sult of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped
electrophysiological response to a stimulus. The study of the brain in this way provides
a noninvasive means of evaluating brain functioning. Currently, ERP is one of the most
widely used methods in cognitive neuroscience research to study the physiological corre-
lates of sensory, perceptual and cognitive activity associated with processing information.
The EEG reflects thousands of simultaneously ongoing brain processes. This means that
the brain response to a single stimulus or event of interest is not usually visible in the
EEG recording of a single trial. We can can always see the brain’s response but not the
stimulus-specific part. To see the latter, too, the experimenter must conduct many trials
and average the results together, causing random brain activity to be averaged out and
the relevant waveform to remain, called the ERP. In equation 1. the averaged signal (x̄ (t))
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is the mean of N number of responses in every data point x (t, k) and can be decomposed
into the real underlying pure signal s (t) and a sequence of uncorrelated noise n (t, k) [5].

x̄ (t) = 1
N

N∑
k=1

x (t, k) = s (t) + 1
N

N∑
k=1

n (t, k) . (1)

ERP waveforms consist of a series of positive and negative voltage deflections, which are
related to a set of underlying components. Though some ERP components are referred
to with acronyms (e.g., contingent negative variation – CNV, error-related negativity
– ERN), most components are referred to by a letter (N/P) indicating polarity (nega-
tive/positive), followed by a number indicating either the latency in milliseconds or the
component’s ordinal position in the waveform. For instance, a negative-going peak that is
the first substantial valley in the waveform and often occurs about 200 milliseconds after
a stimulus is presented is often called the N200 (indicating its latency is 200 ms after the
stimulus and that it is negative) or N2 (indicating that it is the first peak and is negative).
N200 is primarily distributed over anterior brain regions, posterior distributions have been
reported in visual attention paradigms, such as visual search [7]. It is often followed by a
positive peak, usually called the P300 or P3, which is thought to reflect processes involved
in stimulus evaluation or categorisation [8]. For example, on fig. 3. one can see the ERP
of a mouse recorded in the primary visual cortex. However, this recording was not done
with EEG, but with planted electrodes and the polarity of the signal is diverse trough the
literature. The stated latencies for ERP components are often quite variable, particularly
so for the later components that are related to the cognitive processing of the stimulus.
However, peaks of the ERP can vary depending on animal, stimulus type and location site.

It is interesting that how many functional disorders can be noticed via ERP-s. ERP com-
ponent abnormalities in clinical research have been shown in neurological conditions such
as: ADHD, Parkinson’s disease, multiple sclerosis, schizophrenia or obsessive-compulsive
disorder. Therefore the differences from a well known signal can be the indicator of ab-
normalities. But many times the discrepancy is not an indicator of a medical condition
but rather a somewhat surprise. The detection of violations to regularities in the sound
stream may be critical for survival also. This brings us to our next point, the mismatch
negativity.

1.4 Mismatch negativity

Mismatch negativity (MMN) is a negative component of the event-related response in an
EEG signal, elicited by any perceptible and infrequent change in some repetitive aspect
of an auditory (e.g., stimulus pitch, stimulus duration) or a visual stimulation [9]. It
is the brain’s response to the violations of a rule, established by a sequence of sensory
stimuli [10]. Sometimes the entire sequence is called an oddball sequence which includes
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Figure 3. ERPs of a standard and an auditory deviant signal. Data are from our
experiment for bimodal stimulation and the standard error of means are shown in the
shaded areas. Channel is from the primary visual cortex (V1) and labelling of the peaks
is based on [6].

the standard signals (s) that are being repeated continuously and a deviant one (d). The
MMN is the difference between the standard and deviant signal.

The MMN can be elicited regardless of whether the subject is paying attention to the
sequence. This reflects the brain’s ability to perform automatic comparisons between
consecutive stimuli and provides an electrophysiological index of sensory learning and
perceptual accuracy. During auditory stimulation, a person can be reading or watching
a silent subtitled movie, yet still show a clear MMN [11]. Even though MMN have
been studied mainly in the auditory cortex, some studies show evidence of visual MMN
(vMMN) [12, 13, 14]. A potential analogue to the MMN has also been reported in the
somatosensory system which seems to be generated in fine discrimination tasks [15].
The MMN is associated with a cortical operation of comparing the sensory input with
the memory trace. Given its automatic nature, the MMN might be associated with
pre-attentive cognitive operations in audition and, for this reason it has been suggested
that it reflects ’primitive intelligence’ in the auditory cortex [16].

It is worth mentioning in a paragraph how widespread the use of MMN is. The most
consistent observation including event-related potentials (ERPs) is about the reduction
of amplitude of the MMN in schizophrenic patients compared with healthy control
subjects. Another important application is in the field of dyslexia: dyslexic patients show
diminished MMN, albeit only for frequency deviants and not for duration signalling an
auditory frequency discrimination impairment [17]. Another example is shown on fig
4. The amyotrophic lateral sclerosis patients’ MMN signals significantly differ in later
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Figure 4. Presence of robust mismatch negativity. Responses were recorded in both
ALS-patient and control groups. The auditory event-related potentials (ERPs), as well as
their difference are shown. The shades indicate the standard error of the mean. Source:
[18].

temporal regions [18].

1.5 General characteristics of the MMN

MMN is thought to peak at about 150-250 ms after change onset, which depends on the
experimental paradigm. Difference in paradigms mean either a change in inter-stimulus
interval (ISI), intensity, duration, frequency, location or lack of the stimulus. These type
of changes themselves could be able to create whole new chapters for the study of MMN
[24]. Multiple paradigms help researches in the clinical fields break down the original
MMN into its main components. It is generally believed that any violation of the acoustic
regularity pattern can induce MMN [16]. Furthermore, MMN has also been detected
with spectrally rich stimuli, indicating attentive pitch discrimination in comparison to
pure sinusoidal tones [25].

Memory traces could be an indicative of the processing of multiple standard stimuli and
if the deviant comes while this trace is active then the automatic change detector is
alarmed giving rise to a mismatch. The length of this period – also called echoic memory
– has been reported to last at least 10 s in normal subjects [26].

MMN can be measured even the state of coma it is a predictor for the recovery of
consciousness [27]. MMN is clearly shown without any task requirements or when the
task is not even related to the stimulus. This potential makes it particularly suitable
for testing different clinical populations [28]. On the other hand, to avoid overlap with
other ERP components (other dedicated peaks and valleys such as the error-related
negativity (ERN) or contingent negative variaton (CNV)), during visual MMN tasks the
best condition to observe the phenomenon is when subject attention is directed away
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from the stimulus [29]. During MMN there is and involuntary attention switching in
particular, over the source in the frontal lobe [30].

1.5.1 MMN underlying mechanisms

Even though myriad of research have been investigating the emergence of mismatch neg-
ativity, relatively few tried to explain the underlying mechanisms that formulate those
particular patterns. In this section I am going to describe the two major hypotheses
that emerged: the model adjustment and the adaptation hypothesis, and later introduce
a unifying framework described by Garrido et al., the predictive coding [23].

Model adjustment The model adjustment states that the MMN is an index of au-
tomatic change detection governed by a pre-attentive sensory memory mechanism i.e.
marker for error detection [32]. It is the result from the difference between current and
preceding input suggesting that a memory trace still remains from the previous stimuli
[10]. MMN could reflect on-line modifications and be a signal for when the brain updates
its model upon discrepancy between the input and prediction. In that sense, MMN is
the result of the comparison [33, 34, 35]. An explanation was given by Giard et al. in
1990 including two factors that build up MMN; a sensory memory mechanism (related to
temporal processes) and an automatic attention switching related to frontal generators
[22]. The latter was also tested by Alain et al. by noticing a diminished temporal MMN
amplitudes on subjects with prefrontal lesions [36]. Furthermore, there is a strong and re-
ciprocal connectivity anatomically between auditory and prefrontal areas [37]. Numerous
studies have found evidence for multiple generators of the MMN in the primary auditory
cortex. Rinne et al. also showed that generators in the prefrontal cortex activate later
than those in the auditory [20]. In this sense, MMN reflects a greater prediction error
or mismatch between top-down predictions and current inputs. Obviously, an implicit in-
crease in prediction error calls for an adjustment on the brain’s internal model or memory
of the stimuli. However, model adjustment itself lacks the explanation of the decreasing
activity under standard sessions, it concentrates only on the deviance detection.

Adaptation hypothesis Jääskeläinen et al. (2004) challenged the previous hypothesis,
suggesting that MMN was generated by a much simpler mechanism, neuronal adaptation
in the auditory cortex of the brain, which would cause attenuation and delay of the N1
response [38]. The repetition of the same stimuli would cause a short-lived adaptation to
non-novel sounds. The neuronal adaptation (spike-frequency adaptation) results from the
activation of calcium-dependent potassium channels that lead to slow hyperpolarization,
decreasing neuronal excitability and firing rate. Thus, adaptation is a local phenomenon
that is independent of pre-synaptic mechanisms and rests on changes in post-synaptic
responsiveness. This leads to a misidentification of the N1 wave. However, there are some
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counter-examples also which cannot be explained by the adaptation hypothesis.

First, Winkler et al. (1997) states that it predicts the MMN duration and latency should
match those of the N1, which has been shown not to be the case [39]. Secondly, MMN can
also be elicited in the absence of N1 – either the subject is asleep or the stimulus is omitted
[40]. Furthermore, infrequent decrements in tone intensity also evoke an MMN [41]. MMNs
of this sort cannot be explained by local adaptation only suggesting that there is more
complex neuronal mechanism involving more neuronal populations. Lastly, the temporal
source underlying the MMN is located more anterior than the source underlying the N1
[42] meaning that they employ different neuronal populations [43].

Predictive coding Predictive coding (or, more generally, hierarchical inference in
the brain) states that perception arises from integrating sensory information from
the environment and our predictions based on a model of what caused that sensory
information. The interaction between different cortical layers minimises the prediction
error so that it can estimate the most likely cause of the input [44, 45]. Model adjustment
fits in this concept as a marker for error detection, and MMN would be caused by the
discrepancy between the auditory input and a memory trace embodied in top-down
predictions. The prediction error then would be used to modify the model [33, 34]. Similar
happens for predictive coding; the current inputs are predicted from previous inputs. The
main difference is that during the repetition of subsequent events this prediction error is
suppressed and thus the MMN disappears [45, 46]. In predictive coding each hierarchical
layer compares the top-down prediction from the higher level with the actual sensory
input from the bottom-up information. Higher areas make the abstract picture of the
world whilst lower ones process the current input [47, 48]. Using backward connection
higher levels try fit their predictions and lower ones attempt to reconcile the predictions
from higher ares with the actual input via forward connections, a prediction error signal,
i.e. information not predicted by higher areas [49].

With Bayesian statistics taken into picture, we have top-down prior p (θ) (θ beign the inner
parameters of the model) and a likelihood p (y |θ ) (y being the input) based on maximising
the posterior or conditional density p (θ |y ). This provides a message-passing between
levels where higher levels send top-down predictions and lower levels return bottom-up
prediction error. When this converges, a multilevel representation is born, where there is
a compliance on all hierarchical levels between the input and the prediction. Therefore,
neuronal activity tries to suppress prediction error to represent the states of the world;
this is perceptual inference [23]. Since hierarchical inference (e.g. predictive coding) rest
on the relative influence of the top-down prediction and bottom-up prediction error, when
a standard stimulus can be predicted more precisely by top-down afferents, less weight is
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assigned to bottom-up information flow, thus post-synaptic responsiveness weakens. This
is what adaptation hypothesis states, too.

1.6 Stimulus-specific adaptation and deviance detection

In accordance with the adaptation hypothesis, the act of habituation is present during the
standards therefore resulting in a decreased neural activity to the same stimulus. Taaseh
et al. showed the stimulus-specific adaptation in rat auditory cortex [50]. Stimulus-specific
adaptation (SSA) (or repetition suppression – RS) is the specific decrease in the response
to a frequent stimulus, which is not similar (or partially similar) to another rare stimulus
(deviant).

SSA shares many properties with (but is probably not identical to) MMN. The first
emphasises the adaptation of responses to the standard tone, whilst the latter concen-
trates on the responses to the deviant tone. A substantial effort has been to demonstrate
that MMN is not (or not only) due to the rarity of the deviant, but is at least partially
due to the violation of the regularity of the tone sequence caused by the presentation
of the deviant [51, 52, 53]. Having a sound sequence in which many silent trials are
shown and then a deviant comes with the same probability as in the traditional oddball
paradigm is called a ’deviant-alone’ control [51]. In these sequences there is presumably
no regularity to break, and therefore the response should only reflect the rarity – in
contrast with traditional oddball where the deviance is detected also. Though, due to
the rarity also, the responses will be large because the auditory system is stimulated
at a much lower rate. This problem is alleviated, but not fully solved by the ’deviant
among many standards’ control where the rate of the deviant is the same, but there are
no special standards – the standard is replaced by many other stimuli [52, 53].

Furthermore, though SSA is believed to lie upstream of MMN, it has been shown that
SSA does not depend on NMDA recepetors, while MMN does. Thus, an emphasis should
be put on the distinction between mismatch negativity and stimulus-specific adaptation
in auditory cortex [54]. As a contrast to the previous, a study has shown that oddball
sequences might engage true deviance-detection mechanisms, rather than only adaptation
in narrow frequency channels, already at the level of auditory cortex [50]. There have
been studies which also examine the role of SSA and deviance detection in MMN in other
animals. For example, results based on macaques indicate stimulus-specific adaptation
rather than deviance detection, and that the neural mechanisms reside in cortical areas
outside of A1 [55].

Numerous studies on human ERPs using both types of control sequences have suggested
that MMN is indeed and index of true deviance detection. Deviance detection has been
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related to the occurrence of the MMN, evoked 100 to 250 ms after the occurrence of
the deviant [56]. Taaseh et al. also have shown that the probability of a tone is the key
factor to the strength of the response: deviant-alone, deviant and diverse conditions
induced larger amplitude responses whilst high probability conditions (standard and
equal probability) gave rise to smaller responses (hence the other name, repetition
suppression and surprise enhancement) [50].

To distinguish the SSA from the real deviance detection mechanism, another method,
the so-called "equiprobable" series was introduced, in which the deviant had the same
probability as before, but now no standard is specified, i.e. the deviant is in a mixture of
stimuli [52, 53, 57]. Whilst originally the MMN was defined as the difference between the
deviant and the standard, the discrepancy between the deviant and the equiprobable se-
ries reveals a "genuine", surprise-related (visual) mismatch [58, 59]. The stimulus-specific
adaptation is quantifiable through the comparison of standard and equiprobable series.
A quick summary on the comparisons can be seen on fig 5. Though, there have been
studies that still suggest the contribution of RS to MMN as well, [57, 60, 61] and other
studies on non-human primates failed to show a surprise-related response to the violation
of regularities [54, 55, 62]. Amado and Kovács have shown that the neural mechanisms
behind visual MMN (on humans) are category dependent. The repetition suppression
and surprise enhancement are responsible for different object categories; RS was the
main component for faces and chairs whilst the other for the real and false characters [63].
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Figure 5. Comparison graph. The possible comparisons between the mentioned se-
quences and the connotation of their connecting edges. Here only those methods are
present, which have been mentioned so far.

2 Experiment

The novelty our experiment carried in itself is that many of these phenomena had not
been tested for multimodal stimulation. The experiment was done in Amsterdam at the
Swammerdam Institute for Life Sciences, University of Amsterdam by Umberto Olcese
and his team. There are still ongoing experiments by the time of writing this thesis which
allows us to ask for modification on the experiment set based on our calculation results.
Methods discussed in the following sections were guided by the preliminary results based
on the data recorded from the V1 (primary visual) and the AL (anterolateral) cortices of
one anaesthetised mouse.

Multimodal stimulus consists of a visual and an auditory stimulus presented at the same
time for the same length – in our oddball paradigm. For the sake of simplicity, only
two types of stimuli was shown for both of the senses. For the visual stimulus it was a
sinusoidal drifting grating with 0.05 cycles/degrees (50 % contrast) either horizontally
or vertically and static grating during inter-stimulus interval. On the auditory side,
band-limited white noise was presented at about ∼ 75 dB volume with either 8-12 kHz
(low pitch) or 12-16 kHz (high pitch) frequency bands. Combining these stimuli together
results in 4 different stimuli naming them A-D – see fig. 6. For the transparency, colour
codes have also been associated with each. With this in hands we can not only evoke
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Figure 6. Experimental background. a) Overview of the four different types
of multimodal stimuli. Visual stimulus means the direction of the grating whilst the
auditory stimulus’ pictograph refers to the frequency band (high pitch or low pitch). b)
Graph of mismatch types. The mismatch types between the stimuli marked in the
following way; dashed: auditory, dotted: visual, dashed and dotted: both (bimodal). c)
The placement of the electrodes on one device. There is a reference site on the
second shank. Please note that the numbering of the sensors is partially inconsistent,
though, it was corrected in the later works.

separate visual and auditory mismatch negativity (vMMN and aMMN, respectively) but
we are also able to make it conditional based on the other senses’ inputs and, of course,
the bimodal type.

During this particular recording 2 Neuronexus probes were placed in the V1 and AL
area of the mouse with 32 sensors on each (32kHz sampling frequency). These were
grouped onto 4 shanks with 8 recording sites having 100 µm between sites and 400µm
between shanks – see fig. 6/c). Three sessions have been done: the full MMN task, a
deviant only control (where there were no standards, each stimulus was chosen with
the same same probability), and a many standard control (where the same stimuli was
shown consecutively but with 12 seconds of inter-stimulus interval – thereby the notation
modified inter-stimulus interval (M-ISI)). The intuition for the latter was to somehow
remove the memory trace part also. For further examination, one can extract only the
first and last of each standard chunk – a standard chunk is the ensemble of few standard
consecutive stimuli. By comparing the M-ISI to the deviant, it reveals the contribution
of memory trace, and, by studying the relation between that and the standard one
can study the role of the length of the inter-stimulus interval. However, the analogue
for the equiprobable–M-ISI relation still remains unclear. An overview of the possible
comparisons are on fig. 7. All the nodes (including the small ones in the standard) are
capable of being in connection with any other, though, the figure only shows the relevant
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ones, and since the first and last of every standard chunk are obviously the scions, they
are not considered to be the main parts due to their limited numbers, i.e., to reveal the
hidden connection between the beginning and the end of a standard and a deviant other,
more sophisticated, more refined methods would be necessary.

All the data acquisition was carried out in MATLAB and was saved as .csc files. Due
to the lack of resources, our team decided to handle and process the data in Python3,
therefore resulting in a large number of pieces of codes to help converting those .csc raw
data into normal, Python3-edible files. Furthermore, the executive team immediately
performed a spike detection based on typical spike waveforms. The resulting data are
the spiking times for identified individual cells, with what we can perform cellular-level
comparisons also. The recordings are from mice and very few of them have been
under examination more than once, with various anaesthetic levels. Furthermore, the
recording areas also vary between different auditory, visual and anterolateral cortices
and the number recording sites and sessions. What is common in all are the stimulus types.

For an example, the similar type of aMMN could be elicited by presenting Stim A as
standard and Stim B as deviant or Stim C as standard with Stim D being deviant,
but a conditional aMMN would only result from just narrowing these options onto one
pairing (fig. 6/c.). Moreover, coupling the mismatches together would produce a bimodal
mismatch negativity (bMMN), i.e., both the visual and the auditory stimulus differ for
Stim A and Stim D.

The 3 sessions mentioned above took about one and a half an hour to conduct. Fig. 8./a)
shows the length of each chunk in every standard session. The dots mean the length of the
previous segment’s length (in number of stimulus) and tell us that there was a minimum of
7 stimulus until no deviant could have come, resulting in a (7× 2 =) 14 seconds temporal
distance between deviants. There are numerous 8 and 9 stim length chunks with a few
of longer ones. The legends mean the total number of stimuli in each sequence and the
x axis tells us the overall timeline in terms of timestamps. The vertical lines mark the
type of each deviant stimulus. On the b) subfigure, the equiprobable and the modified
inter-stimulus interval’s temporal data acquisition is seen. What is important to note here
is the difference between the timescales. Even though, the number of stimuli for each kind
is equal between the upper and lower graphs, we took the octuple of the regular, 1.5 sec
inter-stimulus interval which resulted in a ∼ 16 minutes of total recording time as opposed
to only ∼ 2 for the equiprobable session. Furthermore, as the figure shows, the maximum
number of consequent same stimuli is 2 during the equiprobable session, but for the M-ISI
the stimuli were separated and shown after each.
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Figure 7. Summary of the comparisons between the different sequences. There
is no adequate physiological explanation for the relation between the equiprobable and
modified inter-stimulus interval (M-ISI) sequences, hence, it is not indicated on the pic-
ture. Since the first and last series can be derived from the traditional standards, they do
not form separate sequences by themselves and finding relations between those and others
are only secondary, their primary reasons are discussed in section 2. Different mismatch
types are marked with varied lines also.

Figure 8. Session progression. a) Full mismatch task. The subraphs show the length
of the previous chunk measured in number of stimuli with dotted lines and the type of
deviant stimulus with vertical lines for each standard sub-session. Legends show the total
number of stimulus presentations whilst the x axis is intended to reveal the temporal
evolution. b) Equiprobable and M-ISI sessions. Equiprobable and M-ISI sessions’
temporal evolution with the presence of every stimulus (shown with vertical lines) are
shown. It is important to note here the difference between timescales and the equality of
total number of stimuli shown.
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3 Data processing and evaluation methods

There are multiple ways to analyse the given dataset trying to maximise the obtainable
information. First, a simple temporal, point-by-point testing is sufficient to reveal the
most conspicuous signs of difference. Later, in Fourier space, we can begin to develop
the methods by starting from cellular levels, then looking at cortical areas, and finally
a channel-wise picture to find whether our conjectures were true or not. In this section,
I am going to explain these methods including their relevance and how they guided us
towards other measures.

3.1 Temporal evaluation

Beginning with the traditional point-by-point evaluation with hypothesis testing was the
first milestone of our research. It is widely used and has a common ground in either
confirming or confuting our ideas. The temporal evaluation consisted of carrying out a
t-test hypothesis testing on all possible time-point during the stimulation – however,
the first and last 10 milliseconds have been chopped off from the window due to on-off
switching effects leaving us with a 480 milliseconds (15360 data-point) long series. Our
null hypothesis was that the two ensembles are significantly different, therefore are from
different distributions. It was a one-way testing, so only the discrepancy can be seen,
but it is easier to quantify. This evaluation was executed on all possible channels (64),
all methods (e.g. standard-deviant) and all mismatch types (auditory, visual, bimodal or
none).

3.2 Spiking histograms

Thanks to the work of the Umberto Olcese and his team, we have the opportunity to take
a look at the spiking times for all the identified neurons. The reason behind this method
was to gather a phenomenological map about the distribution of cells and therefore
identifying sources of signals. No statistical hypothesis-testing and no comparison have
been done.

The presence of stimulus-specialised neurons have been mentioned in many articles (most
interesting one is the so-called Skywalker neuron) [64]. This suggests that identified neu-
rons may show specialisation signs for our stimuli. Just by looking at the frequency his-
tograms, we try to find out whether these neurons were nearby to any sensors or not.
Furthermore, the overall activity of the cells and their placements may give further in-
formation about the sources of signals. However, these are not the only cells that were
present, just the identifiable ones, thus, other origins may form the overall activity oth-
erwise.
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Figure 9. Fourier transform. Two sinusoidal waves added together in time space, are
perfectle separated as two spikes in frequency space. The conversion between them is done
with Fourier transform (FT). Figure source: aavos.eu.

3.3 Frequency map

3.3.1 Frequency conversion

Next step was to combine the information of the channels and the ability to analyse the
frequencies together in order to get an overall view of the activity of all the channels. In
the previous section we counted the number of the spikes and divided by the total length of
stimulus to get a nominal, firing frequency for a given cell. However, the channels measure
not only the spikes but the overall activity of multiple circuits resulting in an extensive
Fourier spectra. Frequency components of a given temporal signal can be obtained by the
following expression (Fourier transform of a time series(F (x (t)))):

X (ω) = F (x (t)) =
∫ +∞

−∞
x (t) e−iωtdt. (2)

Equation 2. shows how to generate the Fourier components at a given frequency (X (ω)).
Absolute magnitude of these complex numbers tells about the amount of that frequency
present in the original function. Phase however, represents the offset of the basic sinusoid in
that frequency. Since real life recordings are not continuous, to calculate these components,
we used the discrete Fourier transform (DFT):

X [k] = 1
N

N−1∑
n=0

x [n] e−i2π n
N
k, (3)

where X [k] is the discrete Fourier component in the kth bin, x [n] is the nth element of
the original discrete time series which has a length of N . In order to determine what the
kth bin means, let us turn to the Nyquist–Shannon sampling theorem:
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fN = fs

2 = 1
2∆t , (4)

which generates a sufficient condition for a sample rate (fs) that permits a discrete
sequence of samples to capture all the information from a continuous-time signal of finite
bandwidth. In eq. 4. fN denotes the upper limit for freqeuncy, and δt means the time
between the samplings.

The result of an N -point DFT is an N element complex vector and for strictly real data,
only the first 1 + N/2 bins matter, as the others are a redundant complex conjugate
image. Dividing Fs/2 by N/2, and you get ∆f = Fs/N as the frequency spacing of
1 +N/2 equally spaced DFT results, including both end points, DC and Fs/2.

3.3.2 Creating map

By having Fourier spectra for all stimuli and types, one can create an average of them. In
this section, we omit the phases and keep only the absolute magnitude for each one, thus
we can create an ensemble for each type and method. These ensembles create a great
base for statistical comparisons: in each frequency bin, one can compare the distribution
weights and using the tools hypothesis testing decide whether a significant difference is
present or not. One-way Student’s t-test have been used during the whole procedure with
respect to the Bonferroni-correction. The same methodological comparisons have been
done here, which are listed in fig. 7.

Furthermore, we created a guidance for frequencies which serves as a level of trustworthi-
ness. During DFT the signal is supposed to be periodic and to reduce the edge-effects a
window is used on them. If only one cycle is present in the signal, then it will be more
affected by the window as it would have three, i.e, whilst having 3 cycles, the middle
one is less deteriorated in contrast to only one cycle. To reduce this effect a longer epoch
time would be necessary, but since our stimuli had a fixed length of 500 ms and we crop
10 milliseconds after and before the ends our best choice is to create a marker around a
critical frequency under which less then 5 cycles were possible. This fcrit critical frequency
is around 10.5 Hz (5×∆f = 10.42Hz)

3.4 Coherence of cortical areas in frequency bands

Based on the results of the frequency map, we decided to calculate the coherence within
frequency bands. Coherence as a measure of similarity between two signals in frequency
domain. In this subsection, I am going to elaborate on cross-correlation, power spectral
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density, coherence. Later, the formulation of measures is going to be discussed.

Neuronal oscillations and their inter-regional synchronisation is believed to be one of the
mechanisms that enables interaction between various brain regions. To identify which re-
gions are interacting or independent at any period of time and to analyse the connectivity
we measured the coherence of the signals. Quantifying synchrony using EEG data has
become a popular approach to study functional brain connectivity and like many other
methods, coherence only tells us whether two regions are linked or not. Therefore, this
measure is symmetric.
With x (t) (x [n]) and y (t) (x [n]) being temporal (discrete) signals, the (discrete) cross-
correlation function Rxy (t) is defined by

Rxy (t) =
∫ ∞
−∞

x (τ)∗ · y (t+ τ) dτ, (5)

(
Rxy [n] =

∞∑
m=−∞

x [m]∗ · y [m+ n]
)
, (6)

where x (τ)∗ denotes the complex conjugation. Cross-correlation is a measure of similarity
of two series as a function of the displacement of one relative to the other. If one computes
the cross-correlation with the same signals, they get the auto-correlation function Rxx (t).
Autocorrelation, is the correlation of a signal with a delayed copy of itself as a function
of delay.

Using the Fourier transformation on the cross-correlation function gives us the cross power
spectral density Sxy (ω) defined as

Sxy (ω) =
∫ ∞
−∞

Rxy (t) e−iωtdt =
∫ ∞
−∞

[∫ ∞
−∞

x (τ)∗ · y (t+ τ) dτ
]
e−iωtdt. (7)

The same applies for the discrete cross power spectral density

Sxy [k] =
N−1∑
n=0

Rxy [n] e−i2π n
N
k = Rxy [n] =

N−1∑
n=0

[ ∞∑
m=−∞

x [m]∗ · y [m+ n]
]
e−i2π

n
N
k. (8)

By Fourier transforming the autocorrelation function we get the power spectral density
Sxx (ω) and its discrete counterpart Sxx [k].

The squared coherence γ2
xy (ω) is defined in the following way [65]:

γ2
xy (ω) = |Sxy (ω)|2

Sxx (ω)Syy (ω) . (9)
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For discrete signals we will use the following definition for coherence on multiple signals
[66]:

Cxy [k] = |〈Sxy [k]〉|√
〈Sxx [k]〉 〈Syy [k]〉

, (10)

where Cxy [k] is the coherence in the kth frequency bin, and averaging is done through
the trials (∼ 20 for a given deviant). (Note that now we used the square root of the
upper previous definition for continuous signals. In essence these are similar.) Due to this
limitation, x and y can only be signals from the same sequence but can vary in channels.
Since we had plenty of frequency bins and channels, during the evaluation we averaged in
terms of frequency bands and channels in cortical areas.

4 Results

This section tells us about all the observations we made on the data. Trying to be concise
and straightforward, though, the amount of results might suggest otherwise. The basic
motive was to keep the data grouped in such a form, that on type of mismatch negativity
is on one figure with one cortical area.

4.1 Temporal evaluation

The evaluation was discussed briefly in sec 3.1. Here, I want to elaborate on the methods
I used. First and foremost, the point-by-point Welch-testing was done with a desired
α value of 0.05, to get a confidence level of 95%. If there was only one comparioson
each set of data, then we would reject all those p-values which are lower than this
threshold. However, Multiple comparisons require a Bonferroni correction to overcome
[67]. This problem forces us to use a stricter (if not the strictest) threshold to reject
our null hypothesis. The lower threshold is calculated by dividing the normal one with
the number of data points in one set, which gives us the final α value, the threshold
of α = 0.05/(480 × 32) ≈ 3.26 · 10−6. This low of a threshold permits only those tests
which do have an inner meaning, while not excluding the possibility of other significant
differences either.

The first step was to run the significance t-test. Our null hypothesis was that the
difference is zero. On fig. 10. one arbitrary channel’s response and its stacked histogram
is visible (the channel is from the primary visual cortex, V1). The signals are the average
ERPs’ difference for the traditional (deviant-standard) mismatch type and the lines
above them mark the significant difference, i.e., the difference is surely non-zero. On the
upper left corner, the auditory mismatch is seen – the equivalent comparison with 7.
figure is the dashed edge between the standard and the deviant. Since we could create
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Figure 10. Raw signal differences for the deviant-standard comparisons. It is an
arbitrary channel in the V1 cortex showing how the evaluation was constructed. Different
temporal signal differences are shown in 3 sub-figures with the marking of significant ones
(from the zero) using the Bonferroni corrected value of α = 0.05. The top right box shows
the stacked histogram of total length of difference for the three types.

4 examples from the auditory mismatch (see the mismatch-graph, fig. 6/b)), we have 4
different ERP differences: when the A was the standard and B was the deviant compared
to the ERP from the sequence where B was the standard (Ab−Bb), vica versa (Ba−Aa),
and of course for the other pairing also (Cd − Dd, Dc − Cc). Colouring always means
stimulus type of the deviant, not the standard session. ERPs from this kind show that
the most points for significant differences is from the C stimulus, where it was embedded
in in an oddball sequence of D-s (Dc − Cc), one negative component (which is relative)
around 100 ms from stimulus onset and another positive around 460 ms. Furthermore,
the opposite of this oddball setup (Cd − Dd) produced the second most different signal
having a positive peak around 240 ms, and there was a little bit of difference in response
around this time for the stimulus A also (Ba−Aa). No significant difference is visible for
stimulus B at this low of α value (Ab− Bb). A summary of this figure is seen in the box
right next to it. The auditory bar shows the total length of different sections summed up.
The dominance by the red (stim C) is visible, with some blue at the bottom and more
green on top resulting a total of ∼ 85 ms of different phase (out of 4 × 480 = 1920 ms
possible time). However, this channel showed a greater discrepancy between signals for
the bimodal mismatch governed mainly by the A stimulus’ deviance during stimulus D
(Da − Aa). A smaller portion to the stack is also given by stimulus B during standard
C (Cb − Bb) marked with blue. On the mismatch-graph (fig. 6/b) it is equivalent with
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the dashed-dotted edge between the standard and the deviant. The two main factors the
visual mismatch were also the A and B stimuli.

By only having one-way comparison for the ensembles, it is easier to quantify the total
number of different time points for one session and type, though, we did lose the infor-
mation about whether the signal increased or decreased during that particular period. A
basic assumption was also made while using these methods which is the following: the
different time-points tend to band together, rather than follow such a distribution that
would create separate points. This assumption is based not only the fact that different
valleys and peaks have been shown in previous studies, but also having such a low α

value would also prohibit the existence of single-point differences – averaging over many
samples would vanish unexpected spikes in LFP away. Nevertheless, this particular figure
(and especially the histogram) was created in such a way that different types of MMN
are seen, but since our main goal is to find distinction between different methods (tradi-
tional, genuine and M-ISI mismatch) the grouping of the data will be shown in other ways.

To reveal the layer-specific connections and differences between methods, see figure 11.
This figure shows the stacked histograms of the different time points for all the channels
in the V1 during auditory mismatch. The numbering of the channels are corrected in such
a way, that now the real places are visible, and the numbers mean only mean the order the
device it named them. For easier identification, I decided to leave them as they are. Please
note that these 32 channels are labelled from 1 to 32, but figures about the anterolateral
cortex show numbering from 33 to 64, so that it easier to identify. Furthermore, there are
all in all 8 figures (auditory, visual, bimodal mismatch and none for two brain areas) but
only this one is in the body text, the other 7 are in the appendices in section A. However,
as I warned the reader before, the grouping is different, therefore the bars now mark the
methods, not the types of the mismatch which are listed below.

• Traditional mismatch: (deviant–standard) this was aimed to create the ground
truth for the old type of mismatch used in oddball sequences about multimodal
stimulation. This type of mismatch is believed to consist of both the surprise en-
hancement and the effect of withdrawal of the stimulus-specific adaptation.

• Genuine mismatch: (deviant–equiprobable) the genuine mismatch is the novel
type of mismatch in which the deviant is compared to a sequence when the prob-
ability of the stimulus was the same, but no standard was given, disentangling
stimulus-specific adaptation (SSA) from the MMN.

• Role of memory trace: (deviant–M-ISI) by comparing the deviant to a sequences
where the inter-stimulus interval was many times larger one can determine the role
of the memory trace, since there is no echoing left in the cortex during ISI giving us
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the pure learning itself. It is a rudimentary initiative to disentangle the withdrawal
effect of SSA from the MMN.

Stimuli dominance First and most obvious clue is the dominance of red and green
colour (stimulus C and D, respectively): irrespective of the method used, where there
is significant difference, the most of it comes from these two stimuli (and from the
first especially). Negligible amount comes from stimulus B (blue) on channels 20 (row
2 – from top to bottom, column 3 – from left to right), 31 (r 5, c 4), 24 and 32 (r
7, c 3 and 4) and none from stimulus A (black). The cause behind this can be two
main options: there is an effect, conditional mismatch negativity, that causes the brain
to respond only to those auditory mismatches where the visual stimuli was vertically
grating. This effect is either layer-specific (see below) or comes from another part of the
brain involving more complex mechanisms. Another explanation on this phenomena is
the inevitable fatigue. Since the deviants and the standards were all recorded at the end
of the traditional MMN task (see fig 8.) it is possible that the anaesthetic state of the
animal had changed (therefore the cognitive state and brain activity also) during this one
hour long session. The same chromatic effect is visible at the anterolateral cortex (fig. 33.).

Cortical activity Nonetheless, lower cortical electrodes show an increase in different
points for stimulus D also, which makes this area more active than the middle (3.-4.
rows) or the first two sensors. Note: though the rows in this figure do not equal to
cortical layers, the vertical spacing between the sensors allows us to approximate. Further
elaboration on how the true neural activity was distributed among the channel is at the
spiking histograms.

Methodical differences Another interesting thing to note here is the relative sizes
of the bars. Despite from a few exception the traditional and genuine bars are in the
same order of magnitude and for the lower middle part (5.-6. rows) the memory trace’s
bar is also similar; they follow such a pattern that genuine showed the highest activity,
then the traditional and finally the memory trace. Explanation behind this can be that
the repetition suppression did cause the neurons to fire at lower activity (than they did
during equiprobable) causing the amplitude of the overall signal to decline. Therefore not
just the average of the ERPs are lower, but also the standard deviations of the ensembles
also, hence, causing the Welch tests to produce a higher α value, i.e., more (precise)
measurements (∼ 440 for standard and ∼ 20 for equiprobable and M-ISI) then would
lead to the sharpening of the edges of the positive peaks and negative valleys.
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Figure 11. The length of significant differences for the auditory mmn in the
primary visual cortex (V1). Different stimulus types are noted with different colours
and the stacked bars mean the mismatch methods. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Comparing with other histogram maps As I mentioned before, the rest of the
results are in section A. The former three paragraphs on the thoughts about the evaluation
can all be found for the others – non-mismatching comparisons later.

• Stimuli dominance: the huge presence of one signal is visible for all three types of
mismatches; blue (deviant was stimulus B while D was the standard) for the visual
(fig. 30. and 34.) and black (D standard, stimulus A) for the bimodal (fig. 31. and
35.) The common point in all these is that one part of the values for comparison
was recorded during D standard. It is still possible that these are truly caused by
the strong presence of stimulus specific adaptation for the stimulus D as a standard
making the others to increase the number of significant different points. On the
other hand, for the auditory mismatch, it was not only visible for the D, but also for
the C standard, which had happened before, indicating the factor of fatigue again.

• Cortical activity: All the figures in sec. A.1 show the same results (in spite of
neural activity) as I discussed before: lower middle cortical electrodes are more
active than others and channels on the top also produce more significant difference
than the middle ones. Figures in section A.2 are similar, too, in that sense that the
same cortical patterns of activity is visible for all the three mismatch types. Though,
main differences are the higher activities in the deepest and the shallowest sensors.

• Methodical differences: The (relative) size of the bars are the same for the brain
areas for the auditory and bimodal also. Only the visual mismatch produced different
results for the methods. Here, memory trace bars are always higher and sometimes
those are present only. One explanation behind this is the following: as the animal
fatigued, the anaesthetic state has changed, caused the animal to weaken up, which
would result in the increment of visual perception. This presence of visual percep-
tion would allow the animal to form a visual memory trace during the repetitive
appearance of standard D chunks. The resulting deviants would carry this informa-
tion inside, and when compared to a sequence lacking this feature, reveals the role
of memory trace.

Continuing from the last point, one might ask that if the presence of such a memory trace
is so crucial, why does not the equiprobable series show an increase also? To understand
this, take a look at the non-mismatch comparisons at the appendices. In these figure
now genuine refers to the repetition suppression (standard-equiprobable) and memory
trace refers to the role of inter-stimulus interval – reminder: fig. 7. The dominance of
the blue (stimulus B) is clearly visible suggesting that these areas were mostly occupied
by neurons sensitive to this type of stimuli, however, at the primary visual cortex (V1)
the presence of stimulus A for the equiprobable proposes that the main driver for these
effects is the horizontal grating stimuli (visual stimulus). Cortical activities by electrodes
are similar also. One type of explanation for the fact that the inter-stimulus interval
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changed the activity more than equiprobable series, is that simply the presence of
memory trace governs the overall signal more than the deviance detection. For further
results, an experiment with an increasing length of ISIs (not just two) would be necessary.

The two main hypotheses that we proposed are not excluding. Conditional mismatch
negativity and the fatigue of the animal may be connected to each other. There is a
possible scenario that the decrease of anaesthetic depth of the animal’s conscious state
gives the possibility of the brain to form more complex thoughts, to permit the emergence
of conditional mismatch, meaning that this phenomena requires higher abstractions in
perception. Luckily, our colleagues in Amsterdam have conducted multiple experiments
where not only the animal was different but the measured cortical area and the order of
tasks also.

4.2 Spiking histograms

Spiking histograms only show the absolute value of spiking frequency. Spiking frequency
was calculated by counting together all the spikes that had happened during the
given time-window (10ms after onset and 10 ms before offset resulting in a 480 ms
window-length) and dividing that number by the total length of stimulus presentation
(480 ms × number of stimulus presentation – approx. 20 for a given deviant in one
standard run). No inclusion of inter-stimulus spikes are present.

The have an overview about the total distribution of the cells between the sensors,
please take a look at figure 12. This image shows the number of identified cells on each
channel with a pie chart indicating the distribution of all spikes between the neurons.
Radii of these objects are proportional to the natural logarithm of the total number
of spikes found on one channel – a division by ten is done for scaling. Ordering of the
segments and colouring are also based on the number of spike for one neuron. It is
important to note that one cell is dedicated to only one channel, no overlaps are permitted.

For example, on channel 13 (row 1, column 2) the number of identified cells is four, having
one that is the most active covering more three quarters of the whole pie chart, i.e., more
than 75% of all the spikes found on channel 13 are from one single cell. Furthermore, the
second most active cell on this particular sensor covers nearly all of the remaining part
leaving only a small, hardly noticeable area for the rest. Reasoning behind this includes
that channels having identified neurons are more governed by the signal of these, whilst
temporal data with no dedicated cell is believed to measure rather the overall potential
of a population of many cells. Radius of this chart larger than channel 29, but smaller
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Figure 12. Number of identified cells on one channel and the overall spiking
activity at the primary visual cortex (V1). Radii of pie charts are calculated by
dividing the natural logarithm of total number of spikes detected on a given channel by
ten (for scaling). Colouring of these objects are based on the number of spikes for one cell.
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than channel 5 and 21 indicating a rather average size (amongst all).

No cells have been found in the fourth and seventh rows, and by excluding those (with
the others consisting zero neurons), the average number of cells on one channel rises
from 1.94 to 3.65. Most of the channels share more than one cell and approximately at
least half of the all spikes came from a one. This allows us to dedicate a dominant cell
to a channel: a dominant cell on a channel is the one which has the highest activity of
all. The interesting thing here to notice is the layer-like structure. Two rows are empty,
suggesting that there is a drastic change in the density of neurons, i.e., it is possible
that empty rows indicate the border of layers, since sensors vertically are spaced with
having 100µm in between. Though, the size of the soma of a neuron ranges from 4 to
100 micrometers in diameter.

If we take a look at fig. 37 at the appendices, the average number of cells on a given channel
is 0.41 and 1.63, respectively. The figure shows the same setup for the anterolateral cortex.
This low number can be caused by multiple things, including unfortunate placement, noise,
movement of the device, etc. One unusual cell is found channel 62, having a high activity
compared to others. Nevertheless, the dominant cells for this area can also be found in
the same way.

4.2.1 Dominant cells

Using the definition mentioned above, we can analyse further the activity of the most
dominant cells by separating the spikes by stimulus- and mismatch types. I want to
emphasise once again that only those spike were counted, which had happened during
a stimulus, so that, if a cell was more active during the inter-stimulus interval, it is not
shown in the figures.

For the dominant cells in the primary visual cortex (V1), see fig. 13. The figure shows the
bar chart of the different mismatch methods and types. Bars show the average frequency
for a given type with the colour meaning the portion of a given type of stimulus being
shown. The six bars are the following (from left to right): auditory (aud), bimodal
(bim), visual mismatch (vis), same (standard sessions), equiprobable (equip) and M-ISI
(modified inter-stimulus interval). Bars not reaching 2 Hz for all are the cells which fired
unevenly, having less than ∼ 2160 total number of spikes which is the number total
number of stimuli.

First thing to notice here is the variety of frequencies present. Not only the most active
neuron ever (channel 21) but also the lazy ones are seen having more than 23 thousands
spikes and less than a hundred for the whole experiment. This can be explained by the
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Figure 13. Average firing frequency for the most active cells on each channel at
the primary visual cortex (V1). Bar charts are shown according to real-life placements,
channel numbers are ids. Colours are consistently defined by the stimuli – see figure 6.
Y-scales are shared across all axis and the total number spikes are noted within the titles.
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presence of excitatory and inhibitory cells. A typical excitatory cell (pyramidal cell –
which mostly occurs in the hippocampus) is possible to fire at low, even at 1 Hz frequency
and have an location-based activity with a thinner typical spiking waveform. On the other
hand, inhibitory neurons are not location-based, tend to fire at high frequencies (even 80
Hz) and have a thinner waveform. Furthermore, knowing the order of sessions done, the
relative size of the bars are meaningful. If we take a look at channel 5, 6, 13, 25 and 29,
the effect of fatigue/SSA is clearly visible: on the fourth bar, the relative height of the C
and D standard (red and green, respectively) is smaller. Since we know that during the
longest session (full MMN task, see 8.) the C and D standard sub-sessions followed each
other at the last, the firing rate decreased due to the declination of excitability which is
either a cause of stimulus-specific adaptation or fatigue. By analysing the results for the
equiprobable and M-ISI sessions, contentious deductions can be made: there are neurons
which were affected by the fatigue (channel 6, 13, 23, 29), i.e., bars for both the equiprob-
able and M-ISI sessions remained short. Others were either capable of resting (ch 5,
10) or kept firing frequency (15, 20, 21, 22, 30, 31) regardless of session and stimulus type.

One interesting dominant cell is the one on channel 25: bars here show pronounced both
stimulus type- and method-specificity. Starting point: no equiprobable or M-ISI firing
happened, meaning that it is only happened for the standards. But which standards?
From the "same" bar we can conclude that none of the firings happened during C or
D standards. Furthermore, stimuli A and B were an auditory mismatch and since the
"same" bar is lower (probably due to auditory stimulus-specific adaptation) we can
conclude that the visual stimulus played a significant role. But since we have do have
firings for the bimodal and visual mismatch also this can only be a signalling cell, that
fires regardless of type of visual stimulus. Nevertheless, lack of firing during later sessions
is ambiguous. To entangle this, let us take a look at the second most active cells in V1.

As fig. 14. shows, those channels which had only one cell, now are empty. The reason
behind this is by using the first two most active cells, we cover at least three quarters
of the total number number of spikes. Once again, no cells with less than ∼ 2160
spikes are analysed due to insufficient data. Elements based on the previous discussion
can be found here. Doubtfully, channel 6 and 13 show fatigue-like signs, though, the
visual and standard bars also remained short, but channel 30 showed similar spiking
frequency despite the methods or stimulus types. Channel 21 showed lower average
spiking frequency for auditory mismatch and standard session; nearly halved keeping
the same distribution for the stimulus types, it is probably a visual deviance detection
cell. Just similarly for the dominant cells, the second most active source on channel
25 shows interesting, not easily classifiable results. Equiprobable and M-ISI spikes are
barely visible, and though the sizes of the other bars are smaller (different scales from the
dominant cells’ chart) the colours are the quasi-inverse of each other. Other colours are
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Figure 14. Average firing frequency for the second most active neurons on each
channel at the primary visual cortex. Bar charts are shown according to real-life
placements, channel numbers are ids. Colours are consistently defined by the stimuli – see
figure 6. Y-scales are shared across all axis and the total number spikes are noted within
the titles.
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present also, but the averages are mainly governed by the previously mentioned stimuli.
Since it these two neurons are relatively close to each other (are on the same channel) it
is either a result of misclassification of spikes, these two are the same in real life, or these
are two separate cells, being part of a larger circuit and each others’ contraries, i.e., one
spikes, when the other not.

Dominant cells at the anterolateral cortex are worth mentioning also, figure 38. shows
them. Most of the neurons were not so active, except for channel 62. Despite the relatively
high average frequency of the bars, it is quite obvious that this cell rather shows the effect
of fatigue, than any other. Other cells were not active enough, therefore the second most
active cells are not worth to plot.

4.3 Frequency map

The generation of the frequency map is similar to the one at the temporal evaluation
at the beginning. We created the raw Fourier signals and used point-by-point Welch
test with Bonferroni correction to determine any basic difference between the ensembles.
Furthermore, considering biological conditions (maximal known firing frequency in the
primary visual cortex for mice is 582 Hz) we chose to reject the maximal possible
Nyquist-Shannon frequency (16kHz) determined by their sampling theorem and used all
data up to 1 kHz [68]. Thereby our significance test can still produce the same assurance
with higher threshold. Using a rudimentary α of 0.05, and only the first 480 frequency
bins (generating an upper limit of 1 kHz) with the correction the final α value, the
threshold decreases to α = 0.05/480 ≈ 1.042 · 10−4.

Codes To help understanding the notation for a given sequence, let us define a code
for them. A code always consists of one capital and one small letter; e.g., the code
for the sequence of stimulus B recorded during the standard session of A (therefore
getting an auditory mismatch) is Ab. Similarly, the conversion works vice versa, the
code Bc means that series of stimulus C which was recorded during the standard session
of B (bimodal mismatch). For the equiprobable and M-ISI session we will use the E
and M notation, respectively. Comparison then is indicated by having a colon sign
between the codes: Ad:Ed means that the bimodal deviant series of stimulus D (so that
it was presented during A standard session) is being testing against the series of D
stimulus whilst it was embedded in the equiprobable session. Comparison codes with
different small letters (different stimulus types) are meaningless. Also, the order is ar-
bitrary, since the statistical test only determines whether the difference is non-zero or not.
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Figure 15. Logarithmic average Fourier spectra for the traditional visual mis-
match and the standards on channel 20. Shaded areas around the lines are the
standard deviations. Significant differences are indicated as lines above them and a verti-
cal frequency marker is in orange for reliability. Level of significance was the Bonferroni
corrected value of α = 0.05.

4.3.1 Average Fourier spectra

Figure 15. shows the average amplitudes for each frequency bin with the shaded areas
being the standard deviation. Two ensembles are presented in this graph: the visually
deviants (having codes Ca, Db, Ac, Bd, marked with lines and asterisk) and their
corresponding standard sessions (same capital and small letters, marked with lines and
dots). Colouring is consistent with previous figures, defined in section 2. Furthermore, on
top the significant differences are shown having the same colour. The already mentioned
frequency reliability marker line is with orange colour.

Decreasing amplitudes are caused by the pink noise (1/f noise). The presence of pink noise
in acoustic terms means that each octave carry the same amount of power. Furthermore,
biological systems tend to show bifurcative self-organizing system, and have cyclic
symmetry with infinite degrees of freedom, and stationary random stochastic processes
characterize their dynamism. Any kind of white-noise electromagnetic excitation (like
"electrosmog" in general) is filtered by the biosystem, and it gives a characteristic
pink-noise answer-signal to this excitation [69]. On fig. 39., we also noticed this kind of
signal governing our data. The noise from the Brownian motion is also presented, as a
scale. Please note that the lines representing the noise are not fitted, just multiplied with
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an arbitrary number so that it would match more with the data.

Analysing fig. 15. suggests two observations: first, there is a significant peak around 25
Hz, and second, there is a noise that governs the spectra. To elaborate further on the
noise, please see sec. C. in the appendices, where the cause of this phenomena is explained
briefly. This plot shows the amplitude of each frequency bin on a semi-logarithmic scale.
Since we use frequency bins the significant differences mean around 2 Hz so that
particular peak for the Ca line (black with asterisk) has a width of 10 Hz between
20 Hz and 30 Hz (5 bins), roughly. A narrower peak is visible in this region at lower
frequencies for the Db mismatch and at higher frequencies for the two others. Now we
can conclude that during multimodal stimulus the traditional visual mismatch is present
in the primary auditory cortex. Furthermore, the Ca and Db shows that those kind of
deviants show larger differences where the visual vertical grating was the standard and
the deviant was the horizontal. The inverse of this is less present but still there. Another
important note here is that these two pairings (Ca and Db) are also higher in amplitudes
even in high gamma regions while the others are more likely to their standard sessions.

To check whether other kinds of mismatch types are present on this channel, please
refer to fig. 16. Auditory and bimodal mismatches are shown along with the repetition
suppression (equiprobable-standard) in the top right box. For the auditory mismatch,
there is a significant difference in the beta region for those mismatches where the visual
stimulus remained vertically grating. This suggest the presence of conditional mismatch
negativity, where one type of MMN emerges only when the other is in a given status. The
peak between 20 and 30 Hz has nearly vanished and in higher frequency regions there
are no spectra that is always greater than the other. Nevertheless, this small presence
of conditional auditory mismatch in the primary visual cortex does have a contribution
to the bimodal mismatch also. Though the significantly different regions did not add up
simply, the numbers of each have risen. The peak has shrunk only between 20-26 Hz, but
other differences have appeared in lower beta regions for the A and B stimuli (which had
none during only visual mismatch). Just like during visual mismatch, the Da and Cb (wich
had a visual switch from vertical grating to horizontal grating) are the one with the most
significant differences and are higher in amplitude also in greater frequency regions. The
same dominance goes for these two stimuli for the equiprobable-standard comparison also.
Even though for this comparison that particular peak has translated to lower frequencies
and shrunk further, the higher activity for all stimulus types during equiprobable are also
present. Now we can conclude the following points:

• Visual mismatch: albeit the presence of traditional visual mismatch in the primary
visual cortex is a non-novel information, it is great milestone to reassure ourselves
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Figure 16. Average Fourier spectra examples. Three types of traditional mismatch
(deviant-standard) with the repetition suppression (equiprobable-standard, top right box)
on channel 20. Significant differences are marked with lines above them, the frequency
reliability line with orange is around 10 Hz. Level of significance was the Bonferroni
corrected value of α = 0.05.

and note that this phenomenon is stronger for particular, one-way changes than vice
versa.

• Conditional mismatch negativity: the emergence of auditory mismatch upon
particular visual stimulus is a novel phenomena in terms of multimodal stimulus.
To further investigate this, we need to look at other channels/animals.

• Bimodal mismatch: stimulating and detecting the brain with bimodal signals is
also a non-novel thing [70]. Here we have an indication of how the separate visual
and auditory mismatches added together influence the elicited bimodal MMN.

• Repetition suppression: repetition suppression is also visible on this particular
channel and has effects on the ERP regardless of stimulus type.

• Location of differences: it is also notable that most of the significant differences
are not distributed equally on the frequency scale but rather form peaks or groups
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Figure 17. Example of a frequency map. The single-coded significance frequency map
for one kind of visual mismatch. The map is ordered by row so four channels are in the
same row (orange horizontal grid). Level of significance was the Bonferroni corrected value
of α = 0.05.

in the beta and gamma region. With this in hand, we can use our assumption on
quantifying the differences to get a broader picture of the cortex.

4.3.2 Creating frequency map

So far, we only used one channel’s response. In the following, we will switch to the
representation of frequency maps so that all of the channels’ information is visible. These
maps only show the significant differences, they do not show the absolute value of the
frequency components.

Figure 17. shows an example on how frequency map works. Horizontal and vertical
axes mean the frequency bins and the channel numbers. The first 32 channels are
from the primary visual cortex (V1) and the other half is from the anterolateral cortex
(AL) separated by a brown horizontal line across the map. On the right hand side,
the corresponding rowsare shown for each area with increasing depth with orange,
horizontal, dashed lines helping as a grid. The brown vertical line around 10 Hz is
the reliability frequency and the orange at 50 Hz marks the mains frequency for most
European countries. What we have seen on fig. 15 as black peak 20 and 30 Hz is now
represented as a black line in the second V1 row at the same frequencies. Fig. 18. also
shows us the significance map but now with Ac:Cc comparison on it also. The end of
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Figure 18. Example of a double-coded frequency map. The map is ordered by row
so four channels are in the same row (orange horizontal grid). Now the codes are the
inverses of each other so there was a difference in both directions, the marker is coloured
in both ways. Level of significance was the Bonferroni corrected value of α = 0.05.

the peak is now dark red which means that there was a significant difference in both
directions. Notice that the inverse direction is only present in the primary visual cortex
for reliable frequencies, i.e., red markers are only in the V1 above 10 Hz. Next, our
step is going to be to visualise all of the possible frequency maps for a given mismatch type.

4.3.3 Visual MMN

First, let us take a look at fig. 19. which shows us the frequency maps of visual mismatch
for all the methods. Stimulus types are paired together making two columns, and rows
mean the methods. Markers on each map are the same as discussed previously.

Traditional MMN What we have seen in the previous subsection, the presence of
traditional vMMN, is also true for the whole cortex. All of the four stimuli as deviants
elicit differences in frequency bins, however, only the A and B stimuli are those which
able to create them in the middle-deep, 5-6-7th row in the V1 and in the anterolateral
cortex also. Differences in the AL are present in the lower rows of electrodes, but they
do not show frequency-specificity. The two others were able to elicit different frequency
components in the shallowest and deepest electrodes of V1.
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Figure 19. Visual frequency maps. The frequency maps for all the possible visual
mismatch for different methods. Rows mean the methods and columns separate the stimuli
so a sporadic conditional mismatch is visible. Level of significance was the Bonferroni
corrected value of α = 0.05.

Genuine MMN But what was less visible for one, more valuable for the other; even
though stimuli C and D were only able to create differences as such, for the genuine
MMN those are still present, unlike the others. This suggest a massive stimulus-specific
adaptation for stimuli A and B. Despite for two frequency bins for stimulus C, anterolateral
cortex has shown no difference for this method.

Memory trace During the memory trace experiment, the anterolateral cortex was
more active and the appearance of differences in higher gamma frequencies suggest the
activation/inactivation of other cells or group of cells. However, the the fact that most of
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the differences came from those comparisons which had one part taken during the C and
D standards also suggests the appearance of fatigue, once again.

4.3.4 Auditory MMN

Fig. 20. shows us the frequency maps of auditory mismatch for all the methods. The same
setup is visible here, rows contain one method whilst columns contain one stimulus pairing.

Figure 20. Auditory frequency maps. The frequency maps for all the possible auditory
mismatch for different methods. Rows mean the methods and columns separate the stimuli
so a sporadic conditional mismatch is visible. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Traditional MMN Mismatches created with this method show that only stimuli C
and D were able elicit such ERPs that were significantly different from their standards.
However, we cannot ignore the effect of fatigue, once more. Nevertheless, those electrodes
in which the phenomenon is present, are the same as the ones for the visual MMN: the
lower middle electrodes of V1 show significant differences for both directions in nearly
all frequency bins under 50 Hz, but above it stimulus C is the dominant. Dominance for
stimulus D is visible in lower beta frequencies at the shallowest sensors of V1 (1, 2, 3).
The deepest electrodes produce significant changes also in this frequency band, but for
both directions. Furthermore, the anterolateral cortex shows these changes up to 60 Hz
for the upper electrodes, as opposed to only 40 Hz for the others.

Genuine MMN For the genuine MMN, lower middle electrodes of V1 show significant
differences in the beta region, whilst others only in the lower beta for stimulus A. In
the anterolateral cortex, lower sensors also showed differences sporadically. For the two
other stimulus types, what is notable is the reduction of significant differences for the
stimulus D. By that, which was yellow for some, now turned red. There is no change in
the structure of significant differences whatsoever.

Memory trace The main effect of memory trace is visible in the anterolateral cortex.
In the lower middle regions differences in high gamma regions have appeared for all stimuli
except for C. Causes of this may include the activation/inactivation of other groups of
cells. For other parts in any of the cortices, stimulus D has disappeared, which is either
due to the effect that the modification of ISI does influence the elicitation of MMN or
the fatigue, since the signals for those comparison which remained are partly from the D
standard subsession.

4.3.5 Bimodal MMN

Frequency maps for the bimodal MMNs are shown on fig. 21. The setup is the same as
before.

Traditional MMN Despite some overlay, the two pairings show the emergence of tra-
ditional bimodally stimulated mismatch negativity in different regions of the visual cortex
and frequency bins. For easier analysis, please take a look at fig. 40. in the appendices,
which tells us about the layer-specific distribution the bMMN. Stimuli A and B elicit
more differences in the higher beta regions (V1) than below 20 Hz, regardless of place-
ment of sensors. However, stimuli C and D have a much higher influence on the lower
middle electrodes, such as the former produces differences in the lower beta band, whilst
the latter does this to the upper. In the anterolateral cortex, the higher sensors show an
important difference in low gamma frequency band for stimuli A and B, seldom they do
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Figure 21. Bimodal frequency maps. Bimodal mismatch frequency maps for different
stimulus type pairings and methods. Level of significance was the Bonferroni corrected
value of α = 0.05.

for C and never for D. Furthermore, deeper electrodes of AL are modified by all of the
stimuli sporadically.

Genuine MMN First thing to notice is the presence of black, the colour of stimulus
A as a deviant embedded in an oddball sequence of D standard being compared to its
equiprobable equivalent. Despite the higher senors in V1, all channels are affected more
or less by this comparison. However, what are common in both sub-figures are the elicited
differences in the lower middle electrodes around 30 Hz. We can call this phenomenon the
genuine bimodal mismatch negativity. In the anterolateral cortex, stimulus A is dominant
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but stimuli B and C are present also, whilst there is no sign of significant change to
stimulus D.

Memory trace In the primary visual cortex (V1) only stimulus C was able to elicit
differences, nonetheless, that happened for that particular lower middle electrodes. Fur-
thermore, except for that stimuli, all the others show varying amounts of differences for
higher gamma band in the lower middle sensors in the anterolateral cortex.

4.3.6 Non-mismatch comparisons

Non-mismatch comparisons are those which which do not contain the deviant signals, see
fig. 22.

Figure 22. Frequency maps of non-mismatch comparisons. Pairings of stimuli is
purely based on better understanding, with no deeper meaning. Level of significance was
the Bonferroni corrected value of α = 0.05.

Repetition Suppression Significant differences for the repetition suppression devel-
oped only for stimuli A and C. Supposing that equiprobable is the base and due to
repetition the signals of the standards do not increase (see fig. 16.) we can conclude that
there is a stimulus specific adaptation for stimuli A and C in terms of bimodal stimulation
both in the primary visual (V1) and anterolateral (AL) cortex. This effect is present only
sporadically for the other stimuli in the V1 and missing in the AL. Interesting to note
also, that while stimulus A affects the electrodes on the lower half of the AL, stimulus C
does this to the higher ones.
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Role of ISI To determine the role of inter-stimulus interval for the mismatches, we
compared the standards to a sequence where this parameter was larger. Please note that
there were more than 440 standard signals and only 20 M-ISI recordings. The emergence of
difference for all stimuli in higher frequencies in the deeper AL sensors is present here also.
To determine the relation of signals, please head to the appendices and take a look at one
channels response to these to sessions on fig. 41.Please note that the frequency limits have
changed so we can conclude that the trend that shows higher activity during M-ISI session
is eroded for larger frequencies. However, the M-ISI stimuli increases the activity higher
in gamma bands for deeper AL electrodes. Stimulus B was able to produce this in lower
frequencies also. In the visual cortex few differences are present, with no evident structure.

During this method we noticed that many phenomena happened within frequency bands.
To analyse the connectivity inside and between the cortical areas, we will use coherency.

4.4 Coherence of cortical areas in frequency bands

As it was mentioned before, calculating the coherence between channels can help us
analysing the connectivity further. Figure 23. shows an example on coherence between
channel 64 and other channels from AL (red) and V1 (black) during stimulus A during
the standard session of D (bimodal mismatch). Each frequency band and colour will be
represented as the average of them, i.e., the values between 10 and 20 Hz for all the red
lines will shrink to their spatial and frequency-based mean. This particular plot will be
shown later as 10 values: 5 bandwidths with 3 types of coherence (cross for those which
are not in the same region and V1 and AL are treated separately).

Knowing the bands which define the averaging over the frequency bins, figure 24.
explains how spatial averaging works. The a) image shows an example on how coherent
the channels were during stimulus A under the standard session of D in the (22,45)
frequency range. Lower triangle matrix is shown since coherence is symmetric. Channels
are reordered by rows meaning that the first 4 channels are located uppermost, the
second group of 4 are one step lower and so on. Dashed red lines separate the upper half
from the lower whilst the filled one marks the border of the devices. Upper and lower
small triangle matrices are from V1 and AL, respectively. The square in the bottom
left corner marks the cross-coherence, where the term cross refers to spatially separated
channels. b) figure shows the values after taking the spatial average over the regions.
The colourmap is defined in such a way to help the reader avoid any association with
stimulus specificity.

Even though the coherences may vary between channels and sessions, given our setup,
we can analyse the difference between them. Using violinplots one can not only represent
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Figure 23. Coherence between channel 64 and other channels for Da sequence
with the bands. The figure shows the value of the frequencies between channel 64 (from
AL) and other channels (31 channels from AL marked with red and 32 channels from V1
with black).

Figure 24. Formulation of averaged measures. a) Total coherency map between all
the channels. Values have been averaged in the annotated frequency band (from 22 to 45
Hz) for every channel during stimulus A embedded in the D standard session (bimodal
mismatch). b) Spatially averaged values. Averaging was done within the cortices (V1, AL)
and between them (Cross).

the difference but also show the absolute value so that the relative size of the discrepancy
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can be seen, too. Figure 25. shows an example how it looks like for our results. Colouring
for the bars are stimulus-dependent and the grouping is based on the frequency bands.
Hatching is created in order to visualise discrepancy better. These are the most mean-
ingful figures and later, I will combine them into multiplots.

Figure 25. Violinplot of the coherence of the bimodal traditional mismatch in
the V1 cortex. Different colours mean the stimuli, and hatching is also made to indicate
discrepancy.

4.4.1 Mismatch comparisons

In this section, I am going to elaborate on all the results based on the mismatch com-
parisons. Each paragraph is going to tell about either an overall phenomena or a type of
mismatch.

Decreasing coherence As fig. 23. also shows, coherence is inversely proportional to
frequency. This is largely due to the pink noise. This artefact has a decreasing manner
in terms of amplitude which also plays a crucial role in coherence also. To resolve this
problem, I encourage the reader to focus on the differences. Furthermore, since pink
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noise is present in all biological systems and is mostly independent of the stimulus, we
can observe decline in coherence for every violinplot. However, this effect is smaller for
cross-coherence plots since due to volume conduction (intervening tissue (skull, skin etc.)
conducts charge) closely placed sensors can detect the same source.

Smaller cross-coherence Coherence between channels in different brain regions show
smaller values and less affected by the noise. Furthermore, these plots are the result
of averaging over 32 × 32 = 1024 comparisons as opposed to 32×31

2 = 496 occasions.
Remaining noise is decreased in this way further.

M-ISI at high frequencies Another common attribute of the plots is that bars for
the M-ISI sequences have a higher coherence everywhere, regardless of the region. For
stimulus specificity, stimulus D showed the highest of coherence in every region, which
(along with the others) can be caused by the awakening of the animal.

Visual mismatches Figure 26. shows all the possible comparisons between the coher-
ences between signals that create visual mismatches. Traditional comparisons do not show
large differences, only the lower beta (10-20 Hz) frequencies have a higher, and stimlulus
specific direction. For stimulus C and D (vertically grating mismatches, the coherence
increased). On the other hand, equiprobable sequences had higher value for higher fre-
quency band, and for the AL cortex, a more moderate increase can be seen also without
stimulus and frequency band. High values of M-ISI can be explained by the increase of
excitability due to longer idle time.

Auditory mismatches The most obvious difference between the previous and 27. figure
is the increase in discrepancy for the traditional mismatches. High beta and low gamma
bands (22-45, 52-70, 72-144 Hz) show a decent amount of difference, which is remnant for
the genuine mismatch also (equiprobable-deviant), i.e., auditory mismatch caused more
activity since the animal was in an anaesthetised state. However, for lower frequency
bands, M-ISI sessions did not produce greater, but for the others all the more so. An
involvement of other brain regions can be an explanation.

Bimodal mismatches Bimodal mismatch present the highest activity in the 52-70 Hz
band in the AL among other mismatches (fig. 28.). All the other differences show similar
pattern to the traditional, genuine and M-ISI-type auditory mismatch. The fact that most
of the larger differences were caused by auditory mismatch, in bimodal mismatches the
visual part only slightly changes the outcoming results.
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Figure 26. Violinplots for the visual mismatches. Columns refer to coherence by
region and rows are for different mismatch methods. Colours denote different stimuli and
hatches meant to indicate discrepancy.

4.4.2 Non-mismatch comparisons

Figure 29. shows those comparisons which not contained deviant signals. Except for the
highest frequency band, random probability only slightly changed the values. However,
now we can analyse how fatigue influenced the experiment; most of the times –in the same
regions– activity appeared to decrease from stimulus A to D. For the highest frequency
band (158-192 Hz) it is important to mention that high-frequency neural activity overlaps
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Figure 27. Violinplots for the auditory mismatches. Columns refer to coherence by
region and rows are for different mismatch methods. Colours denote different stimuli and
hatches meant to indicate discrepancy.

entirely with the spectral bandwidth of muscle activity (∼ 20–300 Hz) [71]. This applies
for the M-ISI session also, since as the anaesthetic state of the animal changed movements
of it could occur. Furthermore, lower bandwidths are not part of this and therefore here
simply just the activity is what has risen. No stimulus specificity is visible.
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Figure 28. Violinplots for the bimodal mismatches. Columns refer to coherence by
region and rows are for different mismatch methods. Colours denote different stimuli and
hatches meant to indicate discrepancy.
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Figure 29. Violinplots for the non-mismatch comparisons. Columns refer to coher-
ence by region and rows are for different combinations. Colours denote different stimuli
and hatches meant to indicate discrepancy.
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5 Discussion

My main goal to create measures that give meaningful results is achieved. These four types
of methods allow us to analyse different aspects of the same data and draw conclusions.
We included statistical hypothesis testing and gave phenomenological insights to govern
our evaluation. Each method highlighted different aspects of the results which will be
useful in the future for to run on different animals. In this section I am going to review
all the deductions we made and see whether they agree with the literature.

Temporal evaluation Zeroth step of all. Indication of either stimulus specific adapta-
tion or fatigue during later standard sessions (stimuli C and D) appeared. Cortical activity
in terms of device depth has also been revealed and separated different areas based on
activity. We also noticed that channels that show high activity tend to depend on the
mismatch method and deduced that fatigue with the change of the anaesthetic state has
a crucial effect. Furthermore, results suggested that the change of inter-stimulus interval
had a higher impact on activity than deviance detection.

Spiking activity Dominant cells have been identified on channels and grouped together
based on temporal activity. Stimulus-specific adaptation/fatigue appeared here also. More
cells and therefore activity could be detected from the V1 cortex than from the AL. Both
excitatory and inhibitory cells were found.

Frequency map Using the codes for comparisons made it easier to notice the main,
non-novel types of auditory, visual, and bimodal MMNs (with their strength for stimulus
types) and the possible emergence of conditional mismatch negativity. Both visual and
auditory mismatch have shown stimulus specificity by regions and genuine bimodal mis-
match negativity has indirectly proven the existence of SSA. Furthermore, these results
emphasised the importance of different bands in brainwaves and directed our attention
towards coherence.

Coherence Coherence was more or less in accordance with the results we got from
the frequency map and did serve us new knowledge about the difference in information
propagation between cortical regions. For non-mismatch comparison we did see that
how the modification of ISI influences to excitability. Nevertheless, the anaesthetic state
of the animal did play a crucial role here as the M-ISI sequences has shown a greater
coherence for high frequency components.

Changes in beta and gamma frequency bands have been linked to attention and
expectation in human auditory cortex for auditory stimuli [72]. Furthermore, another
study conducted on humans has demonstrated a gamma-to-beta transition to novel

51



auditory stimuli, and correlations between beta and gamma bands had shown high
interdependence [73]. Our results are in accordance with these articles: we found
differences in the same frequency regions for bimodal stimulation based on the results of
frequency maps and coherence in two regions of a mouse. To verify our observations, we
are preparing to run the evaluations on other mice also with different electrode placements.

Not every aspect of the data has been analysed as well as not every method has
been mentioned in this thesis either. We also tried cluster-analysing on the cells,
correlation between firing frequency of cells and power spectrum, machine learning on
frequency components, etc. These were the ones which would form a whole, coherent
set of methods to use on other animals. Nevertheless, modification of parameters such
as frequency bands, averaged areas or even the measure itself (coherency, imaginary
coherence or phase-locking value) could have given different results. Results have been
presented in an understandable way despite the myriad of possible approaches on the data.

Our next and final step is going to be to run these analysis methods on the other animals
with respect to different recording sites, task order and notes on animal. After all those
we will be able to draw conclusions in biological sense also which will either confirm or
disprove our theories on multimodal signal processing. Lastly, publication is planned to
be submitted by the end of the year.
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Appendices

A Temporal evaluation

All the results for the temporal evaluation are shown here.

A.1 Primary visual cortex (V1)

Figure 30. The length of significant differences for the visual mmn in the pri-
mary visual cortex (V1). Different stimulus types are noted with different colours and
the stacked bars mean the mismatch methods. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Figure 31. The length of significant differences for the bimodal mmn in the primary visual
cortex (V1).
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Figure 32. The length of significant differences for the non-mismatch compar-
isons in the primary visual cortex (V1). Different stimulus types are noted with
different colours and the stacked bars mean the mismatch methods. Level of significance
was the Bonferroni corrected value of α = 0.05.
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A.2 Anterolateral cortex (AL)

Figure 33. The length of significant differences for the auditory mmn in the
anterolateral cortex (AL). Different stimulus types are noted with different colours
and the stacked bars mean the mismatch methods. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Figure 34. The length of significant differences for the visual mmn in the an-
terolateral cortex (AL). Different stimulus types are noted with different colours and
the stacked bars mean the mismatch methods. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Figure 35. The length of significant differences for the bimodal mmn in the
anterolateral cortex (AL). Different stimulus types are noted with different colours
and the stacked bars mean the mismatch methods. Level of significance was the Bonferroni
corrected value of α = 0.05.
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Figure 36. The length of significant differences for the non-mismatch compar-
isons in the anterolateral cortex (AL). Different stimulus types are noted with
different colours and the stacked bars mean the mismatch methods. Level of significance
was the Bonferroni corrected value of α = 0.05.
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B Spiking histograms

Supplementary results are found in this section.

Figure 37. Number of identified cells on one channel and the overall spiking
activity at the anterolateral cortex (AL). Radii of pie charts are calculated by
dividing the natural logarithm of total number of spikes detected on a given channel by
ten (for scaling). Colouring of these objects are based on the number of spikes for one
neuron.
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Figure 38. Average firing frequency for the most active cells on each channel at
the anterolateral cortex (AL). Bar charts are shown according to real-life placements,
channel numbers are ids. Colours are consistently defined by the stimuli (figure 6.). Y-
scales are shared across all axis and the total number spikes are noted within the titles.
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C Frequency map

Figure 39. The presence of pink noise on the data. Log-log plot of the average Fourier
spectra for the traditional visual mismatch and the standards on channel 20. Shaded areas
around the lines are the standard deviations. Significant differences are indicated as lines
above them and a vertical frequency marker is in orange for reliability. Pink line marks
the pink noise (1/f noise) and the brown line is the brown noise (1/f 2).
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Figure 40. Traditional bimodal mismatch frequency maps paired differently
than mentioned in sec. 4.3.5.
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Figure 41. The Fourier spectra for the standard and M-ISI sequences. Significant
differences marked as lines. Please note that the scale for the frequencies have changed.
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