
MODELING COMPLEX SYSTEMS BY

EVOLVING NETWORKS

Doctoral Dissertation, 2007

GÁBOR CSÁRDI

Department of Biophysics, KFKI Research Institute for
Particle and Nuclear Physics, Hungarian Academy of Sciences,

Budapest, Hungary

Advisor: Dr. Péter Érdi, Ph.D., D.Sc.,
Henry R. Luce Professor, Head of Department

Faculty of Informatics, Eötvös Loránd University,

Budapest, Hungary

Ph.D. School: Informatics

Head: Dr. János Demetrovics
Ph.D. Program: Information Systems

Head: Dr. András Benczúr

It is that the sciences do not try to explain, they hardly even

try to interpret, they mainly make models. By a model is meant a

mathematical construct which, with the addition of certain verbal

interpretations, describes observed phenomena. The justification

of such a mathematical construct is solely and precisely that it

is expected to work—that is, correctly to describe phenomena

from a reasonably wide area. Furthermore, it must satisfy certain

esthetic criteria—that is, in relation to how much it describes, it

must be rather simple.

John von Neumann, Method in the Physical Sciences

Acknowledgements

I would like to thank my advisor, Péter Érdi who has been guiding my work
for about six years now, sometimes in Budapest, sometimes in Kalamazoo,
for teaching me more disciplines than my brain was actually capable of taking
in. Péter, I know it seems impossible, but you have good chance of improving
the score in our endless ping-pong battle.

I would like to thank my colleagues, László Zalányi, Tamás Kiss, Máté
Lengyel, whom I worked with on the projects presented in this dissertation.
I should mention here that the contents of Sections 2.2.2.2 and 2.2.2.3 are
solely their work, I did not significantly contributed to the results. Leaving
out these sections would distort the project, leaving out the project from the
dissertation would hurt my good memories, so they are included.

I enjoyed the meetings with my collaborators, Jan Tobochnik and Kather-
ine Strandburg, I couldn’t had written this dissertation without their valu-
able input. Thanks to the students I worked with, Daniel Catlin, Andrew
Schneider, Elliot Paquette and Hannah Masuga.

In 2000 it seemed a good idea joining the computational neuroscience
group at KFKI, I am grateful to all members of the group. Thanks to Tamás
Nepusz for the work we did on igraph.

Thanks to my family and Nadia for motivation and their patience.

3

Contents

1 Introduction 9

1.1 Classic graph theory . 9
1.1.1 Euler’s problem . 11

1.2 The statistical approach . 12
1.2.1 Random graphs . 12
1.2.2 Small worlds . 13
1.2.3 Scale-free graphs . 14

2 Trait-based networks: a direct problem 16

2.1 The full, trait-based k-out model 17
2.2 The average case . 17

2.2.1 The degree distribution 18
2.2.2 Critical behavior . 19
2.2.3 Discussion of the average case 26

2.3 The effect of the traits . 27
2.3.1 The matrix-based description 27
2.3.2 Degree distribution . 28
2.3.3 The giant cluster . 28

3 Reverse engineering the evolution of networks 32

3.1 The model framework . 32
3.1.1 Introductory remarks 32
3.1.2 Citation networks . 33
3.1.3 Type of the citing vertex 38
3.1.4 Growing networks . 39
3.1.5 The most general framework 39

3.2 The frequentist solution . 41
3.2.1 Citation networks . 41
3.2.2 General networks . 45

3.3 The maximum likelihood solution 46
3.3.1 Citation networks . 46

4

3.3.2 Kernel functions with predefined shape 57
3.3.3 The maximum likelihood method as a scoring model . 58
3.3.4 General networks . 59

3.4 Generalizing goodness . 59
3.5 Time complexity of the algorithms 61

4 Applications 62

4.1 Citation Prediction . 62
4.2 Identifying changes in the dynamics 66

4.2.1 Introduction . 66
4.2.2 Patentological background 66
4.2.3 Modeling patent citation networks 67
4.2.4 Results . 69
4.2.5 Conclusions . 75

4.3 The dynamics of scientific collaboration networks 76
4.4 Comparing alternative models 80

4.4.1 Patent categories . 84
4.4.2 Change in the dynamics 87
4.4.3 Comparison to a scientific citation network 92

4.5 Validating network models . 95
4.5.1 The forest fire model 95
4.5.2 Preferential attachment is required 97

5 Other methods for the inverse problem 101

5.1 Ad-hoc methods . 101
5.2 Exponential random graphs 103
5.3 Generalized preferential attachment 105
5.4 Kronecker graphs . 105

6 Conclusions 107

6.1 Trait-based networks . 107
6.2 Reverse engineering network evolution 108

A Generating kernel-based networks 109

A.1 The partial prefix sum tree . 109
A.2 Citation networks . 111
A.3 Growing networks . 113

B Software tools: the igraph library 114

B.1 An example session . 118

5

List of Figures

1.1 A couple of regular graphs and a random graph. 11
1.2 The bridges of Königsberg . 12

2.1 Cluster size distribution for different δ-s and k = 1, 2 21
2.2 Giant cluster size S as a function of δ and k 23
2.3 Discontinuity in g′(1) for different values of k 25
2.4 Giant cluster size close to but above the phase transition . . . 26
2.5 Giant cluster size in the trait-based model 29

3.1 Some snapshots for a citation network 34
3.2 Examples for property vectors in citation networks 35
3.3 The direct and the inverse problems 37
3.4 Example of a measured kernel function 57
3.5 Generalizing goodness, sketch of the methodology 60

4.1 Error of citation prediction, in-degree based model 64
4.2 Error of citation prediction, in-degree and age based model . . 65
4.3 Attractiveness in the patent network, in the function of age . . 69
4.4 Attractiveness, patents, in the function of in-degree 71
4.5 The total attractiveness in the patent network 72
4.6 Out-degree versus time, in the patent network 73
4.7 Change of α, patent network 74
4.8 Degree based kernel of the cond-mat collaboration network . . 77
4.9 The cond-mat collaboration network, degree 78
4.10 The cond-mat network, number of papers 81
4.11 In-degree based kernel, patent network. 83
4.12 In-degree and age based kernel, patent network 84
4.13 In-degree and cited category based kernel, patent network . . 85
4.14 In-degree and citing category based kernel, patent network . . 86
4.15 In-degree and citing category based model, parameters 86
4.16 In-degree and category based model, parameters 87
4.17 In-degree, age and category based model, parameters 88

6

4.18 Change of the α, based on in-degree and age 89
4.19 Change of α based on in-degree and citing patent category . . 90
4.20 Change of α based on in-degree, cited and citing category . . . 90
4.21 Change of α and β based on in-degree, age and category . . . 91
4.22 In-degree based kernel for the APS network 92
4.23 In-degree and age based model for the APS network 93
4.24 Change of parameters, APS network, in-degree based kernel . 93
4.25 Change of the parameters in the APS network, in-degree, age . 94
4.26 Comparing the change in the patent and the APS networks . . 95
4.27 The kernel for the forest fire model extended with in-degree . 97

A.1 Partial prefix sum tree for eight elements. 110

B.1 Example degree based measurement using igraph 119

7

List of Tables

2.1 Fitted parameters, phase transition of the averaged network . 26

4.1 Fitting the cond-mat network with an in-degree model 79
4.2 The cond-mat network, based on the number of papers 80
4.3 Summary of models fitted to the US patent citation network . 82

B.1 Currently implemented kernel based generators in igraph . . . 115
B.2 Currently implemented vertex properties in igraph 116
B.3 Currently implemented measurement functions in igraph . . . 117

8

1
Introduction

The work presented in this dissertation uses the tools of graph the-
ory. It is thus appropriate to—at least briefly—introduce this disci-
pline.

The graph model means the description by binary relations. The idea is
basic, yet universal. If we think of the parent child relationship in a family
tree, the “connected by a flight” relationship in the airline network, the wires
connecting Internet routers, the links from one web page to another, these
are just a few examples to be grasped by the (binary) graph model. A gene
regulates the expression of another gene, a predator eats its prey, the Reader
might call his or her friend on his or her cell phone, or just send an email to
him or her. Clearly, binary relationships are everywhere.

The trial of a very general mathematical model is its utility. It can
either tell something new that other models can’t and will rise, or it will fail.
Although the author does not dare to ask the Reader to make the judgement
merely on the contents of this dissertation, he cannot deny hoping that his
work serves as a (maybe subtle) evidence in the defense of graph theory and
network science.

1.1 Classic graph theory

We do not intend to include all basic graph theory definitions normally ap-
pearing in the first chapter in any of the numerous graph theory books, but
focus on the ones needed in the following chapters.

There are many definitions of graphs in the literature, equivalent for
most purposes. Here is one of them [Andrásfai, 1997]. A graph is a triple,

9

G = (V, E,G), where V and E are disjunct sets and G maps E to pairs of
V . If the pairs are ordered then the graph is called directed, otherwise it is
undirected. The elements of V are the vertices (or nodes) of the graph, the
elements of E are the edges of the graph.

If v, w ∈ V and G maps e to the (v, w) ordered pair then we say that e is
an outgoing edge of v and an incoming edge of w; we also say that v and w
are neighbors and both the v and e pair and the w and e pair are adjacent. If
v = w then e is called a loop edge, if there is also an f ∈ E to which G maps
(v, w) then we call e and f multiple edges. A graph without multiple edges
and loop edges is called a simple graph. The degree of a vertex is the number
of adjacent edges to it. The in-degree is the number of incoming adjacent
edges, the out-degree is the number of outgoing adjacent edges. Naturally,
the definitions of this paragraph can be defined for undirected graphs as well.

A graph is called an empty graph if E is the empty set. A simple graph is
called a full graph if G maps to all possible (ordered or not ordered) non-loop
pairs of vertices.

Two graphs are called isomorphic if there is a bijective relation between
their vertices and edges, which also keeps the connections. For many purposes
two isomorphic graphs are identical.

For each graph, a set of points in 3D Euclidean space (T) can be defined,
which we call the geometric realization of the graph. We do not bore the
reader with the actual definition, just mention that the vertices correspond
to certain points of T and two vertices are connected with a (not necessarily
straight) line if there is an edge in the graph which maps to the two ver-
tices. For directed graphs the lines also have a direction. Fig. 1.1 shows the
geometric realizations of some graphs.

A path is a sequence edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, we say that
the path goes from v1 to vn. If v1 = vn then the path is a circle. (Obviously,
the same can be defined for directed graphs as well.) A graph in which
there is a path from every vertex to every other vertex is called a connected
graph. The shortest path from a vertex to another is one containing minimum
number of edges (the shortest path is not generally unique). If a graph is not
connected then is has multiple components, a component is a maximal set
of vertices in which there is a path from every vertex to every other vertex.
Components are sometimes called clusters.

The transitivity of a network is defined as the number of connected tri-
angles divided by the number of connected triples, an additional constant
factor scales the value to [0, 1]:

C = 3 · number of connected triangles

number of connected triples
. (1.1)

10

Figure 1.1: A couple of regular graphs and a random graph. (More precisely,

the geometric realizations of some graphs.)

See [Newman, 2003a] for the definition of local transitivity and the difference
between the two transitivity definitions.

We will use attributed graphs later on. An attributed graph is a tuple
(V, E,G, S,A), where (V, E,G) is a graph and A is a function mapping ver-
tices into the S non-empty set. In general, we do not assume anything about
the S set, it is not necessarily even ordered.

1.1.1 Euler’s problem

There is no introduction to graph theory without Euler’s problem, so let’s
get over it. The first documented graph theoretical work is from 1736, by
Leonhard Euler. The town of Königsberg (look for Kaliningrad on the map,
nowadays) is run across by the Pregel river. Seven bridges crossed the river
in Euler’s time, see Fig. 1.2.

The citizens posed the question whether it is possible to take a walk and
cross every bridge exactly once. Euler proved that there is no such walk by
proving that every vertex except for (at most) two must have an even vertex
degree in a connected graph to make such a walk possible. In the Königsberg
graph all vertex degrees are odd.

Classic graph theory has its classic questions, some of them already solved,
others still open. Graph coloring, planar graphs, network flows, many of them
would deserve a couple of pages here and it is to be feared that they turned
out to be (much) more interesting than the main topic of the dissertation,

11

Figure 1.2: The bridges of Königsberg. A schematic drawing and an even

simpler graph model.

so we leave them out. There are many excellent graph theory books, see e.g.
[Bollobás, 2004, Diestel, 2006, Gross, 2005, Harary, 1994]. See [Wasserman
and Faust, 1994] for an extensive textbook on social network analysis.

1.2 The statistical approach

We show three representative models from the recent developments of statis-
tical graph theory, also called network science.

1.2.1 Random graphs

Early graph theory was restricted almost solely to the study of regular struc-
tures. Random graphs were first defined by Solomonoff and Rapoport [1951]
and then rediscovered by Erdős and Rényi [1959, 1960, 1961]. They were
the first to focus on statistical properties of a distribution over an ensemble
of graphs instead of a given structure. They defined the most basic random
graph models, the Gn,p and the Gn,m models. Here we briefly discuss Gn,p,
the other model, Gn,m has very similar properties.

Gn,p is an ensemble of graphs with n vertices, where the probability of
a graph is defined by the p parameter: it is the probability that an edge is
present in the graph, independently of the other possible edges. In other
words, Gn,p is defined by an algorithm: take n vertices and for every pair
make a connection with probability p. Clearly, the procedure can create
every simple graph with n vertices (if 0 < p < 1), but not with the same
probability. Erdős and Rényi asked questions about the probability that an

12

ensemble of Gn,p graphs have a given statistical property or not. Notable
examples are the degree distribution of these graphs and the presence of a
giant component.

They took the limit of the infinite network, an ingredient of statistical
physics. They increased n while keeping z = (n − 1)p constant. The degree
distribution of the limit network is a Poisson distribution around the mean
degree z, meaning that large vertex degree has extremely small probability.

A random graph is said to have a giant component if, again in the limit
of the infinite graph and keeping the mean degree constant, the largest con-
nected component of it covers an infinite number of vertices. They concluded
that the graph has a giant component if z > 1, but not if z < 1. The z = 1
point is the place of a phase transition, and the average size of components
diverges here.

See the book by Bollobás [1985] for (much) more on random graphs.
See the works by Newman et al. [2001] and Molloy and Reed [1998] for a
generalization of random graphs.

1.2.2 Small worlds

Everyone has the experience of sitting next to a complete stranger on the
train, who turns out to work at the same place as the wife of our brother,
or who went to the same school as our parents. We live in a small world.
This has been actually shown by many studies, the first famous one was
conducted by Milgram [1967]. Based on experiments with sending a packet
from one end of the United States to another, by using only people’s close
acquaintances, he estimated that the average number of handshakes needed
to get to any person from another one is about six. Six degrees of separation.
Anyone to anyone else in the world. (The results were generalized to whole
world seamlessly.)

This leads to the small world problem: how is this possible? It is well
known that social networks (like the one Milgram utilized in his experiment)
are highly transitive: the friends of my friends tend to be my friends as
well. But how can the average longest distance in the network, the prop-
erty Milgram estimated, be so small, six for the social network of the whole
population of the world?

Watts and Strogatz [1998] gave a very simple model which could eas-
ily reproduce the small world phenomenon. Place the vertices on a regular
lattice and connect all vertices closer to each other than a small threshold,
like five steps. These connections represent our regular, highly transitive
relationships. Then take some connections and rewire them completely ran-

13

domly. In other words, an end point of an edge is rewired with probability p
to a uniformly randomly chosen new vertex, p is a parameter of the model.
These random connections represent our “random” meetings with strangers
who were originally not part of our small social circle. That’s it. If the value
of p is favorable, then, again, in the limit of an infinite network, the average
distance will be logarithmically small compared to the size of the network
because of the random connections, and the transitivity of the graph will be
high because of most of the original transitive connections are kept.

Small world networks lie somewhere between the order and randomness.
If p = 0 then no rewiring takes place and we stay with the completely reg-
ular, ordered lattice. High transitivity, thousand (a million?) degrees of
separation. If p = 1 then every edge is rewired, we essentially get a Gn,m

random network. Small transitivity, very (logarithmically) short distances.
In between we can have both. Yes, our friends’ friends are out friends most
of the time, but sometimes not, and that is enough.

1.2.3 Scale-free graphs

It is an important question how the degree of the vertices in a given network
is distributed. Do most vertices have the same degree, or is there a big
variance? In case of vaccination against a sexually transmitted disease it
is crucial to know whether most people have the same number of partners
or there are some hubs with much more connections than the rest [Liljeros
et al., 2001].

We know from the work of Price [1965] that the (in-)degree distribution
of scientific citation networks is usually a power-law: most papers are never
cited, or just a couple of times, whereas a few of them all the time [Mitzen-
macher, 2004, Newman, 2005]. Price [1976] also gave a minimal model to
explain this phenomenon, later the model was named preferential attach-
ment by Barabási and Albert [1999]. It is very simple, adds two assumptions
to the basic random graph model. One is growth. The vertices and edges
are added to the network continuously, instead of allowing every vertex to
connect every other in the very beginning. Two is the preferential attach-
ment. When a new vertex connects to some older ones, it chooses based on
the (actual) number of connections a vertex has. The higher the degree, the
higher the connection probability and the relationship is linear: if the degree
is twice as big, then the connection probability is twice as big too.

The model nicely explains the scale-free (in-)degree distribution of the
networks, observed widely in very different networks.

See the [Buchanan, 2003, Barabási, 2004, Watts, 2003a,b] popular books

14

and [Newman, 2003a, Albert and Barabási, 2002, Dorogovtsev and Mendes,
2003, Boccaletti et al., 2006] for reviews on network science. [Newman et al.,
2006] is an excellent collection of papers.

15

2
Trait-based networks: a direct

problem

At the time we started working with network science as a tool, proba-
bly the most obvious feature of real networks that was missing from
most of the models studied by mathematicians and physicists were

characteristics of individual nodes which influence the connection probability.
Thus, if the nodes represent individual persons, it is obvious that in many
circumstances two people are more likely to become connected in some form
of relationship because of the nature of their individual characteristics. The
model we discuss here was motivated by the need to incorporate this idea.
A similar idea was used in a preferential attachment model by Bianconi and
Barabási [2001] who assigned to each new node a fitness parameter. In their
model a larger fitness parameter may overcompensate the smaller probability
of attachment.

First we propose a simple model of growing networks whose statistical
properties are in some cases identical to a more complicated model containing
nodes with distinct characteristics. We will calculate the degree distribution
of the growing network, the distribution of cluster sizes and the emergence of
a giant cluster. We will also show how the number of attempted connections
made when a new node is added determines the position and type of the
phase transition as well as the cluster size distribution.

Then we study the model with vertex traits, calculate the degree distri-
bution of this version as well and by numerical simulations show that the
traits influence the position of the phase transition where the giant compo-
nent emerges. We show that the diversity of the trait preferences always

16

favors the formation of the giant component.

2.1 The full, trait-based k-out model

We consider a social network model where each node has individual char-
acteristics or traits. Each node that is added to the network is assigned a
permanent set of random traits which could be coded as an ordered binary
string or vector of length L. When a node is added it chooses randomly
k ∈ N possible partners from the already existing nodes, or if there are less
then k + 1 (because the simulation has not yet reached time step k + 2) it
chooses all the existing nodes as possible partners. A trait distance between
the new node and one of its possible partners is calculated based on their trait
vectors (~t1, ~t2) using a distance measure, D(~t1,~t2), such as the Hamming dis-
tance. Then a connection is formed between the two nodes with a probability
determined from a given probability distribution over the distance function
p(D). Different functions, p(D), correspond to different sociopsychological
situations. Thus, if we wish to model the case where people are more likely
to link together if they have similar traits, then p(D) would be a monotoni-
cally decreasing function of D. For this case, the simplest p(D) would be to
form a link if D is below some threshold. This procedure is repeated for each
possible partner of the new node. Thus, each new node can have initially up
to k links with the other existing nodes. Existing nodes can have more than
k links as more nodes are added to the network and link up with the existing
nodes. There are no multiple links between pairs of nodes.

2.2 The average case

If the trait vectors are drawn uniformly, and the vertices to link to are also
chosen randomly, many properties of the network simply depend on the prob-
ability δ, that two chosen nodes will link together:

δ =
∑

D

p[D(~t1,~t2)] r[D(~t1,~t2)] (2.1)

where r(D) is the probability of the distance D between two nodes, and
the sum is over all possible distance values. Thus, the model is reduced to
the following procedure. At each time step we add a node to the network,
and attempt to link with k existing nodes which are chosen at random. An
actual connection is made with a probability δ. The asymptotic behavior

17

of the network in the limit of large time t, does not depend on the initial
condition of starting with a single isolated vertex.

It is clear that some properties of the network depend on the detailed form
of p(D) and the nature of the trait vectors. Examples of such properties
include the distribution of traits in different parts of the network and the
correlation of traits with distance in the network. For example, one can
imagine a very simple network of nodes representing men and women. In
one network the probability of forming a link is independent of sex, and in
the other persons prefer to link up with members of the opposite sex. Clearly,
these rules lead to a bipartite network, which never appears if we ignore the
traits and calculate only with the average connection probability, δ. We still
examine the average model first, as we are interested in if and how (some)
structural properties change if we ignore the traits.

2.2.1 The degree distribution

Firstly, we will determine the degree distribution of the network, i.e. the
percentage of nodes with m edges. We will use a master-equation approach.
Denote by dm(t) the expected number of nodes with degree m at time t.
The number of isolated nodes, d0(t), will increase by (1 − δ)k, which is the
probability of the addition node not connecting to any existing node, and
decrease on average by kδd0(t)/t:

d0(t + 1) = d0(t) + (1 − δ)k − kδ
d0(t)

t
. (2.2)

The formula for the expected number of nodes of degree m > 0 is a bit more
complicated. For 1 ≤ m ≤ k there are two ways to increase dm: either
selecting degree m − 1 nodes for connection with the new node or the new
node having exactly m edges. For m > k, the new node cannot contribute to
dm. The decrease will be proportional to the probability of choosing a degree
m node for attachment.

dm(t + 1) =dm(t) + kδ
dm−1(t)

t
+

+

(

k

m

)

δm(1 − δ)k−m − kδ
dm(t)

t
if 1 ≤ m ≤ k, (2.3)

dm(t + 1) =dm(t) + kδ
dm−1(t)

t
− kδ

dm(t)

t
if m > k. (2.4)

These equations are correct as t → ∞, and numerical simulations show
that dm(t) ∝ pmt. Substituting this form into the equations for dm(t) we

18

obtain

pm =δm

m
∑

j=0

(

k

j

)

(1 − δ)k−j

(1 + kδ)

(

k

1 + kδ

)m−j

if m ≤ k, (2.5)

pm =pk

(

kδ

1 + kδ

)m−k

if m > k. (2.6)

The degree distribution pm decays exponentially.

2.2.2 Critical behavior

2.2.2.1 Cluster size distribution

If a network model is capable of generating unconnected networks, then it
is often an important question what is the component size distribution and
whether there is a phase transition between a collection of finite size clusters
and the appearance of a giant cluster much larger than the rest. The transi-
tion is similar to that in percolation, with our parameter δ playing the role
of the site occupation probability in a percolation model. The key difference
between our model and percolation models is that our nodes do not sit on a
lattice structure, and there are thus no geometric constraints. The definition
of a giant cluster in our model is somewhat different than a spanning cluster
in percolation models. Nevertheless, some of the behavior is similar.

Our model is similar to one by Callaway et al. [2001] where an infinite
order phase transition was found. In that model after a node was added to the
network, two nodes were picked at random and connected with probability δ.
Our model is more general in that we consider the effect of making more than
one link at any given time. Also, in our model the new links are between the
added node and existing nodes, whereas in the model by Callaway et al the
new links are between any two nodes in the network.

To determine the cluster distribution we use a procedure similar to the
one we used to calculate the degree distribution. The cluster number Nj(t)
denotes the expected number of clusters of size j. On average, at each time
step, (1 − δ)k isolated nodes arrive at the network and kδN1(t)/t nodes will
be chosen for attachment reducing N1. Thus, N1 is described by

N1(t + 1) = N1(t) + (1 − δ)k − kδ
N1(t)

t
. (2.7)

For j > 1 new clusters of size j come from connecting the new node to a
cluster of size j − 1 or if k > 1 using the new node to make connections

19

between smaller clusters whose sizes, together with the new vertex, add up
to j. Reducing Nj will be jkδNj(t)/t nodes from clusters of size j connecting
to the new node. Thus, we have

N2(t + 1) =N2(t) +

(

k

1

)

δ(1 − δ)k−1N1(t)

t
− kδ

2N2(t)

t
(2.8)

...

Nj(t + 1) =Nj(t) +

min(k,j−1)
∑

r=1

(

k

r

)

δr(1 − δ)k−rS(j, r) − kδ
jNj(t)

t
. (2.9)

with

S(j, r) =
∑

z1+...+zr=j−1
zi≥1, i≤r

z1Nz1(t)

t
· · ·

(j − 1 −
∑r−1

i=1 zi)Nj−1−
Pr−1

i=1 zi
(t)

t

(2.10)

The first sum in Eq. (2.9) determines the number of sums in the next term,
S(j, r). Each of these sums represent a cluster that is melted into the j sized
cluster. These equations are valid for t → ∞, where the probability of closed
loops tends to zero. The giant cluster, if there exists one, is an exception
in which connection of nodes in loops is not negligible. Thus, Eq. (2.9)
holds only for the finite sized clusters in the network. This property lets us
determine a generating function which we can use to find the size of the giant
cluster. Our simulations show that solutions of Eqs. (2.7), (2.8) and (2.9)
are of the steady state form Nj(t) = ajt. Using this form in Eqs. (2.7), (2.8)
and (2.9), we find

a1 =
(1 − δ)k

1 + kδ
a2 =

(

k
1

)

δ(1 − δ)k−1a1

(1 + 2kδ)
(2.11)

aj =
1

1 + jkδ

min(k,j−1)
∑

r=1

(

k

r

)

δr(1 − δ)k−r·

·
∑

z1+...+zr=j−1
zi≥1, i≤r

(

j − 1 −
r−1
∑

i=1

zi

)

aj−1−
Pr−1

i=1 zi

r−1
∏

l=1

zlazl
. (2.12)

Generally we cannot obtain a simpler equation for the cluster size distribution
aj , except for k = 1. Substituting k = 1 into the Eqs. (2.11) and (2.12) we

20

ln(j)

ln
(N

j
)

0 2 4 6 8 10

-1
5

-1
0

-5
0

δ = 0.3
δ = 0.6
δ = 0.8

ln(j)

ln
(N

j
)

0 2 4

-1
5

-5
0

δ = 0.05
δ = 0.15
δ = 0.3

-1
0

Figure 2.1: Cumulative cluster size distribution for different δ-s and k = 1

(left), k = 2 (right). The cumulative cluster size distribution has less noise

and it is a power-law if and only if the non-cumulative cluster size distribution

is a power-law as well. Solid, dashed and dotted lines are obtained from

a least squares fit indicating the power-law behavior of the distributions.

Simulation data were obtained by averaging over 500 runs of 106 time-steps

and are shown on a log-log plot. Note that in the right figure simulations

for δ = 0.05 and δ = 0.3 distributions do not follow a power-law. In Section

2.2.2.2 it is shown that there is a phase transition near δ = 0.146.

obtain after some algebra the general result

aj =(1 − δ)δj−1(j − 1)!

j
∏

m=1

1

1 + mδ
, (2.13)

which can be written in the form:

aj =
(1 − δ)Γ(1/δ)

δ2

Γ(j)

Γ(j + 1 + 1/δ)
, (2.14)

where Γ(x) denotes the gamma-function. Eq. (2.14) shows that the cluster
size distribution for k = 1 always follows a power-law distribution. This result
is confirmed by simulations shown in the left graph of Fig. 2.1. Distributions
of cluster sizes for k = 2 (right graph of Fig. 2.1), in contrast to k = 1 show
power-law behavior only near the phase transition.

2.2.2.2 Position of the phase transition

Fig. 2.2 shows the simulation results for S, the ratio of the average size
of the largest cluster to the total number of nodes versus the connection

21

probability δ. The figure suggests that there is a smooth transition in the
appearance of S at a specific value of δ between δ = 0 and δ = 0.2, which
depends on the parameter k. To predict the position of a possible phase
transition δc [Callaway et al., 2001], we will use a generating function for the
cluster size distribution [Wilf, 1994]. To derive the generating function we
use the iterative Eqs. (2.11), and (2.12). The generating function will be of
the form:

g(x) =
∞

∑

j=1

bjx
j , (2.15)

where

bj =jaj, (2.16)

is the probability that a randomly chosen node is from a cluster of size j.
Multiplying both sizes of Eqs. (2.11) and (2.12) by jxj , and summing over j
we derive a differential equation for g(x)

g = −kδg′ + x(1 − δ)k +

k
∑

i=1

(

k

i

)

δi(1 − δ)k−i(x2g′gi−1i + xgi). (2.17)

Rearranging for g′ we obtain

g′ =
(1 − δ)k − g/x +

∑k
i=1

(

k
i

)

δi(1 − δ)k−igi

kδ − x
∑k

i=1

(

k
i

)

δi(1 − δ)k−igi−1i
, a (2.18)

which can be further simplified to

g′ =
−g/x + (1 + (g − 1)δ)k

kδ − xkδ(1 + (g − 1)δ)k−1
. (2.19)

The generating function for the finite size clusters is exactly one at x = 1
when there is no giant cluster in the network and g(1) < 1 otherwise. Hence

S = 1 − g(1). (2.20)

Without an analytic solution for Eq. (2.19), we calculate S numerically by in-
tegrating Eq. (2.19) with the initial condition (x, g(x)) = (x0, x0(1−δ)k/(1+
kδ)) where x0 is small. This is equivalent to starting with a cluster of only
one node. In Fig. 2.2 there are results from direct simulations of the model
(symbols) and solid lines from the integration of the generating function.
The agreement is good which verifies the approximations.

22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

δ connection probability

S
gi

an
t

co
m

p
.

si
ze 1

k = 2
k = 3
k = 5

Figure 2.2: Giant cluster size S as a function of δ and k. Symbols are from

simulations of the growing network for 106 time steps averaged over 30 runs.

Lines are from the analytical calculations.

To discuss the phase transition location we first consider the cases k > 1.
Consider the expected value that a randomly chosen node belongs to a finite
size cluster. We can determine this quantity in terms of the generating
function g(x)

〈s〉 =
g′(1)

g(1)
. (2.21)

For those values of δ where no giant cluster exists, δ < δc, g(1) = 1, and
both the numerator and denominator of Eq. (2.19) goes to zero as x → 1.
Using L’Hopital’s rule we derive a quadratic equation for g′(1). The solution
of this equation is

g′(1) =
1 − 2kδ ±

√

(2kδ − 1)2 − 4k(k − 1)δ2

2k(k − 1)δ2
, (2.22)

for g(1) = 1. Because as δ → 0 all clusters will have size 1, one can show
that the correct solution of Eq. (2.22) is the one with the negative sign. In
addition from Eq. (2.22) we can find the location of the phase transition. It
is the value of δ where the solution of Eq. (2.22) becomes complex:

δc =
1 −

√

1 − 1/k

2
. (2.23)

In the region where there is a giant cluster δ > δc, Eq. (2.19) becomes as
x → 1,

g′ =
−g + (1 + (g − 1)δ)k

kδ − kδ(1 + (g − 1)δ)k−1
, (2.24)

23

which is still not solvable analytically. Making the approximation (1±a)k ≈
1 ± ka when a ≪ 1 , we can simplify Eq. (2.24) close to δc:

g′(1) ≈ kδ − 1

kδ2(1 − k)
, (2.25)

where g(1) < 1, δ > δc, and (g(1) − 1)δ ≪ 1. In Fig. 2.3 we show the
simulation results and the above derived theoretical functions for g′(1). We
can see that for δ < δc, where we have an explicit expression for g′(1) in terms
of the parameters k and δ the fit is very good. For δ > δc the fit is good close
to the phase transition point, where the approximation (g − 1)δ ≪ 1 holds.
Although below δc the description of g′(1) is very good, it seems that the
location of the phase transition and the value of the function g′(1) above δc

is somewhat different than the data. Also if we carefully check Fig. 2.3 at the
jumps, we find that the larger the jump the less accurate the theory seems to
be. This can be explained as follows. At the critical point the average size of
finite clusters jumps, hence much larger clusters appear in the network. As
we can only simulate for a finite time large (but not the giant) clusters are
underrepresented. The weights of them computed from the simulation data
are less then they would be in an infinitely long simulation. Away from the
transition regime fewer finite size clusters remain beside the giant cluster in
the network, and thus the distribution can be specified better.

Although the formalism using the generating function can be done for
k = 1, the meaning of a giant cluster is problematic. In Section 2.2.2.1 we
showed that the size-distribution of clusters for k = 1 always follows a power-
law which means there is no obvious border between the ‘giant’ cluster and
smaller clusters. There is not a sharp break between the largest and the next
largest cluster. The physical reason for this is that clusters grow only by
the addition of newly added nodes. This is different than the case for k > 1
and in percolation models where clusters can also grow by a link combining
two clusters. In this sense no giant cluster appears in the network except for
δ = 1. Eq. (2.19) becomes

g′(x) =
(1 − δ) − g/x + δg

δ(1 − x)
, (2.26)

which becomes 0
0

in the limit x → 1 with g(1) = 1. Applying L’Hopital’s
rule yields

g′(1) =
1

1 − 2δ
. (2.27)

At δ = 1
2
, g′(1) → ∞, which means the average size of finite clusters ap-

proaches infinity. From the definition of g(x) in Eq. (2.15) and the power-law

24

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

δ connection probability

g
′(1

)

k = 2
k = 3
k = 5

Figure 2.3: Discontinuity in g′(1) for different values of k. Solid lines are

theoretical, and symbols are results from the simulations of growing networks

for 106 time steps, averaged over 30 runs.

cluster size distribution for aj, it follows that g(1) = 1 for any δ 6= 1. To
see that g′(1) → ∞ as x → 1 for δ > 1

2
, we consider the sum form of the

generating function in Eq. (2.15). For large j, aj ≈ 1/(j1+1/δ) Eq. (2.14),
and g′ =

∑∞
j=1 j2ajx

j−1, which can not be summed for δ ≥ 1
2
.

When δ < 1
2
, the probability of a new node not joining a cluster is higher

then joining, and thus the weight of small clusters is higher than that of larger
clusters, and hence the average size remains finite. As δ → 1

2
, the probability

of forming clusters increases and so do the weight of large clusters.

2.2.2.3 Infinite-order transition

To show the nature of our phase transitions [Callaway et al., 2001], we numer-
ically integrated Eq. (2.19) for different values of k near the corresponding
critical δc. In Fig. 2.4 the linear parts of the log(-log(S)) plots suggest that

S(δ) ∝ eα(δ−δc)β

as δ → δc, (2.28)

and because all derivatives of S vanish at δc, the transition is of infinite order.
Table 2.1 contains the parameters of the fitted straight lines in Fig. 2.4.

As the calculations were done close to the numerical limit and referring to
the similar results by Callaway et al. [2001] we conjecture that β = 1/2 for
all k. This result suggests that the mechanism of the transition is common
and the number of possible partners for each node to link to determines the
speed of emergence of the giant cluster S. These results are in accord with

25

ln(δ − δc)

ln
[−

ln
(S

)]

-10 -8 -6 -4 -2

0.
5

1.
5

2.
5

3.
5

k = 2
k = 3
k = 5

k = 10
k = 20
k = 50

Figure 2.4: Numerical calculation of the giant cluster size close to but

above the phase transition. Least-squares fitted solid straight lines suggest

S(δ) ∝ eα(δ−δc)β

. The flat ends of the curves on the top appear due to the

limit of the accuracy of numerical integration.

k 2 3 5 10 20 50

α -0.256 -0.504 -0.758 -1.149 -1.530 -2.023

β -0.577 -0.569 -0.557 -0.554 -0.552 -0.550

Table 2.1: The parameter values (α and β) of the fitted lines in Fig. 2.4.

Taking into account that we were at the border of the maximal numerical

accuracy and that the fit is short we presume β = −1
2
.

Eq. (2.25), the average cluster size decrease is approximately independent of
k, but the size of the jump and the rate of decrease is driven by k.

2.2.3 Discussion of the average case

The presented model was intended to gain insight into the evolution of various
social networks by considering mechanisms that account for heterogeneity in
the population of participating entities. To analyze the statistical proper-
ties of the generated network we simplified the model. We found that the
structure of the network dramatically changes when the number of possible
links to a newly added node increases from k = 1 to k = 2. With k = 1 the
network does not form a giant cluster but the average cluster size goes to
infinity (at δ = 1

2
) in contrast to k ≥ 2, where the giant cluster appears in

26

an infinite-order phase transition and the average cluster size jumps discon-
tinuously but remains finite. The size of the jump corresponds to how slowly
the giant cluster overcomes the other competitive large clusters. However,
there is no transition for k = 1, where none of the clusters can absorb other
clusters. The distribution of the size of finite clusters always follows an expo-
nential distribution, both below and above the critical point for k > 1, while
the model studied in [Dorogovtsev et al., 2001a, Callaway et al., 2001] is in
a critical state below and at the critical point and exhibits an exponential
distribution of cluster size above the transition as in a Berezinskii-Kosterlitz-
Thouless phase transition. Thus, even though there are disconnected clusters
as in our model, there are significant differences in the behavior of the cluster
size distribution.

Our model is similar to a previous model of Callaway et al. [2001], but
there are essential differences in several points due to nature of the growth
algorithm: in the model of Callaway et al. network growth and connection
formation are independent while in our model only newly added nodes form
connections. Also, in our model multiple connections might be formed in one
time step depending on parameters k and δ. This difference is well reflected
in the generating function derived for the two models.

2.3 The effect of the traits

2.3.1 The matrix-based description

We now turn back to the full trait-based model to see the effect of the traits
compared to the averaged, δ-based mode. Let us now assume that there
are n different possible trait vectors, and n is finite. The model can be
then described by using a vector (r) of length n giving the distribution of
the different trait vectors and an n × n matrix (∆) giving the connection
probabilities of the trait vectors, k is the usual parameter.

We enumerate the possible trait vectors, a vertex is called a type i vertex
if its trait vector is the i-th in the enumeration. If the ri (0 ≤ i ≤ n)
(column) vector and the ∆ij (0 ≤ i, j ≤ n) matrix are given then the δ-based
counterpart of a trait-based model can be obtained as

δ = rT · ∆ · r, (2.29)

where the T superscript denotes the transpose.

27

2.3.2 Degree distribution

Let us know calculate the degree-distribution of the trait-based model. By
d

(i)
k (t) we denote the expected value of the degree of a vertex of type i. The

following equations are valid if m > k:

d
(i)
0 (t + 1) = d

(i)
0 (t) + ri[

n
∑

j=1

(1 − ∆ij)rj]
k − k[

n
∑

j=1

∆ijrj]
d

(i)
0 (t)

t
. (2.30)

d(i)
m (t + 1) = d(i)

m (t) + k[

n
∑

j=1

∆ijrj]
d

(i)
m−1(t)

t
− k[

n
∑

j=1

∆ijrj]
d

(i)
m (t)

t
. (2.31)

The corresponding equations for 1 ≤ m ≤ k are more difficult, since combi-
natoric terms appear. They are not important however as we’re interested
in the behavior of the tail of the degree distribution. Simulations show that
the degree distribution is stationary, d

(i)
n = p

(i)
n t, so we have

p(i)
m = p

(i)
k (

kai

1 + kai
)n−k, ai =

n
∑

j=1

∆ijrj . (2.32)

This means that the degree distribution is the sum of exponential distri-
butions, and the tail follows the slowest decaying term, the vertex type with
the highest ai “attractiveness” dominates.

Thus, although the quantitative behavior is different in the full model
than the reduced model, the qualitative behavior is the same and it is a
basic characteristic of the models based on uniformly random choice.

2.3.3 The giant cluster

Unfortunately it is in practice too difficult to carry out the calculations based
on master equations and generating functions to exactly determine the posi-
tion of the phase transition in the full trait-based model.

While the trait-based case might have the same kind of infinite order
phase transition, the position of the phase transition is surely affected by
fine structure of the trait distribution vector and the trait preference matrix.
We demonstrate this with a simple model. Let us assume that we have two
types of vertices and the trait distribution vector and the preference matrix
are given as

r =

[

x
1 − x

]

, ∆ =

[

1 1
1 0

]

, (2.33)

with the single parameter x. Then, according to Eq. (2.29) x can be calcu-
lated from the δ average connection probability as x = 1 −

√
1 − δ.

28

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

δ connection probability

S
gi

an
t

co
m

p
.

si
ze 1

k = 2 red.
k = 5 red.
k = 2 tr.
k = 5 tr.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

cluster merge probability

S
gi

an
t

co
m

p
.

si
ze 1

k = 2 red.
k = 2 traits

Figure 2.5: Left plot: comparing the giant cluster size S in the reduced,

averaged and the full, trait-based models. Right plot: the giant cluster size

in function of µ. The µ cluster merge probability is a much better predictor

for the position of the phase transition than δ. Both plots show the average

of 30 simulations, each simulation had 106 vertices.

We simulated the averaged model and the trait based model with the
same average connection probability and by varying δ compared the phase
transition positions in the two models. The results are shown in Fig. 2.5.

Clearly, the structure of our ∆ matrix favors the generation of large clus-
ters, since there is a vertex type, which always connects to the chosen vertices
and this vertex type tends to dominate in the larger clusters. It is a natural
question whether the vertex correlation introduced by the non-uniform at-
tachment probabilities always favors the formation of the giant component,
or the phase transition position can be also “shifted” to the right. This
actually includes two questions:

1. Is the transition threshold always smaller in the trait-based model?

2. If δ is fixed then is the giant cluster always bigger in the correlated
network?

The second question is easily answered by Fig. 2.5, which shows both possi-
bilities. Let us deal with the first question then.

In the following we assume that k = 2. From Fig. 2.5 we know that the δ
parameter does not accurately predict the position of the phase transition if
degree correlations are present. A better predictor is the probability that a
new vertex connects two clusters, we denote this by µ. Clearly, in the reduced
model µ = δ2. In the trait-based model we can estimate µ by defining the

29

attractiveness of the vertices:

ai =

n
∑

j=1

rj∆ij, (2.34)

this is the probability that a vertex of type i connects to a randomly chosen
vertex. Then we have

δ =

n
∑

i=1

riai, µ ≈
n

∑

i=1

ria
2
i . (2.35)

See the second figure in Fig. 2.5 for experimental evidence in favor of
using µ for predicting the phase transition position.

Let us now fix the r > 0 vector (if ri = 0 then this vertex type can
be simply omitted) and discuss the behavior of µ in the function of the ai

(1 ≤ i ≤ n) values at a fix δ average connection probability. We want to
solve the minimization/maximization problems

max
a

n
∑

i=1

ria
2
i , min

a

n
∑

i=1

ria
2
i ,

n
∑

i=1

riai = δ, (2.36)

0 ≤ ai ≤ 1 and 1 ≤ i ≤ n. This is actually quite easy with the Lagrange
multiplicator method. The Lagrange function is

L(a1, . . . , an, λ) =

n
∑

i=1

ria
2
i + λ[

n
∑

i=1

riai − δ], (2.37)

its partial derivatives are

2riai + λri = 0, 1 ≤ i ≤ n,

n
∑

i=1

riai − δ = 0. (2.38)

If ri > 0 for all 1 ≤ i ≤ n then the only solution of this is ai = δ for all 1 ≤
i ≤ n. With some simulations it is easy to see that this is a minimum point,
µ is the smallest possible if all the vertices have the same attractiveness,
which naturally happens in the δ-based model.

We have shown that any kind of correlation introduced to the trait-based
model (compared to the averaged, reduced case) increases the probability
that a new vertex connects two clusters, and thus reduces the threshold of
the phase transition to a giant cluster. It is clear from the right plot of
Fig. 2.5 that our estimation based on the µ join probability is not exact, it

30

does not take into account the distribution of the traits within the clusters.
We still believe that our finding is an important result.

In parallel to our work, and also later, many researchers studied trait-
based network models, although in most cases static networks. In particular,
Bollobás et al. [2005] proved our result about the infinite order phase tran-
sition rigolously, see also [Bollobás and Riordan, 2005]. Other such works
include [Söderberg, 2002, 2003a,b,c, Boguna and Pastor-Satorras, 2003, Bol-
lobás et al., 2007].

31

3
The inverse problem:

reverse engineering the

evolution of networks

This chapter contains the main part of my dissertation. In Sec-
tion 3.1 we first introduce a simple model framework for kernel-based
citation networks and generalize that to wider classes of networks.

Then in Sections 3.2 and 3.3 give two solutions to the inverse problem of
best describing the dynamics of a given network in the kernel-based frame-
work.

3.1 The model framework

3.1.1 Introductory remarks

The kernel-based framework use attributed simple graphs. Recall that a
graph is simple if it does not contain multiple and loop edges and in an
attributed graph vertices are labeled with strings from a given alphabet.

The model framework is a discrete time, discrete space, stochastic system.
The discrete space seems obvious, finite graphs are discrete objects after
all. If a graph possesses continuous vertex attributes then we require the
discretization of these. Discrete time means that we will define time steps
which serve as snapshots of the dynamic graph. It is analogous to a movie
composed of still images: we create snapshots of the dynamic graph and

32

describe the changes between the consecutive still images. All changes in
the network, addition and deletion of edges and vertices happen between
the time steps. Finally, stochastic means that the description does not give
exactly how a given graph changes in time, it gives only the probabilities of
all possible changes. As the reader familiar with Markov chains surely noted
already, the model framework is basically a Markov chain where the state of
the system is an attributed graph.

3.1.2 Citation networks

We first define the model framework for citation networks. Citation net-
works form a subset of all directed evolving networks, they are special in two
respects, see also Fig. 3.1 for an example citation network.

1. Edges and vertices are never deleted from the network. This allows us
to define two functions, tV and tE which give the last time step (i.e. the
snapshot) when a given vertex or edge is not present in the network.
If vertex v appears first in time step s, then tV (v) = s − 1.

The reason for this strange notation is that whenever we want to mea-
sure the probability that a given vertex or edge is added we do this
based on the state of the network right before adding the edge.

Obviously, the tV and tE functions must be compatible, which means
that the end points of an edge must be added before the edge itself, if
e = v → w then tV (v) ≤ tE(e) and tV (w) ≤ tE(e).

In the following, we omit the E and V indices if it is clear whether the
argument is an edge or a vertex.

We denote the graph at time step t by G(t). V (G(t)) is the set of all
vertices in the network at time step t.

2. All outgoing edges of a vertex are added right after the vertex itself. In
the snapshot analogy this means that if there are two vertices, v and
w, and v appears before w on the snapshots, tV (v) ≤ tV (w), then all
the outgoing edges of v must also appear before w, tE(e) ≤ tV (w) for
all outgoing edges e of v.

From now on, we will assume that a single vertex is added to the citation
network in each time step.

We are ready to define the first kernel function, which tells the probability
that a given edge cites a given vertex: A(·). Note that this single kernel
function does not describe whether or when a given vertex is added to the

33

0

1 2

3

4

5

0

1 2

3

4

5

6

7 8

9

10

0

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

Figure 3.1: Some snapshots for a citation network. Since the new vertices are

always added to the right and to the top of old vertices, all edges go to the

left or downwards. Here we show three snapshots, vertices 6-10 are added

between the first and the second and 11-19 between the second and the third.

Notice that all outgoing edges of a vertex are added with the vertex itself.

34

0

1 2

3

4

5

[d = 4]

[d = 3] [d = 0]

[d = 1]

[d = 1]

[d = 0]

0

1 2

3

4

5

[d = 4, a = 2]

[d = 3, a = 2] [d = 0, a = 1]

[d = 1, a = 1]

[d = 1, a = 1]

[d = 0, a = 1]

Figure 3.2: Examples for property vectors in citation networks. In the first

network the vertices have a single property, their in-degree. In the second

network a second property is added to the property vector, the “age” of the

vertices. The age of a vertex is defined as the number of time steps passed

since the vertex was added to the network.

network, nor the number of citations it makes. But if we know that a citation
is made by a certain vertex then it gives the probability that this single
citation goes to a given vertex.

The kernel function depends on the properties of the potentially cited
vertices. These properties can be either structural: the degree or some other
centrality score of the vertices, their local transitivity, etc.; or non-structural:
the age of the actors in a social network or the topic of the web-pages on the
WWW, etc. The properties might as well be time-dependent. See Fig. 3.2
for property vector examples. Note that in this description the citing vertex
is passive, the citation probability only depends on the properties of the
potentially cited vertices. We will fix this shortcoming later.

Sometimes it is easier to talk about vertex types rather than property
vectors. If there are n possible different property vectors, then we just say
that there are n vertex types, denoted by natural numbers up to n. Even if
the number of possible property vectors is infinite (e.g. vertex degree can be
arbitrarily large), only a finite subset of them appears during the evolution
of a given network. If we assign a property to the vertices which may take
continuous values, then for solving the inverse problem (see later) these values
must be discretized first, for practical reasons. In the following, the term i-
vertex (e.g. 1-vertex) means a vertex having property vector of type i (type
1 for a 1-vertex).

35

Now, we define the probability that some vertex with a given property
vector x (vertex type x if you like) is cited by an edge. This is the heart
of the framework. c(e, x) are indicator random variables bound to a fixed
network. Indicator random variables are binary: c(e, x) is 1 if and only if
edge e cites a vertex of type x, otherwise it is 0. The model framework defines
the probability that c(e, x) is one:

P [c(e, x) = 1] =
A(x)N(t(e), x)

∑

j∈V (G(t(e))) A(xj(t(e)))
. (3.1)

Here A(x) is the attractiveness (kernel function value) of a single x-vertex,
N(t(e), x) is the number of x-vertices in time step t(e), and xj(t(e)) is the
property vector of vertex j in time step t(e). G(t(e)) is the graph at time
step t(e) and V (G(t(e))) is its set of vertices. From now on, we will often
denote the normalization factor by S(t(e)):

S(t(e)) :=
∑

j∈V (G(t(e)))

A(xj(t(e))). (3.2)

Please note that an A(·) kernel function is the same in all respects as
cA(·), where c is a positive number. This means that the value of A(·) for
one vertex type can be chosen arbitrarily, we will often use this fact and
either choose A(x) = 1 for some x vertex type or

∑

i A(i) = 1, where i goes
over all vertex types.

Observing a single edge e in a given network is an experiment performed
on the network, and the goal of these experiments is to determine A(·).

The inverse problem (Fig. 3.3.) means to construct an A(·) function that
well describes the evolution of the network. Certainly, this makes sense only
if we are able to define what well means here. A natural definition would be
the probability that the given kernel function generates exactly the network
G under study, or more precisely, the probability that the kernel function is
able to guess the outcome of all edge experiments:

P [A(·) generates G] =
∏

e

A(xe)

S(t(e))
. (3.3)

Here, xe is the type (i.e. property vector) of the vertex cited by edge e (at
time step t(e)). If these probabilities are (relatively) high, then the kernel
function fits well the network.

For a large network these probabilities are very small (even if relatively
high), we take the logarithm of Eq. 3.3 and translate it by subtracting the
logarithmic goodness of the totally random attachment. This way, a kernel

36

Kernel-based
generator

Kernel function(s)

A(·)
Network

(artificial)

Kernel-based

measurement

Kernel function(s)

A(·)
Network

(real)

Figure 3.3: The direct and the inverse problems. In the direct problem we

have the A(·) kernel function (and maybe other kernel functions for more

general networks) and we use a kernel-based network generator algorithm to

create an artificial network. The question is what kind of structures we can

obtain from a given class of kernel functions.

In the inverse problem we examine a real network, assembled from observa-

tions. The kernel-based measurement algorithm takes this as the input and

gives a possible kernel function as the output. If the measurement algorithm

is good then the output kernel function is good, i.e. it creates the observed

network with high probability.

37

function with goodness value zero tells absolutely no information about the
network. We also divide by the number of edges to obtain a value typically
between zero and one. Thus, the goodness of A(·) is defined as:

1

|E|

[

∑

e

log
A(xe)

S(t(e))
−

∑

e

log
1

t(e)

]

. (3.4)

Note that the goodness score is not an absolute measure, it makes no
sense to compare the goodness of kernel functions for different networks. It
makes, however, sense to compare the goodness of different kernel functions
on the same network. By this way, alternative descriptions of a system can
be created and we have a quantitative measure to tell which one is a better.
We show example applications for this in Section 4.

Assuming we have a procedure to find the kernel function with the highest
goodness on a given set of vertex properties, we can also tell whether it
is worth to extend a set of properties with an additional one: if the best
kernel function for the larger set is not substantially better than the one for
the smaller set, the extension is not needed, as it adds nothing (or almost
nothing) to the goodness.

See Sections 3.2 and 3.3 for methods to solve the inverse problem. In the
rest of this Section we generalize the framework in three steps: first, we take
into account the type of the citing vertices in citation networks, secondly, we
consider growing networks, i.e. networks without edge and vertex deletion,
and thirdly, general networks with arbitrary combinations of edge and vertex
additions and deletions.

3.1.3 Type of the citing vertex

The framework introduced in the previous section ignores the type of the
citing vertex when defining the probabilities. It is very easy, however, to
overcome this. We can simply define different kernel functions for different
citing vertex types, and in each time step the kernel function corresponding
to the type of the citing vertex is effective.

Note that it is not necessary to define the same vertex types for the citing
and the cited vertices, in practice they usually have different types.

Using the types of the citing vertices provides a simple way to create
time dependent kernel functions. If we are only interested in the dynamics
of a given time period, then we can define two (citing) vertex types, one
inside and the other outside the time period in question, and the two kernel
functions can be compared. By using a sliding time window for defining the

38

vertex types, we can have a series of smoothly changing – or not changing,
if the dynamics is stationary – kernel functions.

3.1.4 Growing networks

This section generalizes the framework defined for citation networks to gen-
eral growing networks. In these it is still true that edges and vertices are
never deleted. It is, however, not necessarily true that the adjacent edges
of a newly added vertex are added right after adding the vertex itself. The
networks discussed in this section can be either directed or undirected. Also,
it is no longer true that a single vertex is added to the network in each time
step. Instead, any number of vertices and edges might be added in a time
step.

Now, the kernel function A(·, ·) depends on the properties of the two
potentially connected vertices and it is symmetric for undirected networks.
The c(e, x, y) indicator random variable is 1 if and only if edge e connects
a x-vertex to a y-vertex. The model framework gives the probability that
c(e, x, y) = 1:

P [c(e, x, y) = 1] =
A(x, y)N(t(e), x, y)

S(t(e))
. (3.5)

The equation is analogous to the citation network case, N(t(e), x, y) gives the
number of missing edges between x- and y-vertices, for undirected networks
it is symmetric in the second and third variables. The normalization factor
in the denominator goes over all pairs of vertices which could be possibly
connected. For directed networks it is:

S(t(e)) =

n
∑

i,j=1

N(t(e), i, j)A(i, j), (3.6)

for undirected ones we need a slight modification to count every possibility
only once:

S(t(e)) =
n

∑

i,j=1
i≤j

N(t(e), i, j)A(i, j). (3.7)

The number of vertex types is denoted with n, as usual.

3.1.5 The most general framework

Just like edge addition can be described by defining the addition probabilities
based on a simple kernel function, the same can be easily done with edge

39

deletion as well. If we know that some edge is being deleted from the network
(we denote the to-be-deleted edge by e), then the probability that an edge
connecting an x-vertex to a y-vertex will be deleted is given as

P [d(e, x, y) = 1] =
D(x, y)Nd(t(e), x, y)

Sd(t(e))
, (3.8)

where D(x, y) is the kernel function governing edge deletion, Nd(t(e), x, y)
is the number of edges connecting x- and y-vertices in time step t(e), for
undirected graphs it is symmetric in the second and third variables, and the
Sd(t(e)) normalization factor is defined as

Sd(t(e)) =
n

∑

i,j=1

Nd(t(e), i, j)D(i, j) (3.9)

for directed networks and as

Sd(t(e)) =
n

∑

i,j=1
i<j

Nd(t(e), i, j)D(i, j) (3.10)

for undirected networks.
If in a given network we want to model both the addition and the dele-

tion of the edges then we have two kernel functions, A(·, ·) for the additions
and D(·, ·) for the deletions. Note that these two are formally not connected
and this is intentional. In general, we cannot know whether edge additions
and edge deletions are related in a given network, thus we must not assume
anything about their relation. Naturally, after the measurement was done,
it may turn out that they are connected in some way. Note that it is not
required to model edge addition and deletion based on the same vertex prop-
erties.

Even if we have the A(·, ·) and D(·, ·) kernel functions for a given network,
that is still not a complete description in the sense that we don’t know
how vertices are added and deleted and we also don’t model which of these
edge/vertex deletion and addition events happen at any given time. So far,
we only know that if an edge is added then it is added according to A(·, ·),
and if an edge is deleted then it is deleted according to D(·, ·).

It is not difficult to create the remaining required kernel functions:

1. Av(·) describes what kind of vertex is added to the network if we know
that a vertex will be added. Av(·) may depend on the properties of the
whole network in a given time step.

40

2. Dv(·) describes what kind of vertex is deleted from the network if we
know that a vertex will be deleted. Again, Dv(·) may depend on the
properties of the network in the current time step.

3. E(·) describes which event happens next: edge deletion, edge addition,
vertex deletion or vertex addition. This kernel function may depend
on the properties of the network in the current time step.

These five kernel functions together serve as the most general kernel-based
network evolution framework.

3.2 The frequentist solution

3.2.1 Citation networks

3.2.1.1 The scoring model

The first method we develop for the inverse problem follows a simple scoring
model. From the model framework it is clear that vertex types cited many
times should have a higher kernel function value compared to rarely cited
vertices. (But note that this is only a rule of thumb and not necessarily
always literally true.)

The scoring model considers each edge as an independent experiment and
for each experiment gives a non-negative score for all vertex types. Vertex
types not cited get zero score. Then the estimated kernel function values for
each vertex type are obtained as the average of the scores. The assigned score
for a given edge should not be always the same constant amount, since we
want to assign higher scores for edges which were added when the competition
was bigger. Let us give a simple example. In time step two there is a single
vertex present in the network, it is thus not a big acknowledgement if the
newly added vertex cites this single existing vertex, obviously a smaller score
should be given than the one awarded for a citation when there are many
vertices present. Also, if a vertex type is very frequent in the network, then
citing it should result a smaller score. Surprisingly, applying these two rules
linearly in the scoring is enough to obtain the “right” kernel function values.
Let’s see this formally.

From Equation 3.1 we can easily obtain the kernel function:

A(x) =
P [c(e, x) = 1]S(t(e))

N(t(e), x)
. (3.11)

41

An observed edge e either cites an x-vertex or not: if not, then the correct
estimation for P [c(e, x) = 1] is zero, thus the approximation, the score for
A(x) is also zero. In the other case the approximation is

Āe(x) =
S(t(e))

N(t(e), x)
, (3.12)

where Āe(x) reads as “the approximation of A(x) based on edge e”. Taking
the average of the scores we get

Ā(x) =
1

|Ex|
∑

e∈i(x)

S(t(e))

N(t(e), x)
. (3.13)

Note that we don’t take the average for all e edges as it might happen that
in graph G(t(e)) there is no x-vertex and N(t(e), x) is zero. Ex is the subset
of the edges for which G(t(e)) contains at least one x-vertex. Obviously, we
cannot make experiments for x if it is not represented in the network. i(x)
is the set of edges citing x vertices, for other edges the score is zero.

The only problem to solve when applying the frequentist method is that
we don’t know S(t), as it is a function of A(·), the kernel function which we
want to measure. We can, however, apply an iterative approach:

1. We assume that A0(x) (the 0-th approximation of A(·) is the same
for all x, i.e. A(x) = 1 and determine S0(t) accordingly: S0(t(e)) =
|V (G(t(e)))|, the number of vertices in the graph in time step t(e).

2. We use Sk(t(e)) to determine Ak+1(x) for all x via the frequentist
method and calculate Sk+1(t(e)) from it.

3. We norm the Ak+1 vector using a suitable vector norm. E.g. we divide
by the largest A(·) element. This does not essentially change the kernel
function and allows to handle numerical problems.

4. We repeat the previous two steps until Ak(x) and Ak+1(x) are closer to
each other than a predefined δ threshold.

If this procedure converges, then we obtain a consistent solution for A(·). We
will show that the procedure always converges to the unique solution if the
network fulfills certain minimal requirements.

3.2.1.2 Convergence and uniqueness

It is not very difficult to prove that the procedure discussed in the previous
section converges. For this we write the two substeps of updating Ak+1(x)

42

and Sk+1(t) into a single equation. We need some more notation. First, let
N t(e) = |V (G(t(e)))| for simplicity. We denote the ratio of x-vertices at time
step t by pt

x, obviously,
∑

x pt
x = 1 for all t. Finally, the set of edges citing

x-vertices is denoted by i(x). (More precisely, x-vertices at the time of the
citation, as the vertex types may change in time.) Calculating Sk+1(t) is
done by

Sk+1(t(e)) = N t(e)
n

∑

j=1

p
t(e)
j Ak(j). (3.14)

After doing one step of the frequentist estimation we have

Ak+1(x) =
1

|Ex|

n
∑

j=1

∑

e∈i(x)

p
t(e)
j

p
t(e)
x

Ak(j). (3.15)

The last equation gives a linear transformation of Ak to obtain Ak+1.
This is obvious if we rewrite it in the form:

Ak+1(1) =
1

|E1|
∑

e∈i(1)

p
t(e)
1

p
t(e)
1

Ak(1) + · · · +
1

|E1|
∑

e∈i(1)

p
t(e)
n

p
t(e)
1

Ak(n)

Ak+1(2) =
1

|E2|
∑

e∈i(2)

p
t(e)
1

p
t(e)
2

Ak(1) + · · · +
1

|E2|
∑

e∈i(2)

p
t(e)
n

p
t(e)
2

Ak(n)

...

Ak+1(n) =
1

|En|
∑

e∈i(n)

p
t(e)
1

p
t(e)
n

Ak(1) + · · · +
1

|En|
∑

e∈i(n)

p
t(e)
n

p
t(e)
n

Ak(n)

(3.16)
This equation is very similar to the ‘power method’ which can be used to

calculate the leading eigenvector of a matrix in many cases. Let’s see briefly
how the power method works. If M is a square matrix then a numerical
method for calculating its leading eigenvector (i.e. the one corresponding to
the largest eigenvalue in absolute value) is the iteration:

bk+1 =
Mbk

‖Mbk‖
(3.17)

with some b0 starting vector. It can be proven that the bk sequence con-
tains a subsequence which converges to the leading eigenvector, provided the
following two assumptions are fulfilled:

1. The eigenvalue with the largest absolute value – the dominant eigen-
value – is unique. Note that this also implies that it must be real, as
complex eigenvalues appear in conjugate pairs having the same absolute
value.

43

2. The starting vector b0 has a nonzero component in the direction of the
eigenvector associated with the dominant eigenvalue. This assumption
can be easily fulfilled if one can choose b0 freely: b0 = (1, 1, . . . , 1)T is
fine.

Our matrix is somewhat special in the respect that all its elements are
non-negative. Let us for now assume that all the elements are positive,
because this has important consequences for the power method.

If the elements of the matrix are positive then according to the Perron-
Frobenius theorem it is true that

1. there is a unique (real) dominant eigenvalue,

2. the eigenvector associated with the dominant eigenvector is all positive.

3. In addition, having a real dominant eigenvalue ensures that the bk series
itself (and not only a subseries) converges to the leading eigenvector.

Note that the convergence of the method does not depend on the vector
and matrix norm chosen, although they need to be compatible. This means
that the normalization step can be either carried out via dividing Ak+1(·) by
its maximum element or the sum of all elements. Either way, the same kernel
function is obtained, the only difference is that A(x) = 1 is set for some x
when the first norm is used and

∑

x A(x) = 1 is fixed in the second case.
Let’s take a look at the all positive matrix assumption. In our case this

requirement means that for every pair of vertex types there must be a case
when the first vertex type is cited and the second vertex type is present in
the network and vice versa. All pairs of vertex types have to be measured
against each other. Note that this ‘representation restriction’ is sufficient for
the convergence, but it is an open question whether it is required, too.

With this we have proven that the proposed iteration method always con-
verges to a positive A(·) function provided that the representation restriction
is fulfilled. Moreover, we’ve also proven that the solution of the iteration is
unique. To summarize, the following theorem is true:

Theorem 3.1 Starting from [1, 1, . . . , 1], the frequentist method, as defined

by Eq. (3.15) converges to a positive vector if the sufficient representation

restriction is fulfilled.

44

3.2.2 General networks

It is not difficult to see that the frequentist solution can be applied to non-
citation growing networks the same way. Recall that for a non-citation net-
work we have

S(t(e)) =

n
∑

i,j

N(t(e), i, j)A(i, j), (3.18)

and thus

Ā(x, y) =
1

|Exy|
∑

e∈i(x,y)

S(t(e))

N(t(e), x, y)
= (3.19)

1

|Exy|
∑

i,j

∑

e∈i(x,y)

N(t(e), i, j)

N(t(e), x, y)
A(i, j), (3.20)

where Exy is the set of edges e for which there is a possibility to connect an x-
vertex to a y-vertex in time step t(e), as usual it is symmetric for undirected
networks, and i(x, y) is the set of edges connecting x-vertices to y-vertices,
this, too, is symmetric for undirected networks.

This is the same linear transformation as for citation networks, but this
time we have n2 variables instead of n:

Ak+1(1, 1) =
1

|E11|
∑

e∈i(1,1)

N
t(e)
1,1

N
t(e)
1,1

Ak(1, 1) + · · · +
1

|E11|
∑

e∈i(1,1)

N
t(e)
n,n

N
t(e)
1,1

Ak(n, n)

Ak+1(1, 2) =
1

|E12|
∑

e∈i(1,2)

N
t(e)
1,1

N
t(e)
1,2

Ak(1, 1) + · · · +
1

|E12|
∑

e∈i(1,2)

N
t(e)
n,n

N
t(e)
1,2

Ak(n, n)

...

Ak+1(n, n) =
1

|Enn|
∑

e∈i(n,n)

N
t(e)
1,1

N
t(e)
n,n

Ak(1, 1) + · · · +
1

|Enn|
∑

e∈i(n,n)

N
t(e)
n,n

N
t(e)
n,n

Ak(n, n).

(3.21)

We used the notation N
t(e)
x,y = N(t(e), x, y) here.

Using the same reasoning as for citation networks, this iteration always
converges to a positive A(·, ·) vector if the representation restriction is ful-
filled.

45

3.3 The maximum likelihood solution

The frequentist solution discussed in the previous section is intuitive, we es-
timate a quantity by the average of the measurement experiments performed
for it. However, it does not generally guarantees that the obtained kernel
function has maximum goodness for the set of fixed vertex properties.

In this section we introduce a maximum likelihood method for extracting
the kernel-function from the network evolution data. Maximum likelihood
methods try to find the kernel function which is the most probable for a given
network. In our framework this means that we explicitly search for the kernel
function with the highest goodness value.

3.3.1 Citation networks

The probability that a network G was generated according to the kernel
function A(·) is denoted by P [A(·)|G]. According to Bayes’ rule this is

P [A(·)|G] =
P [G|A(·)]P [A(·)]

P [G]
, (3.22)

where P [G|A(·)] is the probability that A(·) generates G, P [A(·)] is the prob-
ability of the appearance of the kernel function A(·) and P [G] is the proba-
bility of the appearance of the graph(s) G. Sadly, we generally don’t know
anything about P [A(·)] and assume that every A(·) is equally probable. Here
an “Occam’s razor” assumption could be used to favor simpler kernel func-
tions, but it is unclear how to do this quantitatively, so we decided to drop
it.

P [G] is only a constant for our concerns, so it turns out that we need to
maximize P [G|A(·)], which is the same as finding the kernel function with
maximum goodness. Well, almost. The goodness of a kernel function is not
exactly the probability that it generates the network, but the probability that
it can guess the outcome of all edge experiments correctly. If we assume that
these experiments are independent then this is the same as the probability
that the kernel generates the network in exactly the same way as it happened
during its evolution.

We need to find

max
A(·)

∏

e

A(xe)

S(t(e))
. (3.23)

If we want to maximize in the space of all possible kernel functions, then
the solution is trivial. The property vector includes t(v) and the time step
of the citing edge t(e). The kernel function is defined to be one if e cites v

46

and zero otherwise. This means that e cites vertex v with probability 1 and
obviously results the maximum goodness. (We assumed a total ordering on
the edges here, an arbitrary compatible total ordering can be defined if the
original edge ordering were partial.)

It makes more sense to fix the property vectors and search for the best
kernel function based on these fixed vertex types. From now on we focus on
the problem of finding the best kernel function values assuming the property
vectors are already fixed.

3.3.1.1 The maximization problem

We first define the function to be maximized for citation networks. Recall,
that the S normalization factor is

S(t(e)) = N t(e)
n

∑

i=1

p
t(e)
i A(i). (3.24)

Let us denote the number of citations to i-vertices by Mi. Then we need
to maximize

∏

e

A(xe)

S(t(e))
=

n
∏

i=1

A(i)Mi

∏

e

[
n

∑

i=1

p
t(e)
i A(i)]−1. (3.25)

We omitted the N t(e) factors here, as they don’t effect the position of the
maximum value.

3.3.1.2 Existence of the solution

Theorem 3.2 The target function (3.25) has minimum and maximum over

the set of non-negative A vectors.

As the kernel function has no scale, we can restrict ourselves to examine
only kernel functions which satisfy

∑

i A(i) = 1, where i goes over all vertex
types. Then the allowed kernel functions form a compact set as it is closed
and bounded. Any continuous function on a compact set has a maximum
and a minimum according to the basic theorem of calculus, by Bolzano and
Weierstrass. The target function is obviously continuous in all variables (all
A(·)), thus the existence of the solution follows from the Bolzano-Weierstrass
theorem.

47

3.3.1.3 Uniqueness of the solution

In practice it is better to work with the logarithm of the target function, this
is

n
∑

i=1

Mi log A(i) −
∑

e

log[
n

∑

i=1

p
t(e)
i A(i)]. (3.26)

The partial derivatives according to all A(k) must be zero in order to have a
maximum value:

Mk

A(k)
=

∑

e

p
t(e)
k

∑n
i=1 p

t(e)
i A(i)

, 1 ≤ k ≤ n, (3.27)

which can be written as a fixed-point equation form as

A(k) = Mk

[

∑

e

p
t(e)
k

∑n
i=1 p

t(e)
i A(i)

]−1

, 1 ≤ k ≤ n. (3.28)

It gives interesting insight if we rewrite these equations in the form

∑

e

p
t(e)
k A(k)

∑n
i=1 p

t(e)
i A(i)

= Mk, 1 ≤ k ≤ n. (3.29)

The left hand side of (3.29) is the expected number of citations to k-vertices
based on a given A(·) kernel function, the right hand side is the observed
number of citations. The optimal kernel function requires that these two are
exactly the same.

It is true that the target function is minimal if A(k) = 0 for some k and the
minimum value is zero. This means that if A(k) > 0 then all singular points
(the points in which all partial derivatives are zero) are either maximum
points or saddle points. We will prove that for any two A1(·) and A2(·)
singular points satisfying (3.29), it is true that A1(·) = cA2(·) with some
c > 0 real number. From this it follows that every such point is a maximum
point, otherwise no maximum point would exist.

Let us assume that the A1 and A2 kernel functions satisfy (3.29), from
this we have

∑

e

p
t(e)
k A1(k)

∑n
i=1 p

t(e)
i A1(i)

=
∑

e

p
t(e)
k A2(k)

∑n
i=1 p

t(e)
i A2(i)

, 1 ≤ k ≤ n, (3.30)

and by denoting the two normalization factors by S1(e) and S2(e) we get

∑

e

p
t(e)
k A1(k)S2(e) − p

t(e)
k A2(k)S1(e)

S1(e)S2(e)
= 0, 1 ≤ k ≤ n. (3.31)

48

Some simple algebra leads to

∑

e

p
t(e)
k A1(k)

∑n
i=1 p

t(e)
i A2(i) − p

t(e)
k A2(k)

∑n
i=1 p

t(e)
i A1(i)

S1(e)S2(e)
=

=
∑

e

p
t(e)
1 p

t(e)
k A1(k)A2(1) + · · ·+ p

t(e)
n p

t(e)
k A1(k)A2(n)

S1(e)S2(e)
−

−
∑

e

p
t(e)
1 p

t(e)
k A1(1)A2(k) + · · ·+ p

t(e)
n p

t(e)
k A1(n)A2(k)

S1(e)S2(e)
=

= (A1(k)A2(1) − A2(k)A1(1))
∑

e

p
t(e)
1 p

t(e)
k

S1(e)S2(e)
+ · · ·+

+ (A1(k)A2(n) − A2(k)A1(n))
∑

e

p
t(e)
n p

t(e)
k

S1(e)S2(e)
= 0 (3.32)

We assume that

∑

e

p
t(e)
i p

t(e)
j

S1(e)S2(e)
> 0, 1 ≤ i, j ≤ n, (3.33)

then the sum in (3.32) can be zero in two different ways.

1. All terms are zero, i.e.

A1(k)A2(i) = A2(k)A1(i), 1 ≤ i ≤ n, (3.34)

and from here
A1(i) = cA2(i), 1 ≤ i ≤ n. (3.35)

2. There is at least one negative term. There exists 1 ≤ i ≤ n, i 6= k, such
that A1(k)A2(i) − A2(k)A1(i) < 0,

A2(i)

A1(i)
<

A2(k)

A1(k)
(3.36)

However, the procedure can be done for all 1 ≤ k ≤ n, so for every
1 ≤ k ≤ n there must be an index 1 ≤ i ≤ n, i 6= k such that equation
(3.36) holds. This is clearly contradiction.

The uniqueness of the solution is thus proven. It was also shown, that
any singular point A(i) > 0, 1 ≤ i ≤ n implies that A(·) is a kernel function
with maximum goodness. In other words, the target function has a single

49

global (and local) maximum if the allowed solutions are restricted either by
fixing A(x) = 1 for some x or by fixing

∑

i A(i) = 1. This implies that
any optimization algorithm, which is able to find a local maximum of a
continuous non-linear function in finite time, is appropriate for solving the
maximum likelihood problem.

The assumption given in equation (3.33) means that for every pair of
vertex types, there must be a time step when they are both present in the
network. This is the sufficient ‘representation restriction’ for the maximum
likelihood method. The following theorem was thus proved:

Theorem 3.3 The target function (3.25) has a unique maximum over the set

of positive A vectors (unique, apart from normalization), if the representation

restriction of the maximum likelihood method is true.

3.3.1.4 Stationary vertex type distribution

In this section we deal with a simple subclass of networks for which the
frequentist method and the maximum likelihood method give the same result.
In these networks the distribution of vertex types is stationary in time. We
use the following notation: pi is the ratio of i-vertices in the network (1 ≤
i ≤ n), there are n different vertex types. Obviously it is true that

n
∑

i=1

pi = 1. (3.37)

The number of citations to an i-vertex is denoted by Mi, the total number of
edges is M . N t(e) is the number of vertices in the network in time step t(e),
the total number of vertices is N . In stationary networks it is true that

S(t(e)) = N t(e)[p1A(1) + p2A(2) + · · · + pnA(n)] = N t(e)
n

∑

i=1

piA(i). (3.38)

For simplicity we will sometimes use the notation

p∗ =

n
∑

i=1

piA(i). (3.39)

50

Thus we need to maximize
∏

e

A(xe)

S(t(e))
=

A(x1)

S(t(1))

A(x2)

S(t(2))
· · · A(xM)

S(t(M))
= (3.40)

=
n

∏

i

A(i)Mi
1

N t(1)p∗
· · · 1

N t(M)p∗
= (3.41)

= [
n

∏

i

A(i)Mi][
∏

e

1

N t(e)
][

1

p∗
]M . (3.42)

As N t(e) are fixed parameters, we can omit them, and the quantity to optimize
is

[

n
∏

i

A(i)Mi][

n
∑

i=1

piA(i)]−M . (3.43)

Let us take the logarithm first:
n

∑

i=1

Mi log A(i) − M log
n

∑

i=1

piA(i). (3.44)

For the maximum it is required that partial derivatives according to all A(k)
(1 ≤ k ≤ n) are zero, this gives us n equations:

Mk

A(k)
=

Mpk
∑n

i=1 piA(i)
, 1 ≤ k ≤ n, (3.45)

which can be written as

p1A(1) + · · · + pk(1 − M

Mk
)A(k) + · · ·+ pnA(n) = 0, 1 ≤ k ≤ n. (3.46)

We have a system of n linear equations:

p1(1 − M

M1

)A(1) + p2A(2) + · · · + pnA(n) = 0

p1A(1) + p2(1 − M

M2
)A(2) + · · · + pnA(n) = 0

...

p1A(1) + p2A(2) + · · · + pn(1 − M

Mn
)A(n) = 0.

(3.47)
If we subtract all other lines from the first line we get

A(2) =
p1

p2

M2

M1
A(1)

...

A(n) =
p1

pk

Mk

M1

A(1),

(3.48)

51

which means that after fixing A(1) = 1 (or some other arbitrary positive
value), we can calculate all values of the kernel function. The maximum
likelihood problem can be easily solved for stationary networks.

It can be shown that if the vertex type distribution is stationary then the
frequentist method is equivalent to the maximum likelihood method.

Equation (3.16) gives the iteration procedure performed for the frequen-
tist method in the general case. If we now assume that the distribution of
the vertex types is stationary, then it reduces to

Ak+1(1) =
M1

M

p1

p1
Ak(1) +

M1

M

p2

p1
Ak(2) + · · · +

M1

M

pn

p1
Ak(n)

Ak+1(2) =
M2

M

p1

p2
Ak(1) +

M2

M

p2

p2
Ak(2) + · · · +

M2

M

pn

p2
Ak(n)

...

Ak+1(n) =
Mn

M

p1

pn

Ak(1) +
Mn

M

p2

pn

Ak(2) + · · · +
Mn

M

pn

pn

Ak(n).

(3.49)
As discussed in Section 3.2.1.2., if the representation restriction for the

frequentist method is true, then this iteration converges to the leading eigen-
vector of its matrix and it is true that

A(1) =
M1

M

p1

p1

A(1) +
M1

M

p2

p1

A(2) + · · · +
M1

M

pn

p1

A(n)

A(2) =
M2

M

p1

p2

A(1) +
M2

M

p2

p2

A(2) + · · · +
M2

M

pn

p2

A(n)

...

A(n) =
Mn

M

p1

pn
A(1) +

Mn

M

p2

pn
A(2) + · · · +

Mn

M

pn

pn
A(n).

(3.50)

If we divide line i by Mi, multiply by Mpi and subtract the right side we
get a very similar equation to (3.47), and from this the same (3.48) solution
follows, the same way, by subtracting all other lines from the first one.

3.3.1.5 Two vertex types

For two vertex types the general non-stationary maximum-likelihood problem
can be solved by using a fixed point equation. Let us recall that the solution of
the problem is the kernel function satisfying the fixed-point equation (3.28).
For two vertex types, if we fix A(1) = 1, then the fixed-point equation reads
as

A(2) = M2

[

∑

e

p
t(e)
2

p
t(e)
1 + p

t(e)
2 A(2)

]−1

. (3.51)

52

From now on we assume that A(1) ≥ A(2). If this turns out to be not
true, then we simply switch the 1-vertices and the 2-vertices. It is actually
quite simple to determine whether A(1) ≥ A(2) or the opposite is true:

Lemma 3.1 In a network with two vertex types, it is true that

A(1) ≥ A(2) if and only if
∑

e

p
t(e)
1 ≤ M1 (and

∑

e

p
t(e)
2 ≥ M2). (3.52)

1. A(1) ≥ A(2); since A(1) = 1 is fixed this means A(2) ≤ 1. Since

p
t(e)
1 + p

t(e)
2 = 1 holds for all e, p

t(e)
1 + p

t(e)
2 A(2) ≤ 1 also holds for all e.

Thus in the fixed point it is required that

M1 =
∑

e

p
t(e)
1

p
t(e)
1 + p

t(e)
2 A(2)

≥
∑

e

p
t(e)
1 . (3.53)

2.
∑

e p
t(e)
1 ≤ M1. In the fixed point it is required that

∑

e

p
t(e)
1 ≤ M1 =

∑

e

p
t(e)
1

p
t(e)
1 + p

t(e)
2 A(2)

. (3.54)

Since p
t(e)
1 + p

t(e)
2 = 1 for all e, it is either true that p

t(e)
1 + p

t(e)
2 A(2) > 1

for all e, or p
t(e)
1 + p

t(e)
2 A(2) ≤ 1 holds for all e. Clearly, the latter is

required to satisfy (3.54), and this implies A(1) = 1 ≥ A(2).

Let us examine the

f(x) := M2

[

∑

e

p
t(e)
2

p
t(e)
1 + p

t(e)
2 x

]−1

. (3.55)

function.

Theorem 3.4 f possesses the following properties:

1. For the unique x∗ fixed point of f it is true that x∗ ≤ 1.

2. f is strictly monotone increasing.

3. f is concave.

53

4. If x < x∗ then f(x) < x∗ where x∗ = f(x∗) is the unique fixed point

of f .

5. If x > x∗ then f(x) > x∗.

6. If x < x∗ then x∗ − f(x) < x∗ − x.

7. If x > x∗ then f(x) − x∗ > x − x∗.

8. |f(x) − x∗| < |x − x∗| for all x ∈ [0, 1].

9. The xn+1 := f(xn) fixed point iteration converges to the unique fixed

point from every x0 ∈ [0, 1] starting point.

1. This is simply the consequence of the assumption that A(1) ≥ A(2).

2. It is easy to see that it’s derivative is strictly positive:

f ′(x) = M2

∑

e

[

p
t(e)
2

p
t(e)
1 +p

t(e)
2 x

]2

[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]2 > 0, (3.56)

as the two sums are both always positive and M2 is positive too. (We
don’t deal with the uninteresting M2 = 0 case.)

3. The second derivative of f is strictly negative, so the function is strictly
concave:

f ′′(x) = M2

−2
[

∑

e

(p
t(e)
2

p
t(e)
1 +p

t(e)
2 x

)3
][

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]2

[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]4 +

+
−2

[

∑

e

(p
t(e)
2

p
t(e)
1 +p

t(e)
2 x

)3
]2[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]

[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]4 , (3.57)

which is

f ′′(x) = −2M2

∑

e

(p
t(e)
2

p
t(e)
1 +p

t(e)
2 x

)3

[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]2 − 2M2

[

∑

e

(p
t(e)
2

p
t(e)
1 +p

t(e)
2 x

)2
]2

[

∑

e
p

t(e)
2

p
t(e)
1 +p

t(e)
2 x

]3 < 0.

(3.58)

54

The inequality holds, except in the uninteresting case when p
t(e)
2 = 0

for all e.

4. Since f is strictly monotone increasing, x < x∗ implies f(x) < f(x∗) =
x∗.

5. Since f is strictly monotone increasing, x > x∗ implies f(x) > f(x∗) =
x∗.

6. x < x∗ and f(0) > 0 imply x < f(x) and this in turn implies x∗−f(x) <
x∗ − x.

7. x > x∗, f(x∗) = x∗ and f(0) > 0 implies x > f(x) and this in turn
implies f(x) − x∗ < x − x∗.

8. The previous four properties simply ensure |f(x) − x∗| < |x − x∗| for
all x ∈ [0, 1].

9. Since the fixed point is unique, the previous property ensures the con-
vergence of the fixed point operation from all starting point.

3.3.1.6 Convergence of the fixed-point equation

Previously we’ve shown that the general maximum likelihood problem can
be solved using any optimization method capable of finding a local maximum
of a non-linear continuous function. We’ve also shown that for two vertex
types the simple fixed point iteration always converges to the solution. It is
a natural question whether we can solve the general problem with the same
simple fixed point iteration, as defined in Eq. (3.28).

Although we tried several different approaches, we couldn’t prove that
the simple fixed point equation is convergent in the general case. Based on
numeric simulations we present the following conjectures as open problems:

Conjecture 3.1 The (3.28) fixed-point equation is convergent from all start-

ing vectors, if after each iteration we normalize A(·) according to ‖A(·)‖ = 1.

Conjecture 3.2 The (3.28) fixed-point equation is convergent from all start-

ing vectors. (Even without the normalization in the previous conjecture.)

Before the third conjecture we need to define quasi-contractive maps.

55

Definition 3.1 Let T : M → M a mapping of a metric space (M, d) into

itself. A mapping T is called a quasi-contraction if and only if d(Tx, Ty) ≤
q · max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for some q < 1 and all

x, y ∈ M .

Conjecture 3.3 The function defined in equation (3.28) is quasi-contraction.

(With out without the normalization step.)

Conjectures 3.1 and 3.2 follow from Conjecture 3.3 according to the work
of Ciric [1974].

3.3.1.7 The required representation restriction

There is a natural restriction on the networks for which the maximum likeli-
hood method can be used: for every vertex type there must be an edge which
does not cite it at a time step when it is present in the network. In other
words, if a vertex type is cited by k edges then it must be present at least
in k + 1 time steps. This is natural, because if a vertex type is cited every
time it is present in the network that would imply that it is infinitely more
attractive than all other vertex types.

The representation restriction can be seen easily from the usual maxi-
mization derivation. In the general non-stationary case we want to maximize

[

n
∏

i=1

A(i)Mi

]

∑

e

[

n
∑

j=1

p
t(e)
j A(j)

]−1

. (3.59)

This leads to the usual equations

Mk =
∑

e

p
t(e)
k A(k)

∑n
j=1 p

t(e)
j A(j)

, 1 ≤ k ≤ n. (3.60)

If 1-vertices are always cited whenever they are present in the system and
we set A(1) = 1 then we can write the equation for A(1) as

M1 =
∑

e∈E1

p
t(e)
1

p
t(e)
1 +

∑n
j=2 p

t(e)
j A(j)

, (3.61)

where E1 is the set of edges citing 1-vertices and other edges can be eliminated
from the sum because if an edge is not citing a 1-vertex then there is no 1-
vertex in the network and p

t(e)
1 = 0 if e 6∈ E1.

56

PSfrag

1 5 10 50 500

1e
+

00
1e

+
04

in-degree

at
tr

ac
ti

ve
n
es

s

free-form fit
dα + a form

Figure 3.4: The measured kernel function of the US patent citation network,

based on in-degree. The red line is the maximum likelihood fitted A(d) =

dα + a form. The axes are logarithmic, so d = 0 is not included in the plot.

This sum has M1 terms and every term is less than 1, thus the equation
has no solution. It is possible, however, to give an arbitrarily precise approx-
imation by setting all A(i), except for A(1), small enough. In other words,
all A(i) must be infinitesimally small compared to A(1), or A(1) must be
infinite compared to all other A(i). (The latter can be directly derived as
well by setting A(i) = 1 for some i 6= 1.)

The representation restriction is required in order to have a finite solution
for the maximum likelihood problem but it is an open question whether it is
sufficient.

3.3.2 Kernel functions with predefined shape

While the maximum likelihood method provides an elegant and practical
solution to extract the kernel function from the evolution of a network, it
is often desired to give the kernel function in a simple functional form. See
Fig. 3.4 as an example. Here the kernel function depends on the in-degree
of the vertices and we measured it on the US patent citation network (see
Section 4.2.2).

While it is almost apparent, that the kernel function can be well fitted
with the A(d) = dα + a form, it is not quite straightforward how the actual
fit should be produced. One issue is that the kernel function values for
the different vertex types are based on different number of experiments: for
low degrees there are very many, for high degrees very few. In the extreme

57

case, we might have a single experiment for a kernel function value. Clearly,
weighted fitting should be used. It is also not obvious that some fitting
method, e.g. least squares, provides the best fit with respect to the goodness
of the fitted function.

This, again, leads us to maximum likelihood fitting, but this time with
respect to the parameters of the fitted form. In our example we search for the
parameter values α and a which give the highest goodness for A(d) = dα +a.
This maximum likelihood problem, however, behaves not as nicely as the
free-form kernel function fitting discussed so far. In general, nothing ensures
the uniqueness or even the existence of the solution. It might be also difficult
to find an optimization method which converges for the particular form and
the particular network. It is still worth mentioning this method, however,
because—if it works—it gives a straightforward, parameter-free method for
fitting a functional form.

By comparing the goodness scores of the free-form function and the fit-
ted form, it is possible to quantitatively give the “error” introduced by the
functional form. Again, see Fig. 3.4 for an example.

Having a kernel-function shape with m parameters q1, . . . , qm we need to
maximize

n
∑

i=1

Mi log A(q1, . . . , qm, xi) −
∑

e

log[

n
∑

i=1

p
t(e)
i A(q1, . . . , qm, xi)]. (3.62)

As some optimization methods, like the often used BFGS algorithm [No-
cedal and Wright, 1999], can make good use of the partial derivatives of the
objective function, it is worth calculating them. For a qj parameter:

n
∑

i=1

Mi∂qj
A(q1, . . . , qm, xi)

A(q1, . . . , qm, xi)
−

∑

e

∑n
i=1 p

t(e)
i ∂qj

A(q1, . . . , qm, xi)
∑n

i=1 p
t(e)
i A(q1, . . . , qm, xi)

. (3.63)

3.3.3 The maximum likelihood method as a scoring

model

In Section 3.2 we developed the frequentist method as a simple scoring model:
each edge served as an experiment and every vertex type got a score in every
experiment. In that method the score was zero if the vertex type was not
cited and S(t(e))/N(t(e), x) otherwise. Then the estimated kernel function
value for a vertex type was simply the average of its scores.

Now, we give a similar formulation of the maximum likelihood method.
We now give a score of

Mk

M

S(t(e))

p
t(e)
k

(3.64)

58

to every vertex type present in the network in time step t(e). After “per-
forming” all experiments, we take the harmonic mean on the scores for each
vertex type. This way the estimated kernel function value for k-vertices is:

Ā(k) =
M

Mp
t(1)
k

MkS(t(1))
+ · · ·+ Mp

t(M)
k

MkS(t(M))

= Mk[
∑

e

p
t(e)
k

S(t(e))
]−1. (3.65)

which is exactly the fixed point equation for the solution of the maximum
likelihood method.

3.3.4 General networks

It is easy to generalize the maximum likelihood solution to non-citation net-
works. For these the goodness of the kernel function is defined as

∏

e

A(x∗
e, x

∗∗
e)

S(t(e))
=

n
∏

i=1

n
∏

j=1

A(i, j)Mij

∏

e

[

n
∑

i,j=1

N(t(e), i, j)A(i, j)]−1, (3.66)

where edge e connected an x∗
e-vertex to an x∗∗

e vertex in the analyzed network
and if the network is undirected then the sum and the product also have the
condition i ≤ j.

The maximization of (3.66) is equivalent to the citation network case if
we create new variables from the (i, j) pairs. Denoting (i, j) by k we have

∏

e

A∗(xe)

S(t(e))
=

n∗

∏

k=1

A(k)Mk

∏

e

[

n∗

∑

k=1

N(t(e), k)A(k)]−1, (3.67)

where A∗(·) is the new kernel function and n∗ is the number of new variables.
It is n∗ = n · (n − 1) for directed networks without loop edges and n∗ =
(n · (n − 1))/2 for undirected networks.

The existence, uniqueness and all the other properties proven for the
citation network case are also valid here.

3.4 Generalizing goodness: conditioning on

other network properties

The goodness of a kernel function, as defined in Eq. (3.4), measures the
probability that the kernel is able to guess all edge experiments. While this

59

Kernel-based

measurement

Network

(real)

Kernel function(s)

A(·)

Kernel-based

generator

Network

(artificial)

Figure 3.5: Generalizing goodness, sketch of the methodology. Based on

the measured kernel function, we generate artificial kernel-based networks,

calculate the error by comparing the real and artificial networks (dotted

arrow) and generate new artificial networks if necessary (ragged arrow).

is an appropriate definition in many senses, both theoretically and practically,
it is not always the best for all purposes.

Let us assume for example that we are interested in the in-degree distri-
bution of our network(s), and want to find the kernel function based on some
property vectors which reproduces the in-degree distribution best. Using the
vertex in-degree as a property seems to be reasonable, but it is not quite
straightforward what other properties we might want to include and even in
the case of having only the in-degree, it is not clear that the kernel with the
highest goodness is best for the in-degree distribution as well. (We call this
goodness, defined as the error in the in-degree distribution or some other
network property, “generalized goodness”.

We suggest the following heuristic approach. We fit (e.g. with the max-
imum likelihood method) the network to find the maximum (traditional)
goodness kernel. Then, maybe, after also fitting a predefined kernel shape,
try to “perturb” the fitted parameters and generate synthetic kernel based
networks using the perturbed parameters to see whether they result higher
generalized goodness. E.g. it is possible to use some nonlinear optimization
method [Nocedal and Wright, 1999] to find the best kernel in terms of gener-
alized goodness. Fig. 3.5 gives a summary of this methodology. We discuss
the generation of kernel based networks in Appendix A.

60

3.5 Time complexity of the algorithms

The frequentist method involves the calculation of the leading eigenvector
of a matrix of size n, the number of vertex types appearing during network
evolution. There are a number of way to implement this, most of them
requires matrix-vector multiplications, with a dense matrix, and this can be
done in O(n2) time.

The matrix itself can be usually created in O(N + M) time, N is the
number of vertices in the network, M is the number of edges. The critical
part is to keep track of the p

t(e)
i probabilities efficiently. In fact, N

t(e)
i , the

number of vertices for all types can be just as well used for the calculations,
instead of p

t(e)
i , no need for norming the probabilities after every change. For

some models it is easy to follow N
t(e)
i . E.g. in the in-degree based model

every citing edge changes just one N
t(e
k), the one belonging to the cited vertex

type, plus the addition of a new vertex changes N
t(e)
0 . In other models, like

the ones including the age of the vertices it is a bit more difficult as the age
of all vertices needs to updated in every time step. By binning the age into
larger units we can obtain better running time.

For non-citation networks, we need to keep track of all the possible con-
nections between vertex types. This can be done efficiently by a vector (R)
and a matrix (B). The vector simply stores the current number of vertices of
a given kind and the matrix gives the already realized connections between
all pairs of vertex types. Then N

t(e)
i,j can be calculated as RiRj −Bi,j if i 6= j

and as Ri(Ri − 1)/2 − Bi,i if i = j.
For the frequentist method, all measurement algorithms we implemented

have linear or closely linear running time if O(1) iterations are performed.
Implementing the maximum likelihood method is quite simple, we can use

any optimization method, or the fixed-point iteration. Both require keeping
track of the N

t(e)
i counts, just like for the other method. The maximum

likelihood method has usually linear or closely linear running time, too.

61

4
Applications

This chapter contains some applications of the methodology dis-
cussed so far. Note that at the time performing the applications in
Sections 4.1 and 4.2 we did not invent the notion of goodness, Eq. (3.4)

and the maximum likelihood method yet (Sec. 3.3), these were performed us-
ing the frequentist solution, as discussed in Section 3.2.

4.1 Citation Prediction

The ACM Special Interest Group on Knowledge Discovery and Data Mining
organizes a conference each year and together with the conference they also
host a data mining competition called KDD Cup. In 2003 the first task of
the KDD Cup was to predict the citations to the papers in the high energy
physics database. This database contains high energy papers submitted to
the arXiv e-print archive between 1992 and July 31, 2003. The deadline
for the KDD Cup submission was before April 30, 2003 and the citations
made by papers in the next three months had to be predicted. See http://

www.cs.cornell.edu/projects/kddcup/ for more information on the 2003
KDD Cup.

The evaluation of the prediction algorithms was done by considering only
papers receiving at least six citations during the period February 1, 2003 –
April 30, 2003. For these papers first the target vector, the difference between
the citations received between May and August, and between February and
May were calculated. The specific task was the prediction of this vector.
The error of the prediction was simply defined by the absolute value of the
difference of the prediction and the target vector.

62

While the kernel-based method was not primarily developed for citation
prediction, is can be used for that in the following way. We can measure the
dynamics (i.e. the A(·) function) of the network up to now and assuming that
this function will be the same in the future we can simulate the growth of the
network according to the measured dynamics and see a possible realization of
the network (say) three months later. By generating many realizations and
taking the average number of citations a node received in these realizations
we can predict the “average” expected evolution of the network.

Note that although we don’t use the usual kernel function goodness here
(it was not yet defined when this work was done), but the the citation pre-
diction error we use is perfectly equivalent to the goodness.

At the 2003 KDD Cup, the error of the winner algorithm was 1329. The
totally random network evolution, where each new node connects to a number
of randomly selected nodes yields, on the average, an error of 3463. This value
was obtained by averaging hundred totally random realizations. These error
values can be used as baselines to place the error of the predictions of our
method.

First we measured the A(·) function based on the in-degree of the nodes
solely and found that the

A(k) = kα + 1 (4.1)

form gives a reasonable good fit with the measured data. We fitted this form
by a simple weighted least square method and got α ≈ 0.85. The prediction
with this A(k) function yielded an error about 2473.51(±4.39). These values
were obtained by generating 100 realizations five times, the error is simply
the standard deviation of the five predictions.

To evaluate our dynamics measurement method we’ve calculated predic-
tions with other α exponents as well, and found that the α = 0.85 value is
very close to the “optimal” exponent, optimal in terms of the error of this
prediction, see Fig. 4.1.

Instead of using solely the in-degree as the predictor, now we will also
add the age of the nodes, we measure the A(k, l) function, as before k being
the in-degree and l being the age of a node. The measured A(k, l) function
can be reasonably well fitted by the following form:

A(k, l) = (kα + 1) l−β . (4.2)

This form assumes that the effect of in-degree and age can be separated,
our data supports this assumption. By fitting this form using weighted least
square fits we arrive to the exponents: α ≈ 1.14 and β ≈ 1.14. By using
these values in generating possible realizations of the HEP network for the

63

0.6 0.7 0.8 0.9 1.0 1.1

26
00

28
00

30
00

32
00

preferential attachment exponent

p
re

d
ic

ti
on

er
ro

r

0.8497126

Figure 4.1: Prediction error for different α values in (4.1). The plot was

obtained by running five times 100 realizations for each α value, the error

bars show the standard deviation of the five predictions. The measured 0.85

exponent is close to the optimal 0.89 value.

prediction we get a prediction error 1732.76±6.19. The fact that this predic-
tion is much better than the “in-degree-only” one, indicates that the age of
the nodes makes an important contribution to the dynamics of the evolving
network. See Fig. 4.2 for the prediction error of the in-degree and age-based
model.

Note that the exponent of the preferential attachment is lower if we don’t
use the age of the papers as a property, αk ≈ 0.85 versus αk,l ≈ 1.14. This
is clearly because in the former the effect of the aging is “built in” into the
preferential exponent and since aging works against preferential attachment
it makes the exponent smaller. Some works suggest that the preferential
attachment mechanism can be present even in a network not showing the
scale-free degree distribution because there is another, opposite effect working
in the system, such as limits for the number of edges a node can acquire or
because the nodes lose their “attractiveness” by getting older, i.e. aging,
see Amaral et al. [2000]. To our knowledge our work is the first one giving
experimental evidence for this assumption.

64

0.9 1.0 1.1 1.2 1.3 1.4

20
00

25
00

30
00

preferential attachment exponent

p
re

d
ic

ti
on

er
ro

r

1.137433

0.9 1.0 1.1 1.2 1.3 1.4

18
00

22
00

26
00

aging exponent

p
re

d
ic

ti
on

er
ro

r

1.141277

Figure 4.2: Prediction error for different preferential attachment exponents

(α, upper plot) and aging exponents (β, lower plot). For both exponents the

dynamics measurement method gives solutions close to the optimal ones.

65

4.2 Identifying changes in the dynamics

In this section we apply the introduced techniques to the United States patent
citation network and draw conclusions about its dynamics. We examine
whether the trace of the early nineties’ legal changes can be found in the dy-
namics by kernel-based modeling. All measurements discussed in this section
were performed using the frequentist method.

4.2.1 Introduction

Innovation plays a key role in economic development and the patent system
is intended (and required by the United States Constitution) to promote in-
novation. The patent system promotes innovation by giving inventors the
power to exclude others from using their inventions during the patent term.
The power to exclude is a double-edged sword, however, because it bene-
fits the original inventor, but imposes costs on later innovators seeking to
build on past inventions. Thus, the proper design of the patent system is
an important matter – and a matter of considerable current debate. See,
e.g., Jaffe and Lerner [2004], Federal Trade Commission [2003], Merrill et al.
[2004]. Advances in computer technology and the availability of large patent
databases have recently made it possible to study aspects of the patent sys-
tem quantitatively. Because patents and the citations between them can be
conceptualized as a growing network techniques from statistical physics that
have been used in the study of complex networks can be usefully applied to
the patent citation network Albert and Barabási [2002], Newman [2003a],
Clarkson [2003], Breschi and Lissoni [2004].

The section is organized as follows: In Section 4.2.2 we provide back-
ground on the United States patent system and describe the citation data
that is used in this study. In Section 4.2.3 we briefly review the kernel-based
methodology and interpret the vertex properties in the context of the patents.
In Section 4.2.4 we use this approach to analyze the US patent citation net-
work and explore the changes in the kinetics from 1976 to 2000. In Section
4.2.5 we discuss some possible implications of our results.

4.2.2 Patentological background

While a similar approach could be applied to many patent systems, includ-
ing the very important European and Japanese patent systems, we begin
our analysis with the United States patent system for which an extensive
database of citations has been made available through the work of Hall et al.

66

[2003].
An application for a U.S. Patent is filed in the U.S. Patent and Trademark

Office (USPTO). A patent examiner at the USPTO determines whether to
grant a patent based on a number of criteria, most important of which for
present purposes are the requirements of novelty and non-obviousness with
respect to existing technology. Once a patent is issued by the USPTO, it is
assigned a unique patent identification number. These numbers are sequen-
tial in the order in which the patents were granted.

Novelty and nonobviousness are evaluated by comparing the claimed in-
vention to statutorily defined categories of “prior art”, consisting in most
cases primarily of prior patents. Patents are legally effective only for a lim-
ited term (currently twenty years from the date of application), but remain
effective as “prior art” indefinitely. Inventors are required to provide cita-
tions to known references that are “material” to patentability, but are not
required to search for relevant references (though they or their patent attor-
neys often do so). During consideration of the application, patent examiners
search for additional relevant references.

Patent citations include potential prior art that was considered by the
examiner. They thus reflect the judgment of patentees, their attorneys, and
the USPTO patent examiners as to the prior patents that are most closely
related to the invention claimed in an application. Patent citations thus pro-
vide, to some approximation, a “map” of the technical relationships between
patents in the U.S. patent system. This “map” can be represented by a di-
rected network, where the nodes are the patents and the directed edges the
citations. Our research attempts to gain insight from this “map”.

The patent database we use for the analysis in this paper was created by
Hall, Jaffe and Trajtenberg based on data available from the US Patent Office
[Hall et al., 2003]. It is available online at http://www.nber.org/patents/.
The database contains data from over 6 million patents granted between
July 13, 1836 and December 31, 1999 but only reflects the citations made
by patents after January 1, 1975: more than 2 million patents and over
16 million citations. Citations made by earlier patents are also available
from the Patent Office, but not in an electronic format. The Hall, Jaffe
and Trajtenberg database also contains additional data about the included
patents, which was described in detail by Hall et al. [2003].

4.2.3 Modeling patent citation networks

The raw citation data gives us a complete history of citations made and
received by each patent. Our goal is to determine whether the evolution

67

of the patent network may be consistently described in terms of variables
commonly used in understanding the evolution of complex networks and
then to extract the time dependence of the network growth from the detailed
history. We assume as an initial matter (an assumption which turns out
to be consistent with the data) that the evolution of the network may be
approximated by a discrete time, discrete space stochastic dynamic system.
Time is measured in patent number units, so that each “time step” represents
the citations made by a single patent. (Though we often “bin” the data from
a range of patent numbers to obtain sufficient statistics for the analysis.) In
our model, each patent is described by two variables:

1. k, the number of citations it has received up to the current time step
and

2. l, the age of the patent, which is simply the difference between the
current time step (as measured in patent numbers) and the patent
number. Because a given patent may cite more than one other patent,
several citations may be made in one time step.

These two variables define what we call the “attractiveness” of a patent,
A(k, l), which determines the likelihood that the patent will be cited when the
next citation is made. In every time step the probability that an older patent
will be cited is proportional to the older patent’s attractiveness multiplied
by the number of citations made in that time step. We find that this simple
model gives a very good approximation of the observed kinetics of the growth
of the patent citation network.

The A(k, l) function determines the evolution of the network. It de-
scribes the average citation preferences of the citing patents (the inventors
and patent examiners in reality). In this study, we measure and analyze
A(k, l) for the United States patent system during the time period covered
by our data. We find first that the parameterization by k and l consistently
describes the average kinetics of the patent citation network. Of course, un-
derlying patent citations are patentee and patent examiner evaluations of the
significance of the cited patent and the technological relationship between the
citing and cited patents that our probabilistic approach cannot capture. The
way in which these “microscopic dynamics” are translated into the average
behavior that we observe remains an open question.

Note that this mathematical framework is an assumption about the evo-
lution of the patent network but it is also a model in the sense that it is a
simplified description of the system and that the sensible results we obtain
from our numerical procedure confirm that it is a reasonable model. Similar
degree and age based models have been studied by others Dorogovtsev and

68

0 500000 1000000 1500000 2000000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

age [patent number]

0
1

A
(k

,l
)

500000 1000000 1500000 20000005
e+

0
1

5
e+

0
2

5
e+

0
3

5
e+

0
4

age [patent number]

0
1
5

15
20
30

A
(k

,l
)

Figure 4.3: The measured attractiveness A(k, l) as a function of age l for var-

ious fixed values of in-degree, k. The bottom figure shows only the decreasing

tail on log-log scales.

Mendes [2000], Zhu et al. [2003], Klemm and Egúıluz [2002], but the work
presented here is different in two respects. First, the degree and age depen-
dence is a general function, we do not assume any particular form; second,
we determine the shape of A(k, l) from the patent citation network data.

4.2.4 Results

4.2.4.1 The attractiveness function

The frequentist method described in Section 3.2 was applied to the patent
citation network and the forms of S(t) and A(k, l) were determined. Figures
4.3 and 4.4 show sections of the A(k, l) function. For all the figures in this

69

paper we have binned the age values into 300 bins, each containing 7172
patents. Ages and times are measured in patent number units. Figures 4.3
and 4.4 suggest that, for the patent network, the effects of in-degree and age
can be separated to a good approximation and that A(k, l) can be written
approximately in the form

A(k, l) = Ak(k) · Al(l). (4.3)

While this is a reasonable and useful approximation, it is also clear that it
is only approximately true. e.g., A(0, l) decays faster than A(30, l), see the
second plot in Figure 4.3.

The measured Al(l) function for the patent citation network has two ma-
jor features – a peak at approximately 200,000 patent numbers and a slowly
decaying tail. (The very large absolute values of Al(l) are a result of the nor-
malization, A(0, 1) = 1, and are of no independent significance.) The peak
at 200,000 patent numbers corresponds to a large number of what might
be called “ordinary”, relatively short-term citations. In 1998–1999, 200,000
patent numbers corresponded to about 15 months. The tail is best described
by a power-law decay: Al(l) ∝ l−β with β ≈ 1.6. The observation of this
power law decay is an important result. It indicates that while typical cita-
tions are relatively short-term, there are a significant number of citations that
occur after very long delays. Very old patents are cited, suggesting that the
temporal reach of some innovations, which perhaps can be described roughly
as “pioneer”, is very long indeed. Moreover, because Al(l) is approximately
independent of k – i.e., approximately the same power law decay is observed
even for small k – the power law tail of Al(l) demonstrates that there is a
significant possibility that patents that have gone virtually un-cited for long
periods of time will re-emerge to garner citations. This slow power law decay
of Al(l) thus suggests the unpredictability of innovative progress.

The measured Ak(k) function increases monotonically with k, as Figure
4.4 suggests. Higher in-degree always means higher attractiveness. Because
the citation probability is proportional to the attractiveness, this means that
the well-known preferential attachment, or “rich get richer” effect is at work
here – the more citations a patent has received, the more likely it is to receive
another. The functional form of Ak(k) is a power law over the entire range of
k values. Ak(k) ∝ kα + a, where α ≈ 1.2014 and a ≈ 1.0235. We estimated
these parameters using the smaller values of k, for which we have more data.
We then checked the results by comparing with more extensive fits.

Preferential attachment and its variations are well studied, see the re-
views by Albert and Barabási [2002] and by Newman [2003a]. Linear pref-
erential attachment (α = 1) without aging has been shown to result in a

70

0 5 10 15 20 25 30

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

3
5
0
0
0

in-degree

574000
645000
717000

1076000
1434000
1793000

A
(k

,l
)

Figure 4.4: The measured attractiveness A(k, l) as a function of in-degree,

k, for various fixed values of age, l.

degree distribution (frequency of nodes with degree k) with a power law tail
[Albert and Barabási, 2002, Newman, 2003a]. Krapivsky et al. [2000] have
studied nonlinear preferential attachment. In the model they studied there
was no aging, A(k, l) = Ak(k) = kα + a. For α > 1, as is observed in the
patent citation network, their calculations predict a condensation of node
connectivity, in the sense that with high probability most of the edges are
connected to only a small number of nodes. More specifically, in their model,
if (m + 1)/m < α < m/(m − 1) the number of nodes with more than m in-
coming edges is finite, even in an infinite network. For the patent network
6/5 < α < 5/4 suggesting that, if there were no aging, the number of patents
receiving more than 5 citations would be very small, though those patents
would account for a large fraction of all of the citations. Aging complicates
this picture, of course, and likely precludes a complete condensation onto a
few nodes. However, the fact that the observed preferential attachment is
super-linear does indicate a tendency toward what might loosely be called
“stratification” – many nodes with very few citations and a few nodes with
many citations.

4.2.4.2 The total attractiveness

The total attractiveness function, S(t), (see Fig. 4.5) of the US patent system
increases with time. The initial steep increase is only a finite size effect and
comes from the fact that the citations made by pre-1975 patents are missing
from our database. From about 1984 on, however, S(t) displays a slow but
steady increase. One way to interpret this increase is that the probability

71

4000000 4500000 5000000 55000000
e+

0
0

2
e+

0
8

6
e+

0
8

8
e+

0
8

1976 1980 1984 1988 1991 1994 1997 1999

4
e+

0
8

time [patent number]

6000000

to
ta

l
a
tt

ra
ct

iv
en

es
s

Figure 4.5: The total attractiveness S(t) of the patent network versus time in

units of patent numbers. For ease of reference the time in years is indicated

by filled circles and vertical lines.

that a patent will be cited by a given citation (which is proportional to
1/S(t)) is decreasing as the size of the network increases. The decrease is
determined in part by the rate at which patents age, which determines the
number of patents “available” for citation.

The probability that patent i will be cited in a given time step (in other
words, by a particular patent rather than by a particular citation) is

P [ki(t + 1) = ki(t) + 1] = E(t)
A(ki(t), li(t))

S(t)
(4.4)

The average number of citations made by each patent (and hence, since
we measure time in units of patents, the number of citations made in each
time step, E(t)), has increased approximately linearly with time in the real
patent citation network, e.g., it was 4.69 in 1975 and 10.66 in 1999. See Fig.
4.6. The probability that a new patent (k = 0, l = 1) will be cited by the next
patent is thus given by E(t)/S(t), which is shown in Fig. 4.6. From this plot
one can see that the increase in the number of citations being made slightly
outweighs the increase in S(t), so that the probability that a new patent will
be cited has increased over time, despite the increasing S(t). Despite the
persistent relevance of some old patents indicated by the power law tail in
Al(l), new patents do not get “lost in the crowd” the way we might have
predicted from simple models. Instead, patentees and patent examiners have
on average increased the number of citations made by each patent to more

72

time [patent number]
4000000 4500000 5000000 5500000 6000000

5
6

7
8

9
1
0

1
1

1976 1980 1984 1987 1990 1993 1996 1998 2000

E
(t

)

time [patent number]
4500000 5000000 5500000 60000009

.0
e-

0
9

1
.0

e-
0
8

1
.1

e-
0
8

1
.2

e-
0
8

1982 1985 1988 1990 1992 1994 1996 1998 2000

E
(t

)/
S
(t

)

Figure 4.6: The top figure shows the number of citations made per patent,

E(t), as a function of time in units of patent number. The bottom figure

shows E(t)/S(t), corresponding also to the probability that a new patent

with k = 0, l = 1 will be cited, as a function of time in units of patent

number.

73

time [patent numbers]

α
ex

p
o
n
en

t

4500000 5000000 5500000 6000000 6500000 7000000

1
.1

1
.2

1
.3

1
.4

1982 1987 1991 1995 1998 2000 2002 2004 2006

Figure 4.7: The measured value of α as a function of time, measured as

described in the text. The time in years is indicated by the grey vertical

lines.

than compensate for the increasing S(t).

4.2.4.3 Change in the patent system dynamics

While it is well known that there has been a significant increase in the number
of US patents granted per year since 1984 [Jaffe and Lerner, 2004, Hall, 2005],
the underlying reason for this increase is widely disputed. Has there simply
been an acceleration of technological development in the last twenty years or
has there been a more fundamental change in the patent system, perhaps, as
many have suggested, as a result of increased leniency in the legal standard
for obtaining a patent [Jaffe and Lerner, 2004]? A complete answer to this
question is far beyond the scope of the present investigation. However, our
model does permit us to ask whether there has been any deep change in
the growth kinetics of the patent citation network. Because we measure
time in units of patent number, a mere acceleration of technological progress
should leave A(k, l) unchanged in patent number “time”. A change in A(k, l)
indicates some other source of change.

Thus far, we have assumed a time-independent A(k, l), which is reason-
ably consistent with our observations. In this section, we relax this assump-
tion to ask the more subtle question of whether there has been a change
in patent system kinetics over and above the acceleration that is already re-
flected in our choice of time units. Specifically, we allow α and β to vary with
time and ask whether there has been a significant change in these parameters

74

between 1980 and 2000.
To answer this question we measured the parameters of the system as

functions of time. To perform the fits, we averaged over a 500,000-patent slid-
ing time window and calculated the parameters after every 100,000 patents.
The measured α parameters are plotted in Figure 4.7. There is a significant
variation over time. The time dependence of the important β parameter was
also explored, but no significant time dependence was observed to within the
statistical errors.

The plot for the α parameter shows that there are two regimes. In the first
regime, prior to about 1991, α is decreasing slightly with time, while in the
second, starting around 1993, there is a significant increase. As noted earlier,
the α parameter has some very important consequences for the growth of the
network: the higher α, the more “condensed” or “stratified” the network
will be. The increasing α in the patent citation network indicates increasing
stratification – a smaller and smaller fraction of the patents are receiving
a larger and larger fraction of the citations. This change is not simply a
result of accelerating numbers of patents being granted, but suggests a more
fundamental change in the distribution of patents that are being issued.

We will return to this problem in Section 4.4.2 and examine the change
of the patent system dynamics by using other models and better parameter
fitting methods.

4.2.5 Conclusions

We have presented a stochastic kinetic model for patent citation networks.
Though a complex process underlies each decision by a patent applicant or
examiner to cite a particular patent, the average citation behavior takes a
surprisingly simple form. The citation probability can be approximated quite
well by the ratio of an “attractiveness function”, A(k, l), which depends on
the in-degree, k, and age in patent numbers, l, of the cited patent, and a
time-dependent normalization factor, S(t), which is independent of k and l.

We applied the kernel-based technique to the patent citation network
and, though no assumptions were made as to the functional form of A(k, l),
the measured A(k, l) function was well described by two approximately sep-
arable processes: preferential attachment as a function of in-degree, k, and
power law age dependence. The interplay of these two processes, along with
a growth in the number of citations made by each patent, governs the emerg-
ing structure of the network. Particularly noteworthy are our finding that
the preferential attachment is super-linear, implying that patents are highly
stratified in “citability”, and our finding of a power law tail in the age de-

75

pendence even for small k, indicating not only that some patents remain
important for very long times, but also that even “dormant” patents can
re-emerge as important after long delays.

We also used our technique to investigate the time dependence of the
growth kinetics of the patent citation network. Overall, we find that the
increasing number of patents issued has been matched by increasing citations
made by each patent, so that the chance that a new patent will be cited in the
next time period has increased over time. This result suggests that on average
patents are not becoming less “citable”. However, we also find that there has
been a change in the underlying growth kinetics since approximately 1993.
Since that time, preferential attachment in the patent system has become
increasingly strong, indicating that patents are more and more stratified,
with fewer and fewer of the patents receiving more and more of the citations.
A few very important, perhaps “pioneer”, patents seem to dominate the
citations. This trend may be consistent with fears of an increasing patent
“thicket”, in which more and more patents are issued on minor technical
advances in any given area. These technically dense patents must be cited
by patents that build upon or distinguish them directly, thus requiring that
more citations be made, but few of them will be of sufficient significance to
merit citation by any but the most closely related patents. These observations
are consistent with recent suggestions that patent quality is decreasing as a
result of insufficient standards of non-obviousness. See, for discussion of these
issues, e.g., Federal Trade Commission [2003], Jaffe and Lerner [2004], Merrill
et al. [2004] and references therein.

4.3 The dynamics of scientific collaboration

networks

In this section we briefly present the results of applying our methods to a
non-decaying network: the cond-mat collaboration network. In this network
a vertex is a researcher who published at least one paper in the online arXiv
cond-mat archive (see http://www.arxiv.org) between 1970 and 1997 (this
is the date when the paper was submitted to cond-mat, not the actual pub-
lication date, but most of the time these two are almost the same). There
is an edge between two researchers/vertices if they’ve published at least one
paper together. The data set contains 23,708 papers, 17,636 authors and
59,894 edges.

First, we measured the attachment kernel for this network based on the
degrees of the two potential neighbors. See Fig. 4.8 for the Acond-mat(d

∗, d∗∗)

76

5
10

15
20

25
30

30

25

20
15

10

10

40

30

20

A
co

n
d
-m

a
t (d

∗, d
∗
∗)

degree

degr
ee

5

1 2 5 10 20 50 100
degree

0.
05

0.
5

0.
00

05

0 1 10 20

at
tr

ac
ti

ve
n
es

s
Figure 4.8: The attachment kernel for the cond-mat collaboration network,

the surface plot was smoothed by applying a double exponential smoothing

kernel to it. The right plot has logarithmic axes. The right plot shows

that the kernel function has high values for zero-degree nodes, this might be

because a new researcher will usually write a paper with collaborators and

thus will have a high probability of gaining new edges immediately.

function. The attractiveness grows with vertex degree, about linearly, except
if the degree is zero. Zero degree vertices have very high probability to gain
new edges, this is because many papers have contribution from authors,
who had no other paper yet in the cond-mat database. These results show
that a second, different kernel function might be appropriate for predicting
the citations of the newly added authors, Newman [2001b] used a similar
framework.

We’ve tried to fit various functional forms to the two-dimensional attach-
ment kernel function to check which is a better description of the dynamics.
See Fig. 4.9 for the shape of the fitted functions and Table 4.1 for the func-
tional forms and the results.

The best fit was obtained by

A′
cond-mat(d

∗, d∗∗) = c1 · (d∗d∗∗)c2 + c3 (4.5)

where ci are constants.
Secondly, we used the number of papers as the vertex property, and mea-

sured the Acond-mat(p
∗, p∗∗) kernel function. We tried to fit the same func-

77

A B

C D

Figure 4.9: A shows the smoothed measured degree based kernel function

for the collaboration network, B, C and D are fitted functional forms shown

in the first three lines of Table 4.1. The best fit is clearly obtained by the

multiplicative form.

78

Fitted form Fitted parameters Fit Error Fitting method

B c1 max(d∗, d∗∗) + c2 c1 = 1.26, c2 = −10.56 107357.6 Nelder-Mead

C c1d
∗d∗∗ + c2 c1 = 0.0697, c2 = −2.11 4300.2 Nelder-Mead

D c1(d
∗ + d∗∗) + c2 c1 = 1.08, c2 = −18.98 31348.9 Nelder-Mead

c1d
∗d∗∗ + c2(d

∗ + d∗∗)+ c1 = 0.0783, c2 = −0.12, 3532.9 BFGS

+c3 max(d∗, d∗∗) + c4 c3 = −0.093, c4 = 1.50

c1(d
∗d∗∗)c2 + c3 c1 = 0.016, c2 = 1.22, 3210.4 SANN

c3 = 0.58

Table 4.1: Fitting the cond-mat network with an in-degree model. Four

optimization methods were run for each functional form to minimize the

least square difference: BFGS, Nelder-Mead, CG and SANN, the results of

the best fits are included in the table. See [Nocedal and Wright, 1999, Belisle,

1992] for the details of these methods.

79

Fitted form Fitted parameters Fit Error Fitting method

B c1 max(p∗, p∗∗) + c2 c1 = 0.58, c2 = −2.54 45930 Nelder-Mead

C c1p
∗p∗∗ + c2 c1 = 0.04, c2 = −0.49 7470 Nelder-Mead

D c1(p
∗ + p∗∗) + c2 c1 = 0.57, c2 = −8.81 20513 Nelder-Mead

c1(p
∗p∗∗)c2 + c3 c1 ≪ 1, c2 = 1.59, 5312 SANN

c3 = 3.14

Table 4.2: Fitting the cond-mat network based on the number of papers writ-

ten by an author. Four optimization methods were run for each functional

form to minimize the least square difference: BFGS, Nelder-Mead, CG and

SANN, the results of the best fits are included in the table.

tional forms to the measured kernel functions and found that the form

A′
cond-mat(p

∗, p∗∗) = c1 · (p∗p∗∗)c2 + c3 (4.6)

fits best, although with very different parameters than for the degree based
measurement.

The goodness of the degree-based kernel was 2.41, the kernel based on
the number of papers has goodness 6.69.

See [Barabási et al., 2002, Newman, 2001a] for other studies on collabo-
ration networks.

4.4 Comparing alternative models

In this section we return to the modeling of the US Patent system. We create
alternative models to the in-degree and age based approach, presented in
Sec. 4.2, and check whether the change found in Sec. 4.2.4.3 is present in
the new models. We compare the expressive power of the various models
by calculating their goodness value. The tested models are summarized in
Table 4.3.

In-degree In the simplest model the attachment probability depends on
the in-degree of the potentially cited vertices only. We found that the kernel

80

A B

C D

Figure 4.10: A shows the smoothed measured based kernel function based on

the number of papers, for the collaboration network, B, C and D are fitted

functional forms shown in the first three lines of Table 4.2. The best fit is

clearly obtained by the multiplicative form.

81

Properties Form Goodness Parameter values Figures

* in-degree free 0.3092 – Fig. 4.11

* in-degree dα + a 0.3048 α = 0.99, a = 2.62 Fig. 4.11

in-degree free 0.2431 – –

in-degree dα + a 0.2394 α = 0.92, a = 1.95 –

i-d, age free 0.4541 – Fig. 4.12

i-d, age double Pareto 0.4373 α = 1.08, a = 1.1, αp = 0.3, Fig. 4.12

βp = 2.25, tp = 26.36

i-d, citing category free 0.2583 – Fig. 4.14

i-d, citing category dα + a 0.2555 See Fig. 4.15 Fig. 4.15

i-d, cited category free 0.2656 – Fig. 4.13

i-d, cited category ccat(d
α + a) 0.2597 α = 0.89, a = 1.95, –

c = [0.92, 1.54, 1.43, 1.06, 0.90, 0.93]

i-d, cited, citing free 1.1744 – –

i-d, cited, citing ccat(d
α + a) 1.1664 See Fig. 4.16 Fig. 4.16

i-d, age, cited, citing ccat· double Pareto 1.3454 See Fig. 4.17 Fig. 4.17

forest fire model free 2.1034 – –

i-d, forest fire free 2.2539 – –

Table 4.3: Summary of the various models fitted to the US patent citation

network. Starred models were fitted to network data from 1975 to 2005, the

others to data from 1975 to 1999. “i-d” means in-degree, see Eq. 4.7 for the

double Pareto form.

82

PSfrag

1 5 10 50 500

1e
+

00
1e

+
04

in-degree

at
tr

ac
ti

ve
n
es

s

free-form fit
dα + a form

Figure 4.11: The measured in-degree based kernel-function for the US patent

network. The red line is the maximum likelihood fitted A(d) = dα + a form.

The axes are logarithmic, so d = 0 is not included in the plot.

can be well fitted with the form A(d) = dα + a. This form may lead to scale
free networks, i.e. networks with power-law in-degree distribution, if the
degree dependence is linear, i.e. α = 1. Indeed, we found that the in-degree
dependent kernel function can be very well fitted with the A(d) = dα + a
form and the value of the α exponent is close to unity.

The fact that the obtained degree-dependent kernel function is a smooth
function does not imply that this is the best model of the system and all the
citations can be explained simply based on vertex degree. It only tells that
this is the best form to come up with if we want to model the network based
on in-degree only. In other words, if we add additional vertex properties
to the model, we might get a better model and each better model can be
averaged out to the preferential attachment rule.

In-degree and age In addition to the in-degree, we consider the age of the
vertices here. By age we do not mean real time, we rather calculate it purely
based on the number of vertices. If a vertex was added to the network in time
step t0 and the current time step is t then the age of this vertex is (t− t0)/w,
where w is the width of an age-window, typically a couple of thousands of
time steps, and the result is rounded to the closest smaller integer. For the
patent network we used w = 7100.

The in-degree and age dependent model is better than the simple degree-
dependent one, which is not a big surprise, an extended model is always
at least as good as the original. (Note that practically this is not always

83

1e+04 5e+04 2e+05 1e+06

1e
-0

3
1e

-0
1

1e
+

01

age [patent number]

at
tr

ac
ti

ve
n
es

s

d = 0
d = 2
d = 3

d = 10
d = 25

1 2 5 10 20 50

0.
2

1.
0

5.
0

50
.0

in-degree

at
tr

ac
ti

ve
n
es

s a = 142020
a = 355050

a = 710100
a = 1065150

Figure 4.12: Sections from the in-degree and age based maximum likelihood

fitted kernel function for the US patent citation network. Both plots have

logarithmic axes.

true, because of numerical errors.) In fact it is about 80% better than the
degree-based model, which is significant.

The obtained free-form kernel can be well fitted with a function where
the effects of degree and age are separated, A(d, l) = A(d)A(l). The degree-
dependent part is the usual preferential attachment form: A(d) = dα + a,
of course with a different exponent and different a parameter. We fitted
the age-dependent part with a double Pareto function, this is a unimodal
function with an initial power-law increase and a power-law decrease in the
tail:

A(l) =

{

(l/tp)
βp−1 if l ≤ tp,

(l/tp)
−αp−1 if l > tp.

(4.7)

About 96% of the goodness of the free-form model is preserved with the
fitted form. Consequently, the preferential attachment times double Pareto
form is a very good model if one wants to model the network based on in-
degree and age.

Finding the best kernel function of this form was done by using the BFGS
optimization method, without derivatives, as the function has no derivative
when l = tp if αp 6= βp.

4.4.1 Patent categories

Patents are classified into more than 400 patent classes, defined by the US
Patent and Trademark Office. Patent classes have further subclasses. Re-
searchers at NBER used these classes to create a patent classification with six

84

1 2 5 10 20 50 100

1
2

5
20

50

in-degree

at
tr

ac
ti

ve
n
es

s CHM

C&C

D&M

E&E

MCH

OTH

1 2 5 10 20 50 100

2
5

10
50

in-degree

at
tr

ac
ti

ve
n
es

s

Figure 4.13: The maximum likelihood fitted kernel function based on in-

degree and patent category (of the potentially cited vertex). The left plot

shows the measured free-form kernel-function. The right plot shows the

fitted form A(d, cat) = ccat · (dα + a), ccat is a category-dependent constant.

Both plots have logarithmic axes.

big categories and 36 subcategories [Hall et al., 2003]. The six categories are:
Chemical, Computers and Communications, Drugs and Medical, Electrical
and Electronic, Mechanical and Others.

A natural question is whether the inclusion of patent categories adds a
substantial amount to the goodness of the model. We expect a significant
goodness increase, based on the fact that the patent network is highly as-
sortative [Newman, 2002, 2003b] with respect to categories, i.e. chemical
patents tend to cite chemical patents.

In-degree, cited category First we included the categories in the model
by extending the degree-based model with a scalar (1-6) property, the main
category of the potentially cited patent. This resulted an about 10% better
model. We also fitted a preferential attachment form (A(d, cat) = ccat ·dα+a)
to the network, with the same α and a parameters for each categories, but
allowing a different ccat multiplicative constant. This form is justified by
Fig. 4.13. This model reveals that the “value” (in terms of the citation
preferences) of the six patent categories is approximately the same, there are
only slight differences.

In-degree, citing category Then we tried using the categories of the
citing patents, this effectively means that we did separate measurements for
the categories and obtained six kernel functions. All six kernel functions have

85

1 2 5 10 20 50 100

1
5

20
10

0

in-degree

at
tr

ac
ti

ve
n
es

s

CHM

C&C

D&M

E&E

MCH

OTH

Figure 4.14: Measured kernel-function based on in-degree and the category

of the citing vertex. Note that this effectively means that there are separate

kernel-functions for the six patent categories. The plot has logarithmic axes.

a similar (preferential attachment kind) shape. This model is only 6% better
than the pure degree-based approach.

If we fit the six kernel functions separately using the preferential attach-
ment form Ac(d) = dαc + ac, then we obtain different αc and ac parameters
for the six categories, see Fig. 4.15. This shows the preferences (based on
in-degree only) of the different category patents when they make their ci-
tations. E.g. patents in the ‘Mechanical’ and ‘Others’ category tend to
“consider” the degree of the cited vertex less than patents in the ‘Computers
and Communications’ and ‘Drugs and Medical’ category.

α
p
ar

am
et

er

0.
0

0.
5

1.
0

1.
5

0.92

1.23
1.42

0.8
0.64 0.64

CHM C&C D&M E&E MCH OTH

a
p
ar

am
et

er

0
1

2
3

4
5

1.77

3.05

5.34

1.57 1.43 1.38

CHM C&C D&M E&E MCH OTH

Figure 4.15: Fitted parameters for the in-degree and citing patent category

based model of the form dα +a. Separate kernel functions were fitted for the

different patent categories.

86

α
p
ar

am
et

er

0.
0

0.
4

0.
8

0.91 0.91 0.96
0.81 0.81 0.8

CHM C&C D&M E&E MCH OTH

a
p
ar

am
et

er

0.
0

1.
0

2.
0

1.64

2.25

1.41

1.96 1.8 1.72

CHM C&C D&M E&E MCH OTH

Figure 4.16: Measured parameters based on in-degree and the category of

both the cited and citing patent. I.e. separate kernel functions of the form

ccat(d
α + a) were fitted for different citing categories.

In-degree, cited category, citing category It is no big surprise that
considering the category of both the citing and the cited patents results
a much better model. It provides a way to generate a highly assortative
network, like ours.

After the free-form maximum likelihood fitting we also tried the formula
A(d, c) = ccat ·(dα +a), where ccat is a category dependent constant, for every
citing category. Again, we obtained six kernel functions for the six main
categories. In this model there are less differences between the categories
with respect to the α exponents.

In-degree, age, cited category, citing category Finally, we added the
age of the patents to the property vectors and fitted the A(d, l, c) = ccat ·
A(d)A(l) form, where A(d) has a preferential attachment form and A(l) is
the double Pareto function, as in Eq. 4.7.

4.4.2 Change in the dynamics

Now we return to the question addressed in Sec. 4.2.4.3: did the dynamics
of the patent network change around 1990 (supposedly) because of the intro-
duced legal changes? Using the patent categories as vertex properties we can
also check whether the change can be found in the “behavior” of all patent
categories, or just a few of them are affected.

First we use a model based on in-degree only, this is appropriate, as we’re
interested in the change of the preferential attachment exponent. Indeed, this
model confirms the previous results, and shows that the initially decreasing
exponent started to increase around 1990, see Fig 4.18.

87

α
p
ar

am
et

er

0.
0

0.
4

0.
8

1.
2

1.06
1.19 1.13

1.02 0.97 0.97

CHM C&C D&R E&E MCH OTH

a
p
ar

am
et

er

0.
0

0.
4

0.
8

1.
2

1.01
1.26

0.95
1.17 1.1

1.21

CHM C&C D&R E&E MCH OTH

α
p

p
ar

am
et

er

0.
0

0.
4

0.
8

0.34

0.73

0.36
0.44

0.26
0.12

CHM C&C D&R E&E MCH OTH

Figure 4.17: Measured parameters based on in-degree, age, category of

both the cited and citing patent. I.e. separate kernel functions were fit-

ted for different citing categories. The fitted form was the product of a

degree-dependent term, an age-dependent double Pareto term and a (cited)

category-dependent constant. See the text for details.

88

4500000 5500000 6500000

0.
85

0.
95

1.
05

time [patent number]

α
ex

p
on

en
t

1982 1989 1994 1999 2002 2005

4500000 5500000 6500000

1.
00

1.
05

1.
10

time [patent number]

α
ex

p
on

en
t

1982 1989 1994 1999 2002 2005

Figure 4.18: Change of the α exponent in the US patent network using

two models. The left plot is the maximum likelihood fit of the in-degree

dependent model A(d) = dα +a. The right plot is based on an in-degree and

age dependent model, the form fitted has an in-degree dependent increasing

term and an age dependent unimodal double Pareto term. A sliding time

window is used to handle the time-dependence of the parameters, the width of

the time window was 500,000 patents and the difference between consecutive

windows is 100,000 patents.

Next we repeated the study with a model based on in-degree and age,
just like in Sec. 4.2.4.3. This time however we used the maximum likelihood
fitting method to fit the parameters of a predefined shape: A(d, l) = (dα +
a)A(l), where A(l) is a double Pareto form. The results, shown in Fig. 4.18
confirm the previous findings, the maximum likelihood method generates
much smoother functions than the ad-hoc fitting of the free-form frequentist
method.

Next, the category of the citing vertices is used to extract six kernel
functions for the six categories. See the results in Fig. 4.19. This model
shows that the change is dominated by two patent categories, ‘Computers
and Communications’ and ‘Drugs and Medical’ and the significant decrease
of the exponent for the ’Others’ category also stopped suddenly.

We know from Table 4.3 that using the category of both the citing and
cited patents boosts the goodness of the kernel a lot. Interestingly enough,
in this model the change can be observed for all patent categories, most
significantly for the ’Others’ category. See the results in Fig. 4.20.

Finally, we added the age of the vertices to the property vectors and the
predefined shape A(d, l, cat) = ccat · (dα + a)A(l) was used, where A(l) is the

89

4500000 5000000 5500000

0.
6

1.
0

1.
4

time [patent number]

α
ex

p
on

en
t

1982 1987 1991 1994 1997 2000

4500000 5000000 5500000

0.
90

0.
95

1.
00

time [patent number]

α
ex

p
on

en
t

1982 1987 1991 1994 1997 2000

Figure 4.19: Change of the α exponent in the US patent network using a

citing category and in-degree based model. A separate A(d) = dα + a model

is fitted for each citing category. The “mean” line is calculated by simply

averaging the α values of the six categories. The right plot shows only the

mean of the six categories. The sliding time window has 500,000 patents and

it was applied after every 100,000 patents. The color code is the same as in

the previous figures.

4500000 5000000 5500000

0.
75

0.
85

0.
95

time [patent number]

α
ex

p
on

en
t

1982 1987 1991 1994 1997 2000

4500000 5000000 5500000

0.
82

0.
88

0.
94

time [patent number]

α
ex

p
on

en
t

1982 1987 1991 1994 1997 2000

Figure 4.20: Change of the α exponent in the US patent network using

an in-degree, cited category and citing category based model. A separate

A(d, cat) = ccat(d
α + a) model is fitted for each citing category. The “mean”

line is calculated by averaging the α values of the six categories. The right

plot shows only the mean line. The width and step size of the sliding time

window were 500,000 and 100,000 patents respectively.

90

α
ex

p
on

en
t

0.
90

1.
05

1.
20

1982 1987 1991 1994 1997 2000

α
ex

p
on

en
t

1.
00

1.
04

1.
08

1982 1987 1991 1994 1997 2000

4500000 5000000 5500000

0.
0

0.
4

0.
8

time [patent number]

α
p

ex
p
on

en
t

1982 1987 1991 1994 1997 2000

4500000 5000000 5500000
0.

15
0.

25
0.

35
0.

45

time [patent number]

α
p

ex
p
on

en
t

1982 1987 1991 1994 1997 2000

Figure 4.21: Change of the α exponent in the US patent network using an

in-degree, age, cited category and citing category based model. A separate

model is fitted for each citing category. The model has a degree-dependent

term, an age dependent double Pareto term and a (cited) category dependent

constant. The width and step size of the sliding time window were 500,000

and 100,000 patents respectively.

double Pareto form from Eq. 4.7. See the results in Fig. 4.21. While the
change is clearly present in the α exponent, the αd exponent of the double
Pareto aging function is increasing during the whole period. An increasing αd

parameter means that the patents increasingly prefer to cite younger patents.
To summarize, our previous findings about the change of the α prefer-

ential attachment exponent were confirmed in all models we’ve tried for the
patent network. The reason for this change is unclear yet. Although patent
law change is one likely cause there might be other explanations, like the
recent development in the searching techniques: the patentees and patent
examiners started to use electronic search engines when making the cita-
tions. If the latter explanation is true, then the change should be seen in
other citation networks as well.

91

PSfrag

1 5 50 500

1
10

0
10

00
0

in-degree

at
tr

ac
ti

ve
n
es

s

free-form
dα + a form

Figure 4.22: In-degree dependent model for the APS network. The black

dots show the free-form maximum likelihood kernel-function, the red line is

the fitted A(d) = dα + a form.

4.4.3 Comparison to a scientific citation network

In this section we study the citation network of all journals published by
the American Physical Society. The network contains 378,077 vertices and
3,615,892 edges. See [Redner, 2005] for an extensive study of the APS net-
work.

First we fitted the same in-degree and in-degree plus age dependent mod-
els to the APS network as we did to the patents. The results are similar,
although not completely the same. The degree dependent model was approx-
imated with A1(d) = dα + a, α = 1.07, a = 8.19. The second, age-dependent
model was fitted with A2(d, l) = Ad(d)Al(l) = (dα + a)l−β and α = 1.12,
a = 0.59, β = 1.60 was found. The age dependent Al(l) kernel interestingly
does not have an initial increasing part, there is no need for the double Pareto
distribution here. See Figs. 4.22 and 4.23.

Next, we investigated the time-dependence of the α and β parameters. We
used a sliding time window, just like for the patent network. See Figs. 4.24
and 4.25 for the results. Although the α values show some variance, the
change observed in the patent network can be hardly found here. There is a
small increase starting in 1990, but it is just temporal and also much smaller
than in the patent network. This is evident by comparing the two networks,
see Fig. 4.26.

Based on these results it is not likely that the change found in the patent
network dynamics is caused by the sudden improvements in the search tech-
nologies.

92

1e+04 5e+04 2e+05

1e
-0

2
1e

+
00

age [paper id]

at
tr

ac
ti

ve
n
es

s

d = 0
d = 1
d = 3

d = 10
d = 25

1 2 5 10 20 50

0.
00

5
0.

10
0

2.
00

0

in-degree

at
tr

ac
ti

ve
n
es

s age=71010
age=142020

age=213030
age=284040

Figure 4.23: Sections from the in-degree and age dependent kernel function

fitted to the APS network. The symbols show the free-form maximum like-

lihood kernel function, the lines show the best kernel-function of the form

A(d, k) = (dα + a)k−β. The left plot shows the age-dependence, contrary

to the patent network, this has no increasing initial part but similarly has a

power-law decay. The degree-dependent right plot shows preferential attach-

ment.

50000 150000 250000 350000

1.
05

1.
10

1.
15

time [paper id]

α
ex

p
on

en
t

1954 1976 1988 1995 2000 2005

Figure 4.24: Change of the α exponent in the APS network. The plots are

based on an in-degree dependent model of the form A(d) = dα + a. The

sliding time window has the width of 30,000 papers and it was applied after

every 2,000 papers.

93

50000 150000 250000 350000

1.
12

1.
14

1.
16

α
ex

p
on

en
t

1954 1976 1988 1995 2000 2005

50000 150000 250000 350000
1

2
3

4

time [paper id]

a
p
ar

am
et

er

1954 1976 1988 1995 2000 2005

50000 150000 250000 350000

1.
6

2.
0

2.
4

time [paper id]

β
ex

p
on

en
t

1954 1976 1988 1995 2000 2005

Figure 4.25: Change of the model parameters in the APS network, the model

properties were the in-degree and the age of the vertices. The fitted form

was A(d, k) = (dα + a)k−β. The sliding time window has the width of 30,000

papers and it was applied after every 2,000 papers.

94

replacemen

time

α
ex

p
on

en
t

0.
85

0.
95

1.
05

1.
15

1975 1983 1991 1999

time

α
ex

p
on

en
t

1.
00

1.
05

1.
10

1.
15

1975 1983 1991 1999

Figure 4.26: Comparing the change of the model parameters in the patent

network and the APS network. The data is the same as in Figures 4.18 and

4.24, but the measurement points were shifted horizontally to have a common

time axis for the two networks. The left plot is the degree based model, the

right is the degree plus age based model.

4.5 Validating network models

4.5.1 The forest fire model

The forest fire model was designed by Leskovec et al. [2005], to explain three
facts about real networks:

1. The in-degree and out-degree distributions are power-laws.

2. The networks are densifying in time: the number of edges grows faster
than the number of vertices in the graph.

3. The diameter [Bollobás and Riordan, 2004, Albert et al., 1999] of the
network is shrinking, it gets smaller and smaller as the network evolves.

Let us briefly explain how the forest fire model works. Let us assume
that a new vertex is added to the citation network, it needs to select some
other vertices to cite. First it cites a single vertex (more than one in some
variations) and then it checks the incoming and outgoing links of this single
vertex and with some probability cite these too. Then the process is repeated
for the newly cited vertices as well.

The model imitates how a researcher (or inventor or patent examiner)
finds relevant papers/patents based on the citation list and the “cited-by”
list of the already found relevant papers/patents.

95

We wanted to validate the forest-fire model for the US patent citation
network. This is, however, not straightforward, even if the forest fire model
fits into the kernel-based framework. The problem is that the actual order
of the citations made by a given vertex is missing from our database: it is
naturally not recorded which citations are made first, second, etc.

Neighbors First we created a very simple model with two vertex types:
neighbors and non-neighbors. When a new edge is being added to the net-
work all vertices which are in the same components as the citing vertex are
considered as neighbors, the others non-neighbors. As there can’t be neigh-
bors when the very first citation of a vertex is being made, we omit the first
(outgoing) citation of every vertex. The kernel function in this model has
just two values, one for the neighbors, one for the non-neighbors. If the value
for the neighbors is much higher than the one for the non-neighbors, that
indicates the validity of the forest-fire model.

When trying to estimate the kernel for the forest fire model, it does matter
in which order the citations of a particular vertex are made. E.g. if we do the
measurement with the increasing order of citations (i.e. oldest vertex is cited
first, etc.), that favors the “neighbors” vertex type and the kernel function
is distorted. If we use the opposite ordering that favors the non-neighbor
vertices. By generating synthetic networks we found that by using a random
ordering of the citations, the kernel is not biased and on average the correct
result is measured.

Indeed, if we fix the kernel function value of the non-neighbors to 1, then
the value for the neighbors in the patent network is 12,723.82. A neighbor of
an already cited vertex has ten thousand times more probability to get cited
(by the same vertex) than a non-neighbor vertex. The goodness of this model
is 2.1034, even if we make the first citation of each vertex totally randomly!

Neighbors, in-degree If we add the in-degree of the vertices to the prop-
erty vector, we get an even better model, one with goodness 2.2539. In this
model the first citation is not done randomly, but based on the in-degree
of the vertices and then the subsequent citations depend on in-degree and
on whether the possibly cited vertex is in the same component as the citing
vertex or not. The two kernel functions are plotted in Fig. 4.27.

The forest fire model provides a very good description of the US patent
network.

96

replacemen

1 5 10 50 5005e
-0

1
1e

+
01

5e
+

02

in-degree

at
tr

ac
ti

ve
n
es

s

1 5 10 50 500

1e
+

00
1e

+
04

in-degree

at
tr

ac
ti

ve
n
es

s

non-neighbors
neighbors

Figure 4.27: The US patent kernel function, forest fire model extended with

in-degree. The left plot shows the in-degree based kernel function, which is

in effect for the first (outgoing) citation of all vertices. The right plot shows

the kernel function for the subsequent citations. It is obvious that neighbor

vertices have much higher probability to get cited. Also, note that the kernel

for the non-neighbors is much steeper, degree matters more for non-neighbors

than for neighbors. Both plots have logarithmic axes.

4.5.2 Preferential attachment is required

Many real world networks feature a power-law degree distribution, these
networks are also called ‘scale-free’, as the power-law distribution is invariant
to the (multiplicative) scaling of the independent variable.

First Price [1976] showed that the preferential attachment mechanism
[Barabási and Albert, 1999] is capable of generating scale-free networks.
This mechanism corresponds to an in-degree dependent kernel-function of
the form: A(d) = d + a, where the (small) a increment ensures that zero-
degree vertices have non-zero attractiveness. This model always generates a
scale-free network (with respect to the in-degree distribution) with exponent
α = 3, independently of the out-degree distribution:

P [d = k] = (k + b)−α. (4.8)

Here we will show that the preferential attachment is not only sufficient
to create scale-free networks, but it is also required.

We state the following. If a network has a stationary scale-free in-degree
distribution, and we take the limit of the infinite network, then the best in-
degree based kernel function describing the evolution of the network is of the
form

A(d) = d + a (4.9)

97

with some a > 0 parameter.
If the network is scale-free and stationary, then

pi = (i + a)−α, (i ≥ 0) (4.10)

holds, pi is the ratio of vertices with in-degree i, and a > 0. This implies

Mi(t)

M(t)
∝

∞
∑

j=i+1

pj =

∞
∑

j=i+1

(j + a)−α, t → ∞, (4.11)

where Mi(t) is the number of edges citing i-degree vertices up to time step t
and M(t) is the total number of edges up to time step t.

If the network is stationary then the best in-degree based kernel function
can be given as (see Sec. 3.3.1.4)

A(0) =
M0

p0
, A(1) =

M1

p1
, . . . A(i) =

Mi

pi
, . . . , (4.12)

where

Mi := lim
t→∞

Mi(t)

M(t)
. (4.13)

In our case this means

A(i) = (i+a)α

∞
∑

j=i+1

(j+a)−α ∝ (i+a)α(i+a)−α+1 = i+a, (i ≥ 0), (4.14)

where we used

(i + a)−α+1 ∝
∞

∑

j=i+1

(j + a)−α. (4.15)

Note that the “proof” above is independent of the value of α. This means
that if the assumptions are valid then the best description is linear prefer-
ential attachment, independently of the exponent. Since it is quite unlikely
that this would be true (actually one can check with a couple of simulated
networks that it is not), the assumptions must not be valid for every possible
α exponent. In other words, the proof hints that the assumptions can be valid
only if α = 3, in this case we know that there is an in-degree based kernel
function which is able to generate the network. This means that scale-free
networks with exponents different than α = 3 cannot be generated with any
in-degree based kernel-function. In other words, an in-degree based kernel
never generates a scale-free network, except if A(d) = d + a, in which case it
generates one with exponent α = 3.

98

These “hints” are in good agreement with the fact that non-linear prefer-
ential attachment (A(d) = dβ +a, β 6= 1) never leads to a scale-free network.
If we assume that a kernel function with high goodness is able to reproduce
the degree distribution, then our proof extends this to other kernel-functions:
no in-degree based kernel function leads to a scale-free network, except in the
case of linear preferential attachment.

Naturally, we do not state that there are no other mechanisms capable
of generating scale-free degree-distributions [Dorogovtsev et al., 2000, Doro-
govtsev and Mendes, 2001, Dorogovtsev et al., 2001b,c, Tadic, 2001, Ergun
and Rodgers, 2002, Dorogovtsev and Mendes, 2000, Vazquez, 2001], nor that
in a scale-free network the choices of the participating actors are based on the
degree of the vertices only. But we state that whatever mechanism generated
a scale-free network, when we do an in-degree kernel based measurement on
it, we will get linear preferential attachment as the result.

A similar statement can be proved for graphs with exponential (in-)degree
distribution:

If the network has a stationary exponential in-degree distribution, and
we take the limit of the infinite network, then the best in-degree based kernel
function describing the evolution of the network is of the form

A(d) = 1. (4.16)

We follow the same way as in the scale-free case. If the exponential
degree-distribution is stationary, then

pi = e−i, (i ≥ 0) (4.17)

holds, pi is the ratio of vertices with in-degree i. This implies

Mi(t)

M(t)
∝

∞
∑

j=i+1

pj =

∞
∑

j=i+1

e−j, t → ∞, (4.18)

where Mi(t) is the number of citations to i-degree vertices up to time step t
and M(t) is the total number of edges up to time step t.

If the network is stationary then the best in-degree based kernel function
can be given as

A(0) =
M0

p0

, A(1) =
M1

p1

, . . . A(i) =
Mi

pi

, . . . , (4.19)

where

Mi := lim
t→∞

Mi(t)

M(t)
. (4.20)

99

In our case this means

A(i) = ei

∞
∑

j=i+1

e−j ∝ eie−i = 1, (i ≥ 0), (4.21)

where we used

e−i ∝
∞

∑

j=i+1

e−j . (4.22)

100

5
Other methods for the inverse

problem

This chapter looks over all other methods I could find for solving
inverse problems of network dynamics, deducing the dynamical (ac-
tually kinetic) equations of the graph evolution.

Normally this part of a dissertation goes before the actual presentation
of the work, that would, however, falsely suggest that it has influence on our
work, which is—unfortunately—not true.

5.1 Ad-hoc methods

We call the methods of this section ad-hoc, because while they were developed
for solving inverse problems, the important generalization to use arbitrary
vertex or network properties as the driving force, was not considered.

Barabási et al. [2002] analyzed collaboration networks in mathematics and
biology. Their database spans over eight years, and one year is considered
as the time step. ∆k, the number of new links was counted for every vertex
degree k, accumulated in the years before the measurement, but considering
only the edges from the new authors, those who had not collaborated with
anyone in the previous years.

Another kernel function was used to describe the formation of connections
between “old” authors, who already had other collaborators, so-called inter-
nal connections. This is a symmetric, degree based kernel A(d1, d2), and the

101

normalization factor was simply the number of pairs of vertices with d1 and
d2 degrees. The method roughly corresponds to one step of the frequentist
iteration discussed in Section 3.2.

Both kernel functions show approximately linear preferential attachment.
A similar framework, essentially kernel functions based on degree, were

used by Palla et al. [2004].

Newman [2001b] specifically aimed to find preferential attachment in two
collaboration networks, one in physics, one in biology. He used degree-
dependent symmetric kernel functions and found preferential attachment
with exponents close to one. His method is basically the same as our frequen-
tist method (Sec. 3.2), with always using the number of vertices as the nor-
malizing factor instead of S(t). In other words his solution is—almost—the
same as doing one step in our frequentist iteration. The ‘almost’ is because
he considers the two ends of an edge joining to two vertices independently, so
this is not exactly an A(d1, d2) kernel function but something close to it. We
know from our numeric results that one iteration of the frequentist method is
not enough, it leads to false results, except when the S(t) total attractiveness
is indeed proportional to the number of vertices in the network.

Jeong et al. [2003] measure preferential attachment in various networks.
They assume a kernel function with shape A(d) = dα and estimate it based
on the number of citations gained in a ∆T time interval. They claim that by
using short ∆T time intervals they are able to eliminate the time dependence
of the S(t) normalization factor. While this seems plausible, it is unclear how
small these time steps should be and how much error we still introduce with
the non-proper normalization. Each analyzed network showed closely linear
preferential attachment.

Valverde et al. [2007] give an inverse approach, based not solemnly on
degree like all the works discussed so far, but also on the age of the vertices.
Just like Jeong et al. [2003] they use short time steps to eliminate the effect
of the time-dependent normalization factor and find preferential attachment,
while fitting the age-dependent component with a Weibull distribution. This
is consistent with other studies [Börner et al., 2004].

102

5.2 Exponential random graphs

The theory of exponential random graphs is without question the most
well known, best elaborated and researched method for inverse problems
in graphs. There are several ways to introduce this model, we will use one
which is close to the spirit of this dissertation and will roughly follow a lecture
by Hunter [2006].

The exponential random graph model defines a probability distribution
over all graphs with a fixed number of vertices, n. The probability distribu-
tion has the form

Pθ(X = x) ∝ exp{θT s(x)}, (5.1)

with the normalization factor c(θ) this is

Pθ(X = x) =
exp{θT s(x)}

c(θ)
, (5.2)

where X is a random variable, a random network on n vertices, s(x) is a
vector of graph properties measured on x, e.g. the number of edges, the
number of vertices with degree three, the transitivity of the network, the
number of connections between men and women in a social network, etc.
These will serve as explanatory variables. θ is a vector of coefficients, they
should be extracted from the data, in a way to fit the observed network(s)
best.

The problem, however, is the normalization factor c(θ), as it should be
summed over all the possible graphs with n vertices, in the most general case
without taking into account graph isomorphism:

c(θ) =
∑

all y graphs
with n vertices

exp{θT s(y)}. (5.3)

Since replacing s(x) with s(x) − s(x∗), where x∗ is a given network, leaves
the Pθ(X = x) probabilities unchanged, we can “recenter” s(x) to have
s∗(x∗) = 0. In the following we assume that s(x∗) = 0, 0 is a vector here.

We want to fit θ by maximizing Pθ(X = x∗), the probability of the ob-
served network should be the highest possible. If s(x∗) = 0 then exp{θT s(x∗)} =
1 holds and the log-likelihood function is

L(θ) = − log c(θ) = − log
∑

all y graphs
with n vertices

exp{θT s(y)}. (5.4)

Obviously, L cannot be calculated directly, as the number of graphs with
n vertices grows exponentially with n and is very high even for small n. We
use another approach, based on Markov Chain Monte Carlo methods.

103

First we observe that if θ0 is fixed then

Eθ0 [exp{(θ − θ0)
T s(X)}] =

c(θ)

c(θ0)
, (5.5)

Eθ0 is the expected value for a fixed θ0. This expected value can be estimated
by an average of M trials, X1, X2, . . . , XM :

c(θ)

c(θ0)
≈ 1

M

M
∑

i=1

exp{(θ − θ0)
T s(Xi)}, (5.6)

θ0 is still fixed. Similarly, the approximation of L(θ) −L(θ0) is

L(θ) − L(θ0) = − log
1

M

M
∑

i=1

exp{(θ − θ0)
T s(Xi)}, (5.7)

and if we can sample random networks from the distribution PΘ0 then we can
calculate the approximation and thus the log-likelihood. (The L(θ0) term is
constant for fixed θ0, so it does not matter for us.)

The idea of the Markov Chain Monte Carlo algorithm is to create a
Markov chain which has the same stationary distribution as the distribu-
tion we want to draw from. There are various methods to accomplish this,
we don’t discuss them here, although they are important for the practical
applications of exponential random graphs.

The only remaining question on solving the exponential random graph
model is the choice of θ0. Theoretically it does not matter which θ0 we choose,
the estimated log-likelihood converges to the right value; this convergence can
be however very slow if it is far from the correct solution of θ. One method
is to calculate a maximum pseudolikelihood estimate for θ and use it as
θ0. The maximum pseudolikelihood method was originally proposed for the
fitting of the exponential random graph model, but it turned out that it has
deficiencies.

The exponential random graph model is a mathematically well grounded
and very general tool for data-driven tasks. It does not, however, supersede
our kernel-based approach in all cases, as it has some deficiencies.

1. While it is inherently dynamic, it is not currently clear how explicit
network evolution data (i.e. when exactly vertices and edges were added
to the network) could be taken into account for model fitting.

2. The Markov Chain Monte Carlo method might have slow convergence,
especially if one cannot estimate the possible range of parameters when

104

doing exploratory network analysis. Nowadays, the method can work
for graphs with up to a couple of thousand vertices. The kernel based
approach usually works easily for millions of vertices.

3. While the method gives the “correlation” between the dynamic driving
force (the structural/intrinsic properties) and the observed network(s)
in the form of the θ coefficients, this is just a number and not a function
as in the kernel-based case, thus important information is missing.

4. The framework assumes a form of the probability distribution over the
ensemble of graphs and the effects are additive in the power of the
exponential. No such form is assumed in the kernel-based model.

A form of exponential random graphs were introduced first by Holland
and Leinhardt [1981]. See [Wasserman and Robins, 2005, Robins and Pat-
tison, 2005, Snijders et al., 2006] for recent technical summaries. [Park and
Newman, 2004] is an excellent introduction from the statistical physics per-
spective.

5.3 Generalized preferential attachment

Generalized preferential attachment is a simple method introduced by Roth
[2005]. It is basically equivalent to our frequentist solution, without the
frequentist iteration. It considers the network static along the measurement,
thus no normalization takes place. According to our experiments, the absence
of normalization tends to cause false results if the distribution of vertex types
is not stationary.

5.4 Kronecker graphs

The stochastic Kronecker graph model, defined by Leskovec and Faloutsos
[2007], just like every other random graph model, assigns probabilities to all
possible graphs with a given size and it is defined via so-called Kronecker
products of matrices.

The Kronecker product of an (n×m) matrix (U) and an (n′×m′) matrix
(V) is an (nn′ × mm′) matrix (S), defined as

S = U ⊗ V :=

u1,1V u1,2V · · · u1,mV
u2,1V u2,2V · · · u2,mV

...
...

. . .
...

un,1V un,2V · · · un,mV

. (5.8)

105

If we start with the parameter square matrix Θ containing elements from
[0, 1] and then create P = Gk as Gk = G

[k]
1 = Gk−1⊗G1, G1 = Θ then element

Pij gives the probability of having edge (i, j) in the Kronecker graph.
Leskovec and Faloutsos [2007] give a method for fitting the Θ parameter

matrix to the network data by maximizing the probability that a parameter
matrix of the given size reproduces the observed graph:

arg max
Θ

P (G|Θ) (5.9)

If P = Θ[k] and σ is a permutation of the vertices mapping them to the lines
of the Kronecker graph adjacency matrix then the probability that σ and P
generate G is given as

P (G|P, σ) =
∏

(u,v)∈G

P[σu, σv]
∏

(u,v)/∈G

(1 − P[σu, σv]). (5.10)

Then summing over all permutations is needed. They use a Metropolis
algorithm [Gamerman, 1997] to draw from the permutation distribution. The
Kronecker graph method can be used for static graphs, no time evolution is
needed, rather, the fitted model is intended to be the average of all possible
time evolutions.

They also show an efficient O(|V |) method for calculating the log-likelihood
of a graph, calculate the log-likelihood gradient and use a gradient descent
method to find the best Θ parameter graph. The Bayes Information Crite-
rion [Schwarz, 1978] is used for estimating the size, N1 of the Θ parameter
matrix.

The Kronecker graph method is effective and relatively simple, it has
however some drawbacks, in our opinion. While it worked well on the ex-
amples shown by the author, it is unclear which properties of the network a
fitted Θ matrix can reproduce well and which it cannot. It seems that the
application of the method requires to “round” the number of vertices in the
network to the closest power of the size of the model matrix Θ, as the process
only generates graphs in which the number of vertices is the power of N1.

106

6
Conclusions

6.1 Trait-based networksThe first part of the dissertation studied the effect of a specific kind
of vertex correlation to the structure of networks. We defined a model
of evolving social networks, where the connection probabilities depend

on the traits of the vertices. To see the effect of the correlation introduced
by the traits, we first examined a reduced, averaged model, in which each
pair of vertices has the same δ connection probability (Sec. 2.2).

We calculated the degree distribution of the δ-based model by using a
master-equation framework and showed that it is an exponential distribu-
tion. With a similar method we calculated the distribution of the maximal
connected components, and found that usually it falls down exponentially,
except near the phase transition threshold δcrit, where it is a power-law dis-
tribution. Using generating functions we showed that the phase transition is
always present in the model if k ≥ 2.

Then, in Section 2.3 we numerically showed that although the full, trait-
based model features the same qualitative behavior, the fine structure of the
network is effected by the distribution of the traits and their connection prob-
abilities. In particular, we showed that the degree distribution is a sum of
exponential distributions, thus itself an exponential, and the tail of the dis-
tribution is dominated by the degree distribution of the vertex type with the
highest attractiveness. Using the µ probability that two components will be
merged by a new vertex, in the k = 2 case we showed that vertex correlations
always decrease the phase transition threshold to a giant component.

107

6.2 Reverse engineering network evolution

The second, and main part of the dissertation aims to solve the inverse
problem of network evolution: what are the parameters in the dynamical
equations which fit to a given network best?

First, we defined a model framework, kernel-based networks (Sec. 3.1),
where (in the simplest case) one single function gives the probabilities of the
possible structural changes. This function depends on various properties of
the vertices, these properties serve as the driving force of the evolution. We
defined the goodness of a kernel function for a given network, allowing the
comparison of alternative models for the same system.

Then we developed two methods for extracting the kernel function from
network evolution data. The first, so-called frequentist method (Sec. 3.2) is
based on a simple scoring model and involves the calculation of the leading
eigenvector of matrix defined by the network evolution. We proved that the
power iteration is always convergent for this matrix, if the network fulfills
certain minimal requirements.

The second is a maximum likelihood method (Sec. 3.3) and finds the ker-
nel function with maximum goodness. We showed that for most networks of
interest it always has a unique solution, and the solution can be found with
any optimization method capable of finding a local maximum of a nonlin-
ear function. We showed that if the network has a stationary vertex type
distribution, then the two methods yield the same result.

We applied the developed methodology to various networks (Sec. 4). In
particular, using a time-dependent description, we showed that the preferen-
tial attachment exponent in the US patent citation network shows a sudden
change around 1990, suggesting that the legal changes in the patent system
had a serious effect on the dynamics of patent citations. We confirmed this
finding by using other, more elaborated models. As another application,
we showed that for every scale-free network, the best in-degree based ker-
nel is linear preferential attachment, and similarly, for every network with
exponential degree distribution, the best in-degree based kernel is uniform,
non-preferential, i.e. random attachment.

Finally, we compared our methodology to others in the literature in Sec-
tion 5.

108

A
Generating kernel-based

networks

A.1 The partial prefix sum treeTo carry out the error calculation of a model with respect to some
network property, we need to be able to generate kernel-based net-
works of the same size as the original dataset under study. Although in

some cases smaller networks are enough, depending on the particular model,
usually it is easier to compare the (structural) properties of networks of the
same size.

Generating kernel based networks involves generating random numbers
from a general discrete probability distribution, usually one which is changing
in time, as the types of the vertices change as well in time, and the kernel
function giving the probabilities is a function of these.

Generating random numbers from a general discrete distribution is not
very difficult, perhaps the simplest way to do it is the following. We assume
that a single element of the set ai, . . . , aN must be chosen and that the
probability of choosing element ai is given by pi for all 1 ≤ i ≤ N ,

∑

i pi = 1.
The following simple algorithm can be used:

1. We preprocess the p1, . . . , pN probabilities by calculating the cumula-
tive sum of them: q0, q1, . . . , qN , where qi =

∑i
j=1 pj .

2. We draw a uniform random number between zero and one: x.

109

PSfrag

8
∑

i=1

pi

p1 + p2 + p3 + p4 p5 + p6 + p7 + p8

p1 + p2 p3 + p4 p5 + p6 p7 + p8

p1 p2 p3 p4 p5 p6 p7 p8

Figure A.1: Partial prefix sum tree for eight elements.

3. The qi element for which qi−1 ≤ x < qi is true is searched and the
chosen element will be ai.

Note that the pi values do not necessarily need to sum up to one, i.e.
there is no need to norm them, the only required trivial modification to the
algorithm is that in step two a random number between zero and qN must
be drawn.

The first step can be done in O(N) time, the second in O(1) and the third
in O(log N) as qi are in increasing order and a binary search can be applied.
Of course the preprocessed qi values can be used for generating more ai

elements. As long as the pi probabilities do not change, M random numbers
can be generated in O(M log N + N) time. If the probabilities change often,
like they usually do when generating kernel-based networks, then obviously
a better algorithm or data structure is needed.

The partial prefix sum tree is a binary tree and for N elements to draw
from it contains N leafs. The tree has ⌈log2 N⌉ internal levels, and since it
is an almost complete tree, it has 2⌈log2 N⌉−1 internal vertices. (The internal
levels of an almost complete tree form a complete tree and the leafs of the
tree are left justified.) The leaf vertices contain the pi values, whereas an
internal vertex contains the sum of the values of its children. The root of the

110

tree contains
∑N

i=1 pi. See Fig. A.1
There are three operations defined on partial prefix sum trees:

1. Building the tree. This can be done in O(N) time, as the total number
of vertices in the tree is surely less than 3N and each element of the
tree needs to be processed once only: the sum of the two children is
written into every internal vertex, starting from the lower levels.

2. Choosing an element from the tree according to the actual pi probabili-
ties. This implies generating a uniform random number x, between zero
and the value in the root vertex:

∑N
i+1 pi. Then a search is performed

in tree, starting from the root vertex, with initial target value t = x. If
the current vertex is a leaf then we choose its corresponding element.
If it is not a leaf and the value in its left child is bigger than t then
the left child is chosen as the next search vertex. In the other case the
right child is chosen and the t target value is updated by subtracting
the value in the left child from it. As we only traverse the tree once,
from the root down to a leaf vertex, this takes O(log N) time.

3. Updating the probability of an element, i.e. updating pi. This requires
updates in the ancestors of pi’s corresponding leaf vertex, and there
are O(log N) such vertices, thus the operation can be carried out in
O(log N) time.

Typically, if only O(1) probabilities are updated in a time step while gen-
erating a kernel-based network then this data structure allows the generation
to be done in O(n log N) time for a network in N vertices.

A.2 Citation networks

For citation networks it is quite straightforward to use the partial prefix sum
tree. Each ai element corresponds to a vertex in the network and we use
A(xi), the kernel function values for the elements as pi. We set pi = 0 for the
vertices which are not yet present in the current time step. Adding a vertex
to the network requires only one update operation and it is done in O(log N)
time. Changing the type of a vertex is also just an update operation and it
is thus O(log N) time. If only O(1) vertices are updated in each time step
then this yields an O(M + N log N) algorithm for network generation. Let
us see some concrete examples.

111

‘Degree’ model If the kernel function is based on the in-degree only then
one update operation is needed for each edge, since an edge changes only the
type of the cited vertex. Plus there is one update operation per vertex. The
total time complexity is thus O((M + N) log N).

‘Degree & age’ model In this model the number of time steps passed
since a vertex was added is also part of the properties vector, we call this
property age. In addition to the changes caused by the increasing in-degree
there are changes because of age. We assume that age is binned into some
larger units and then for each vertex there are at most as many updates
as the number of such units in the complete network. In other words ‘age’
grows linearly, so each vertex visits an ‘age class’ at most once. The time
complexity is thus O((M + cN) log N), N is the number of vertices, M the
number of edges and c the number of age bins.

‘Recent degree’ model Recent degree means the number of citations
(incoming edges) acquired recently, not longer than a given w time steps
ago. Unlike normal in-degree the recent in-degree is not necessarily increases
with time, it may also decrease. It is true however that one edge can result
at most two update operations: one when it increases the in-degree of a
vertex and one when it decreases, when it goes out of date. The edges go
out of date in the same order as they were added to the network, so keeping
the edges in a queue helps deciding which edge goes out of date next in
O(1) time. The time complexity is thus the same as for the ‘degree’ model:
O((M + N) log N).

‘Recent degree & age’ model The same applies here as for the ‘de-
gree & age’ and the ‘recent degree’ models, the time complexity is O((M +
cN) log N).

‘Cited categories’ model In this model the kernel function depends on
some discrete categories of the potentially cited vertices. If these categories
are time-independent then the time complexity is O(M + N log N), tree up-
dates are needed only when new vertices are introduced to the network. If
the vertex types are time dependent then the time complexity depends on
how often they change, in the worst case all vertex types change in every
time step resulting time complexity O((M + N2) log N). Note that in this
case using a partial prefix sum tree makes no sense at all, as with the cumu-
lative sum based solution the worst case time complexity is slightly better:
O(M log N + N2).

112

A.3 Growing networks

For non-citation networks it is not enough to store a single element in the
partial prefix sum tree, as N2 choices are possible, any two vertices may
be connected. Another approach is to store all the probabilities that any
i-vertex connects to any j-vertex, this requires a tree with n2 elements, n
is the number of vertex types. In each time step however we might require
O(n) updates if the type of a vertex changes or a new vertex is added to
the network. Adding a new edge requires just one updates, plus additional
O(n) if it changes the types of some vertices. All in all, in general we require
O((N + M)(n2 log n)) steps.

113

B
Software tools: the igraph

library

In this section, we briefly present the software tools implemented for
the kernel based methodology. For the details see the igraph Reference
Manual at http://igraph.sf.net.
The igraph library is an open source platform for graph algorithms,

containing implementations for many convenience data structures and al-
gorithms [Csárdi and Nepusz, 2006]. Lots of graph algorithms are already
implemented in the library.

The library itself is implemented in C, some “external” algorithms not
written by the igraph authors in C++, and it features high level interfaces to
the Python [van Rossum, 1995], GNU R [R Development Core Team, 2007]
and Ruby [Flanagan and Matsumoto, 2008] languages.

The kernel-based methodology is implemented in C and can be used cur-
rently from GNU R too, here we will introduce the latter. Both igraph and
GNU R are portable to most systems, they can be easily installed on var-
ious MS Windows versions, all GNU/Linux flavors and Mac OSX versions.
See the GNU R homepage at http://www.r-project.org. After GNU R is
installed, the installation of igraph can be carried out by simply typing

> install.packages{igraph}

on most systems. The current version of GNU R is 2.6.1, the igraph version
at the time of writing is 0.5. See also the igraph homepage for newer versions,
documentation, support, mailing lists, etc.

114

Function name Description

growing.random.game Growing random graph generator, A(x) = 1 for all x.

barabasi.game Nonlinear preferential attachment model, can generate

based on recent citations too. A(r) = rα + a. (‘d’, ‘r’)

aging.barabasi.game Nonlinear preferential attachment plus aging, A(r, a) =

(rα + c)aβ . (‘d’, ‘r’, ‘a’)

cited.type.game Generator based on the type of the cited vertex. All

forms of kernels. (‘e’)

citing.cited.type.game Generator based on the types of the citing and cited

vertices. All forms of kernels. (‘e’, ‘i’)

lastcit.game Generator based on the time (number of vertices)

passed since the last citation. Can handle all forms of

kernels. (‘l’)

Table B.1: Currently implemented kernel based generators in igraph. If

the form of the kernel is restricted, that is given too. The identifiers at the

end give the possibly relevant vertex properties of the generators.

There are two large groups of kernel-based functions in igraph: kernel-
based generators and kernel-based measurement functions. In the future
versions of igraph all generator functions will begin with the ‘evolver.’
prefix (the dot can be included in R identifiers and it is commonly used
instead of the underscore to separate words). All measurement functions
have the prefix ‘revolver.’ (Reverse EVOLVER).

See Table B.1 for the kernel-based generator functions.
The measurement functions have two big classes, one for the frequentist

method, see Section 3.2 and one for the maximum likelihood method, see
Section 3.3. Maximum likelihood methods have the prefix ‘revolver.ml.’.

Each of the implemented different vertex properties has a one letter iden-
tifier, and the key of the measurement function is the concatenation of the
lower case identifiers in alphabetic order. E.g. the measurement based

115

Id. Description

‘a’ Age of the vertices, the number of times passed since the vertex was added to

the network, binned into larger units.

‘d’ The (in-)degree of the vertices.

‘e’ The type of the potentially cited vertices.

‘f’ Forest fire model, whether the vertex is a neighbor of the new vertex or not.

‘i’ The type of the citing vertex.

‘l’ Time passed since the last citation. Typically binned into larger units.

‘p The number of papers an author has in an affiliation network.

‘r’ “Recent degree”. Number of citations gained recently, a time window size

needs to be given.

Table B.2: Currently implemented vertex properties in igraph

on degree (identifier ‘d’) and age (identifier ‘a’) has the key ‘ad’, the fre-
quentist measurement method based on degree and age is implemented in
‘revolver.ad’, the maximum likelihood based method can be performed by
calling ‘revolver.ml.ad’. The various identifiers are listed in Table B.2.

Most functions work with citation networks, currently the exceptions are
‘revolver.d.d’ and ‘revolver.p.p’, these have general growing networks
as their input. Notice that these function names include two keys, one for
each of the participating vertices in the connection.

There are two more function classes within revolver, one for calculating
the goodness of kernel functions, these functions have prefix ‘revolver.error.’
and one for fitting kernels with predefined shape (see Section 3.3.2), these
include the keys in upper case and have a suffix defining the fitted form.

All currently implemented measurement functions are included in Ta-
ble B.3.

116

Function names(s) Description

revolver.{ad, ade, adi, air, ar,

d, de, di, e, el, il, ir, l, r}
Frequentist measurement functions for

citation networks.

revolver.{d.d, p.p} Frequentist measurement functions for

growing networks.

revolver.error.{ad, ade, adi, air,

ar, d, de, di, e, el, il, ir, l,

r}

Functions for calculating kernel function

goodness.

revolver.ml.{ad, ade, d, de, df,

f, l}
Maximum likelihood measurement func-

tions for citation networks.

revolver.ml.D.{alpha, alpha.a} Maximum likelihood fitting of pre-

defined shapes based on in-degree:

A1(d) = dα + 1 and A2(d) = dα + a.

revolver.ml.AD.{alpha.a.beta,
dpareto}

Maximum likelihood fitting, predefined

shaped, based on in-degree and age:

A1(d, a) = (dα + c)aβ and double Pareto

forms.

revolver.ml.ADE.{alpha.a.beta,
dpareto}

Maximum likelihood method, pre-

defined for, based on in-degree, age

and the type of the cited vertex:

A1(d, a, e) = ce · (dα + c)aβ and dou-

ble Pareto forms.

revolver.probs.{ad, ade, d, de} Calculating the probabilities of edge

experiments based on a kernel function.

Table B.3: Currently implemented measurement functions in igraph.

117

B.1 An example session

We show here an example session using the R interface of igraph. We will
generate a kernel based network using degree as the vertex property and do
frequentist and maximum likelihood measurements on it.

First we load the igraph package.

> library(igraph)

Then generate a Barabási-Albert graph, but with nonlinear preferential at-
tachment, the power is 0.8, the constant out-degree of the vertices is five.
We simplify the graph, remove the possible multiple edges.

> ba <- barabasi.game(20000, power=0.8, m=5)

> ba <- simplify(ba)

Now comes the measurement, we use the frequentist method, based on in-
degree, this is the “correct” model of the network, the goodness of the kernel
is 0.62.

> freq.deg <- revolver.d(ba)

> (freq.deg$error[1] - freq.deg$error[2])/ecount(ba)

[1] 0.6217114

Let’s use a maximum likelihood measurement now, the goodness is slightly
higher now:

> ml.deg <- revolver.ml.d(ba, niter=10)

> (ml.deg$logprob - ml.deg$logmax) / ecount(ba)

[1] 0.6226385

Let’s plot the measured kernel, the result is in Fig. B.1.

> plot(ml.deg$kernel, log="xy", xlab="in-degree",

> ylab="attractiveness")

Finally, we fit the form A(d) = dα + a to the network, to see whether the
method is able to find the correct α = 0.8 and a = 1 parameters.

118

1 5 10 50 500

5e
-0

1
5e

+
01

in-degree

at
tr

ac
ti

ve
n
es

s

Figure B.1: Example degree based measurement using igraph

> sh.deg<- revolver.ml.D.alpha.a(ba, alpha=1, a=2)

> sh.deg["alpha"]

$alpha

[1] 0.801902

> sh.deg["a"]

$a

[1] 1.011969

Success. Please see the igraph documentation for more examples.

119

Bibliography

R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74:47, 2002.

R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world wide
web. Nature, 401:130–131, 1999.

L. A. N. Amaral, A. Scala, M. Barhélémy, and H. E. Stanley. Classes of
small-world networks. Proc. Natl. Acad. Sci. USA, 97(21):11149–11152,
10 2000.

B. Andrásfai. Gráfelmélet (Graph Theory). JATE Bolyai Intézet, Szeged,
Hungary, 1997.

A.-L. Barabási. Linked: How Everything is Connected to Everything Else.
Plume, 2004.

A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek.
Evolution of the social network of scientific collaborations. Physica A, 311:
590–614, 2002.

C. J. P. Belisle. Convergence theorems for a class of simulated annealing
algorithms on rd. Journal of Applied Probability, 29:885–895, 1992.

G. Bianconi and A.-L. Barabási. Competition and multiscaling in evolving
networks. Europhysics Letters, 54:436–442, 2001.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424:175–308, 2006.

M. Boguna and R. Pastor-Satorras. Class of correlated random networks
with hidden variables. Physical Review E, 68:036112, 2003.

120

B. Bollobás. Modern graph theory. Springer, 2004.

B. Bollobás. Random graphs. Academic Press, 1985.

B. Bollobás and O. Riordan. The diameter of a scale-free random graph.
Combinatorica, 24(1):5–34, 2004.

B. Bollobás and O. Riordan. Slow emergence of the giant component in the
growing m-out graph. Random Struct. Algorithms, 27(1):1–24, 2005.

B. Bollobás, S. Janson, and O. Riordan. The phase transition in the uniformly
grown random graph has infinite order. Random Struct. Algorithms, 26(1–
2):1–36, 2005.

B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomo-
geneous random graphs. Random Structures and Algorithms, 31:3–122,
2007.

K. Börner, J. T. Maru, and R. L. Goldstone. The simultaneous evolution of
author and paper networks. Proc. Natl. Acad. Sci. USA, 101:5266–5273,
Apr 2004.

S. Breschi and F. Lissoni. Knowledge networks from patent data: Method-
ological issues and research targets. CESPRI Working Papers 150, CE-
SPRI, Centre for Research on Innovation and Internationalisation Pro-
cesses, Universita’ Bocconi, Milano, Italy, Jan 2004. URL http://ideas.

repec.org/p/cri/cespri/wp150.html.

M. Buchanan. Nexus: Small Worlds and the Groundbreaking Theory of Net-
works. Norton, W. W. & Company, Inc., 2003.

D. Callaway, J. Hopcroft, J. Kleinberg, M. Newman, and S. Strogatz. Are
randomly grown graphs really random? Phys. Rev. E, 64:041902, 2001.

L. B. Ciric. A generalization of Banach’s contraction principle. Proceedings
of the American Mathematical Society, 45(2):267–273, 1974.

G. Clarkson. Objective Identification of Patent Thickets: A Network Analytic
Approach. PhD thesis, Harvard Business School, 2003.

G. Csárdi and T. Nepusz. The igraph software package for complex net-
work research. InterJournal, Complex Systems:1695, 2006. URL http:

//igraph.sf.net.

R. Diestel. Graph Theory. Springer, 2006.

121

S. Dorogovtsev and J. Mendes. Effect of the accelerating growth of commu-
nications networks on their structure. Phys. Rev. E, 63:025101, 2001.

S. Dorogovtsev, J. Mendes, and A. Samukhin. Growing network with heri-
table connectivity of nodes. cond-mat/0011077, 2000.

S. Dorogovtsev, J. Mendes, and A. Samukhin. Anomalous percolating prop-
erties of growing networks. Phys. Rev. E, 64:066110, 2001a.

S. Dorogovtsev, J. Mendes, and A. Samukhin. Giant strongly connected
component of directed networks. Phys. Rev. E, 64:025101, 2001b.

S. Dorogovtsev, J. Mendes, and A. Samukhin. Generic scale of the “scale-
free” growing networks. Phys. Rev. E, 63:062101, 2001c.

S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks with aging of
sites. Phys. Rev. E, 62(2):1842–1845, 2000.

S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks. From Bio-
logical Nets to the Internet and WWW. Oxford University Press, 2003.

P. Erdős and A. Rényi. On random graphs. Publications Mathematicae, 6:
290, 1959.

P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hung. Acad. Sci., 5:17, 1960.

P. Erdős and A. Rényi. On the strength and connectedness of a random
graph. Acta Mathematica Scientia Hungary, 12:261–267, 1961.

G. Ergun and G. J. Rodgers. Growing random networks with fitness. Physica
A, 303:261–272, 2002.

Federal Trade Commission. To promote innovation: The proper balance of
competition and patent law and policy. Report, October 2003.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly,
2008.

D. Gamerman. Markov chain Monte Carlo, stochastic simulation for
Bayesian inference. Chapman & Hall, 1997.

J. L. Gross. Graph Theory and Its Applications. Chapman & Hall, 2005.

B. H. Hall. Exploring the patent explosion. Journal of Technology Transfer,
30:35–48, 2005.

122

B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The nber patent citation data
file: Lessons, insights and methodological tools. In A. B. Jaffe and M. Tra-
jtenberg, editors, Patents, Citations, and Innovations: A Window on the
Knowledge Economy. MIT Press, 2003.

F. Harary. Graph Theory. Westview Press, 1994.

P. W. Holland and S. Leinhardt. An exponential family of probability dis-
trinutions for directed graphs (with discussion). Journal of the American
Statistical Association, 76:33–65, 1981.

D. Hunter. Exponential random graph models for network data, 2006. URL
http://www.stat.psu.edu/∼dhunter/talks/ergm.pdf.

A. B. Jaffe and J. Lerner. Innovation and Its Discontents : How Our Broken
Patent System is Endangering Innovation and Progress, and What to Do
About It. Princeton University Press, 2004.

H. Jeong, Z. Néda, and A.-L. Barabási. Measuring preferential attachment
for evolving networks. Europhys. Lett., 61:567–572, 2003.

K. Klemm and V. M. Egúıluz. Highly clustered scale-free networks. Phys.
Rev. E, 65:036123, 2002.

P. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of growing random
networks. Physical Review Letters, 85:4629–4632, 2000.

J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kro-
necker multiplication. In Proceedings of the 24th international conference
on Machine learning, pages 297–504, 2007.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification
laws, shrinking diameters and possible explanations. In Proceeding of the
eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 177–187, 2005.

F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanle, and Y. Åberg. The
web of human sexual contacts. Nature, 411(907–908), 2001.

S. A. Merrill, R. C. Levin, and M. B. Myers, editors. A Patent System for
the 21st Century. National Research Council of the National Academies,
National Academies Press, 2004.

S. Milgram. The small world problem. Psychology today, 2(60), 1967.

123

M. Mitzenmacher. A brief history of generative models for power law and
lognormal distributions. Internet Mathematics, 1:226–251, 2004.

M. Molloy and B. Reed. The size of the giant component of a random graph
with a given degree sequence. Combinat. Prob. Comput., 7:295–305, 1998.

M. E. J. Newman. Scientific collaboration networks.I. Network construction
and fundamental results. Physical Review E, 64:016131, 2001a.

M. E. J. Newman. Clustering and preferential attachment in growing net-
works. Physical Review E, 64:025102, 2001b.

M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:
208701, 2002.

M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003a.

M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126,
2003b.

M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Con-
temporary Physics, in press, 2005. URL http://aps.arxiv.org/abs/

cond-mat/0412004/.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E,
64:026118, 2001.

M. E. J. Newman, A.-L. Barabási, and D. J. Watts. The Structure and
Dynamics of Networks. Princeton University Press, 2006.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

G. Palla, I. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek. Reverse engi-
neering of linking preferences from network restructuring. Physical Review
E, 70:046115, 2004.

J. Park and M. E. J. Newman. The statistical mechanics of networks. Phys.
Rev. E, 70:066117, 2004.

D. J. d. S. Price. Networks of scientific papers. Science, 149:510–515, 1965.

D. J. d. S. Price. A general theory of bibliometric and other cumulative
advantage processes. J. Amer. Soc. Inform. Sci., 27(292–306), 1976.

124

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2007. URL http://www.R-project.org. ISBN 3-900051-07-0.

S. Redner. Citation statistics from 110 years of physical review. Physics
Today, 58:49, 2005.

G. L. Robins and P. E. Pattison. Interdependence and social processes: Gen-
eralized dependence structures. In P. Carrington, J. Scott, and S. Wasser-
man, editors, Models and Methods in Social Network Analysis. Cambridge
University Press, 2005.

C. Roth. Measuring generalized preferential attachment in dynamic social
networks. arxiv:nlin.AO/0507021, 2005.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6:461–464, 1978.

T. A. B. Snijders, P. Pattison, G. L. Robins, and M. Handcock. New speci-
fications for exponential random graph models. Sociological Methodology,
36(1):99–153, 2006.

B. Söderberg. A general formalism for inhomogeneous random graphs. Phys-
ical Review E, 66:066121, 2002.

B. Söderberg. Random graphs with hidden color. Physical Review E, 68
(015102), 2003a.

B. Söderberg. Properties of random graphs with hidden color. Physical
Review E, 68:026107, 2003b.

B. Söderberg. Random graph models with hidden color. Acta Physica
Polonica B, 34:5085–5102, 2003c.

R. Solomonoff and A. Rapoport. Connectivity if random nets. Bulletin of
Mathematical Biophysics, 13:107–117, 1951.

B. Tadic. Dynamics of directed graphs: the world-wide web. Physica A, 293:
273–284, 2001.

S. Valverde, R. V. Solé, M. A. Bedau, and N. Packard. Topology and evo-
lution of technology innovation networks. Physical Review E, 76:056118,
2007.

G. van Rossum. Python Reference Manual, 1995. CWI Report CS-R9525.

125

A. Vazquez. Knowing a network by walking on it: emergence of scaling.
Europhys. Lett., 54:430, 2001. cond-mat/0006132.

S. Wasserman and K. Faust. Social network analysis methods and applica-
tions. Cambridge University Press, New York, 1994.

S. Wasserman and G. L. Robins. An introduction to random graphs, de-
pendence graphs, and p∗. In P. Carrington, J. Scott, and S. Wasserman,
editors, Models and Methods in Social Network Analysis, pages 148–161.
Cambridge University Press, 2005.

D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton
& Company, 2003a.

D. J. Watts. Small Worlds : The Dynamics of Networks between Order and
Randomness. Princeton University Press, 2003b.

D. J. Watts and S. H. Strogatz. Collective dynamics of small world networks.
Nature, 393:440–442, 1998.

H. S. Wilf. Generatingfunctionology. Academic Press, London, 2nd edition,
1994.

H. Zhu, X. Wang, and J.-Y. Zhu. Effect of aging on network structure. Phys.
Rev. E, 68:056121, 2003.

126

