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1 Introduction

1.1 From neuroanatomy to causality analysis

Neural data analysis has many faces and every novel signal processing approach opens

up new possibilities to explore brain anatomy and function. In this thesis I take a deep

dive into data analysis: I apply already existing tools and develop new methods to ex-

plore neural phenomena. During this journey I use the inventory of probability theory

and nonlinear time series analysis. First I examine retinal slices by unsupervised learning.

Second I develop a new anomaly detection method to detect unique events in time series

and we apply it to detect apnoe, gravitational wave and insider trading. Third I improve

an intrinsic dimension estimator and draw epileptic seizure complexity maps from EEG

measurements. Fourth I explore and model the causal relationship between optical and

electric signals in neural tissue by causality detection.

1.2 Gap Junctions, Connexins and the structure of human retina

I give a brief description of Gap Junctions (GJs) and connexins in the context of the human

retina focusing on the retinal Outer Plexiform Layer (OPL).

GJs connect two cells electrically and chemically by permitting the diffusion of ions

and small molecules up to 1 kDa [1, 2]. They can be observed at sites, where the cell

membranes are aligned and only a small gap exists (1-2 nm) between the two membranes.

Connexins are transmembrane proteins with a special poreforming function at GJs.

Six connexin (a so called hexamer) form a connexon half-channel, which together with

another half-channel forms a pore connecting two cells. The permeability of the pore

depends on the type of connexin monomers and the intracellular molecular environment

of the connected cells [3, 4]. More than 20 connexins have been described in mammals

with molecular sizes ranging from 21 to 70 kDa [4]. Retinal connexins in GJs have been

shown to take part in the visual signalprocessing [5].

The human retina has a strictly organized structure consisting of ten layers (Fig. 1).

The main functions of this layered structure are photoreception by cones and rods, visual

signal processing by the intermediary layers and to convey visual information towards the

brain via ganglion cell axons through the optic nerve. The histologic layers reflects the

local anatomy of the tissue, the OPL is located at the first synaptic layer of the retina. The

synapses in this layer are mainly between receptor cells – rods and cones – and bipolar

cells or horizontal cells.

In the mammalian retina, connexin-36 (Cx36) and connexin-45 was found in both

plexiform layers [6, 7] and the former shows the same expression pattern in humans [8].
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The access to the electrical circuits of human retina has been problematic because of

the disintegration of the available post mortem tissue. Thus, it is still not clear if the human

retina has the same type of GJ connections as other species.

There are three main cone types in the human retina: the L, the M, and the S types.

These groups show more or less specific sensitivities to different regions of the electro-

magnetic spectrum. The pigment of L (Long wavelength) cones shows absorption-peak at

564 nm (red), the M (Medium wavelength) cones’ pigment has a peak at 534 nm (green)

and the S (Short wavelength) cones carry a pigment with an absorption-peak at 420 nm

(blue) [9]. This division of the spectrum makes RGB colorvision possible in humans.

In terms of function, we see that separate groups could be distinguished in the retinal

cone cell population, but the question arises that whether or not this functional difference is

reflected by the structure on a cellular level. More specifically: howmany different groups

can be distinguished based on the morphology of the synaptic pedicules in the OPL? The

answer to this question could bear relevant information about the signal processing in first

synaptic layer of the human retina.

In this work – as a part of characterizing the connexin36 GJs in the outer human retina

– we conduct an unsupervised analysis of cone pedicles in the OPL.

1.3 Dynamical systems

Dynamical systems are systems with a state space, whose state changes according to an

update rule [11].

One can talk about discrete time and continuous time dynamical systems. Discrete

time dynamical systems are defined by a map, which can be applied recursively on the

state to generate the process (Eq 1).

xt+1 = f(xt) (1)

where xt is the state of the system, f is the generating map.

Continuous time dynamical systems can be represented by a flow (Eq. 2):

x(t) = φt (x(0)) (2)

Here x(t) is the system’s state and φt is the flow, which determines the time evolution of

the system from an initial condition x(0).
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Figure 1: The structure of the human retina [10]. The Outer Plexiform Layer is the

first synaptic layer which is located between the inner nuclear and the outer nuclear layers.

Synapses are formed between receptor cells and bipolar or horizontal cells. (Image source:

https://www.bartleby.com/107/illus882.html)

1.3.1 The logistic map

The logistic map is a discrete time nonlinear dynamical system, a workhorse of nonlinear

signalprocessing methods exhibiting potentially complex behavior [12].

The update rule is a quadratic function (Eq. 3).

xt = rxt−1(1− xt−1) (3)

where xt is the state of the system at time t and r is a parameter.

The meaningful domain of the parameter is the [0, 4] interval, and depending on its

value the system can exhibit simple periodic oscillations or chaotic behavior. Above

r ≈ 3.56995 the system shows chaotic behavour for most parameter values and initial

conditions [12]. At r = 4 also the invariant measure can be computed over the state

space [13].
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1.3.2 Takens theorem and state space reconstruction

The dynamical state of the system can be reconstructed from scalar time series [14] by

taking the temporal context of each point according to Takens embedding theorem [15].

This theorem forms the basis of nonlinear time series analysis, therefore we quote it here

as stated by Huke [16]:

Theorem 1. (Takens) LetM be a compact manifold with a dimensionality of d. For pairs

(f, y)with f ∈ Diff2(M) and y ∈ C2(M,R) it is a generic property thatΦ : M 7→ R2d+1,

defined by

Φ(f,y)(x) =
(
y(x), y(f(x)), y(f 2(x)), . . . , y(f 2d(x))

)
(4)

is an embedding.

By ’generic’ we mean that ’good’ pairs form open and dense set in all possible pairs.

If we take the pair of dynamics (flow or generating map) and an observation function

(x), then the procedure in Eq. 4 can be implemented via time delay embedding:

X(t) = [x(t), x(t+ τ), x(t+ 2 ∗ τ),…, x(t+ (E − 1) ∗ τ)] (5)

whereX(t) is the reconstructed state at time t, x(t) is the scalar time series. This procedure

has two parameters: the embedding delay (τ ) and the embedding dimension (E). If E is

sufficiently big (E > 2 ∗ d) compared to the dimension of the attractor (d) and some mild
conditions are met, then the embedded (reconstructed) space is topologically equivalent

to the system’s state space (see Theorem 1, [15, 16]). Moreover, it has been shown that

overembedding can tackle challenges posed by nonstationary signals, if E > 2 ∗ (d+ p),

where p is the number of slowly changing nonstationary parameters [17]. In the over-

embedded state space, different values of p maps into different state space domains.

As a consequence of Takens theorem, small neighborhoods around points in the re-

constructed state-space also form neighborhoods in the original state space, therefore a

small neighborhood around a point represents nearly similar states. This topological prop-

erty has been leveraged to perform nonlinear prediction [18], noise filtering [19, 20] and

causality analysis [21–24].

1.3.3 State space reconstruction and the Lorenz system

We demonstrate time delay embedding on the Lorenz system [25]. The Lorenz system

is a continuous-time dynamical system, an abstract model for atmospheric convection
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described by the following differential equation system:

ẋ = σ (y − x)

ẏ = x (ρ− z)− y

ż = xy − βz

(6)

Where x, y and z are the state variables, and σ, ρ and β are constant parameters.

In certain parameter- and initial condition-combinations the system shows chaotic be-

haviour. Then the state evolves on a nonperiodic orbit in the state space and converges to

a strange attractor [26] (Fig. 2A). This attractor has two wings, and the system switches

between these two quite irregularly.

To reconstruct the system’s state from the x, y and z variables separately, we apply

time delay embedding. We can reconstruct the system’s state from both the x and the y

variables alone, and the resulting trajectory draws out a slightly distorted version of the

original attractor (Fig. 2 B, C). However one can not reconstruct the state of the system

form the z variable alone, because the information about which wing the system was on

is lost due to special symmetry of the attractor to this coordinate (Fig. 2D).

1.4 Anomalies and where to find them

Anomalies in time series are rare and non-typical patterns that deviate from normal obser-

vations and may indicate a transiently activated mechanism different from the generating

process of normal data. Accordingly, recognition of anomalies is often important or crit-

ical, invoking interventions in various industrial and scientific applications.

Anomalies can be classified according to various aspects [27]. Based on their ap-

pearance, these non-standard observations can be point outliers, whose amplitude is out

of range from the standard amplitude or contextual outliers, whose measured values do

not fit into some context. A combination of values can also form an anomaly named a

collective outlier. Thus, in case of point outliers, a single point is enough to distinguish

between normal and anomalous states, whilst in the case of collective anomalies a pattern

of multiple observations is required to recognize the outliers. Based on their generation

process, two characteristic examples of extreme events are black swans [28] and dragon

kings [29]. Black swans are generated by a power law process and they are usually un-

predictable by nature. In contrast, the dragon king, such as stock market crashes, occurs

after a phase transition and it is generated by different mechanisms from normal samples

making it predictable. Both black swans and dragon kings are extreme events easily rec-

ognizable post-hoc (retrospectively), but not all the anomalies are so effortless to detect.

Even post-hoc detection can be a troublesome procedure when the amplitude of the event

9



Figure 2: Time delay embedding the Lorenz system. A Simulation of the Lorenz sys-

tem. Time series of the x (blue), y (orange) and z (green) variables is shown at the left
and the trajectory in the state-space is shown at the right. Also, the state at a time-moment

is drawn (red line and red circle). B State space reconstruction from the x variable. The

original and the time shifted versions of xt is shown at the left and the reconstructed state

space is shown at the right. C State space reconstruction from the y variable. D Attempt

for state space reconstruction from the z variable. The original and the time shifted ver-
sions of zt is shown at the left and the reconstructed state space is shown at the right. In
this last case, the state can not be reconstructed.
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does not fall out of the data distribution.

Although the definition of an anomaly is not straightforward, two of its key features

include rarity and dissimilarity from normal data.

Most, if not all the outlier detection algorithms approach the anomalies from the dis-

similarity point of view. They search for the most distant and deviant points without much

emphasis on their rarity. In contrast, our approach is the opposite: we quantify the rarity

of a state, largely independent of the dissimilarity.

Here we introduce a new type of anomaly, the unique event, which is not an outlier

in the classical sense of the word: it does not necessarily lie out from the background

distribution, neither point-wise, nor collectively. A unique event is defined as a unique

pattern which appears only once during the investigated history of the system. Based on

their hidden nature and uniqueness one could call these unique events ”unicorns” and add

them to the strange zoo of anomalies. Note that unicorns can be both traditional outliers

appearing only once or patterns that do not differ from the normal population in any of

their parameters.

But how do you find something you’ve never seen before, and the only thing you

know about is that it only appeared once? Although the answer would be straightforward

for discrete patterns, it is more challenging for continuous variables (where none of the

states are exactly the same) to distinguish the unique states from dynamical point of view.

Classical supervised, semi-supervised and unsupervised strategies have been used to

detect anomalies [27, 30, 31] and recently deep learning techniques [32–34] were applied

to detect extreme events of complex systems [35]. Supervised outlier detection techniques

can be applied to identify anomalies, when labeled training data is available for both nor-

mal and outlier classes. Semi-supervised techniques also utilize labeled training data, but

this is limited to the normal or the outlier class. Model based pattern matching techniques

can be applied to detect specific anomalies with best results when the mechanism causing

the anomaly is well known and simple [36]. However when the background is less well

known or the system is too complex to get analytical results (or to run detailed simula-

tions), it is hard to detect even specific types of anomalies with model-based techniques

due to the unknown nature of the waveforms. Model-free unsupervised outlier detection

techniques can be applied to detect unexpected events from time series in cases when no

tractable models or training data is available. This Exploratory Data Analysis (EDA) is

the opposite of the conventional modeling framework: events are detected from time-

series, then the detected parts are interpreted by domain experts. Several detection meth-

ods can be run in unsupervised mode, including the k nearest neighbors (kNN) distance-

based anomaly detection techniques, which are amongst the simplest methods. A widely

used example for this approach is the standard Local Outlier Factor (LOF) algorithm [37],
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which was also adapted to time series data [38].

Figure 3: Schema of our unique event detection method and the Temporal Outlier

Factor (TOF). a An ECG time series from a patient with Wolff-Parkinson-White Syn-

drome, a strange and unique t-wave zoomed on the graph b. c The reconstructed attractor

in the 3D state space by time delay embedding (E=3, τ = 0.011s). Two example states
(red and blue diamonds) and their 6 nearest states space neighbors (orange and green di-

amonds respectively) are shown. The system returned several times back to the close

vicinity of the blue state, thus the green diamonds are evenly distributed in time, on graph

a. In contrast, the orange state space neighbors of the red point (zoomed on graph d) are

close to the red point in time as well on graph b. These low temporal distances show

that the red point marks a unique event. e TOF measures the temporal dispersion of the k
nearest state space neighbors (k = 20). Red dashed line is the threshold θ = 0.28s. Low
values of TOF below the threshold mark the unique events, denoted by orange dots on the

original ECG data on graph f.

To adapt collective outlier-detection to time series data, nonlinear time series analysis

provides the possibility to generate the multivariate state space from scalar observations
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[14,15]. Naturally, time delay embedding can be introduced as a preprocessing step before

outlier detection (with already existing methods i.e. LOF) to create the contextual space

for collective outlier detection from time series.

Besides the spatial information preserved in reconstructed state space, temporal rela-

tions in small neighborhoods can contain clues about the dynamics. For example recur-

rence time statistics were applied to discover nonstationary time series [39,40], to measure

attractor dimensions [41–43] and to detect changes in dynamics [44, 45].

In the followings we introduce a newmethod leveraging nonlinear time series analysis

and temporal information to quantify uniqueness, which forms an effective tool to find

unicorns.

1.5 Intrinsic dimension and the Farahmand-Szepesvari-Audibert es-

timator

1.5.1 Intrinsic Dimension

Dimensionality sets profound limits on the stage where data takes place, therefore it is

often crucial to know the intrinsic dimension of data to carry out meaningful analysis.

Intrinsic dimension provides direct information about data complexity, as such, it was

recognised as a useful measure to describe the dynamics of dynamical systems [46], to

detect anomalies in time series [47], to diagnose patients with various conditions [48–51]

and to use it simply as plugin parameter for signal processing algorithms.

Most of the multivariate datasets lie on a lower dimensional manifold embedded in a

potentially very high-dimensional embedding space. This is because the observed vari-

ables are far from independent, and this interdependence introduces redundancies result-

ing in a lower intrinsic dimension (ID) of data compared with the number of observed

variables. To capture this – possibly non-linear – interdependence, nonlinear dimension-

estimation techniques can be applied [24, 52–54].

To estimate the ID of data various aproaches have been proposed, for a full review of

techniques see the work of Campadelli et al. [55]. Here we discuss the k-Nearest Neighbor

(kNN) ID estimators, with some recent advancements in the focus.

A usually basic assumption of kNN ID estimators is that the fraction of points in a

neighborhood is approximately determined by the intrinsic dimensionality (D) and dis-

tance (R) times a – locally almost constant – mostly density-dependent factor (η(x,R),

Eq. 7).

k

n
≈ η(x,R) ∗RD

k (7)
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where k is the number of samples in a neighborhood and n is the total number of samples

on the manifold.

Assuming a Poisson sampling process on the manifold Levina and Bickel [56] derived

a Maximum Likelihood estimator, which became a popular method and got several up-

dates [57, 58]. These estimators are prone to underestimation of dimensionality because

of finite sample effects and overestimations because of the curvature.

To address the challenges posed by curvature and finite sample, new estimators were

proposed [59–62]. To tackle the effect of curvature, a minimal neighborhood size can be

taken on normalized neighborhood distances as in the case of MINDML [59]. To tackle the

underestimation due to finite sample effects, empirical corrections were applied. A naive

empirical correction approach was applied by Camastra and Vinciarelli [63]: a percep-

tron was trained on the estimates computed for randomly sampled hypercubes to learn a

correction function. Motivated by the correction in the previous work, the IDEA method

was created [59]; and a more principled approach was carried out, where the full distribu-

tion of estimates was compared to the distributions computed on test data sets using the

Kullback-Leibner divergence (MINDKL [59], DANCo [61]). In the case of DANCo, not

just the nearest neighbor distances, but the angles are measured and taken into account in

the estimation process resulting in more accurate estimates.

In the recent years, further estimators have been proposed, such as the estimator that

uses minimal neighborhood information leveraging the empirical distribution of the ra-

tio of the nearest neighbors to fit intrinsic dimension [62], or other approaches based on

simplex skewness [64] and normalized distances [65–68].

1.5.2 The Farahmand-Szepesvári-Audibert estimator

In the following section, we revisit the manifold adaptive dimension estimator proposed

by Farahmand et al. [69] to measure intrinsic dimensionality of datasets. From Eq. 7 we

can take the logarithm of both sides:

ln

(
k

n

)
≈ ln η +D lnRk

ln

(
2k

n

)
≈ ln η +D lnR2k

(8)

If η is slowly varying and R is small, we can take it as a constant.

If we subtract the two equations from each other we get:

ln (2) ≈ D ln

(
R2k

Rk

)
(9)
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Thus, to compute the local estimates, we fit a line through the log-distance kth and

2kth nearest neighbor at a given location.

d(x) =
ln(2)

ln (R2k/Rk)
(10)

To compute a global ID estimate, the authors proposed the mean of local estimates

at sample-points, or a vote for the winner global ID value (the mode), if the estimator is

used in integer-mode. They proved that the above global ID estimates are consistent for

k > 1, if η is differentiable and the manifold is regular. They calculated the upper bound

for the probability of error for the global estimate, however this bound contains unknown

constants [69].

In this work we propose an improved FSA estimator, based on the assumption that the

density is locally uniform. We suggest to use the median of local values for a global intrin-

sic dimension estimate. We correct the underestimation effect by an exponential formula

and test the new algorithm on benchmark datasets. We apply the proposed estimator to

locate epileptic focus on field potential measurements.

1.6 Analysis of interactions among signals

1.6.1 Correlation

Linear correlation coefficient (ρxy) is the simplest and most natural measure to quantify

association between two signals:

ρxy =

∑
t (xt − µx) (yt − µy)

Nσxσy

where xt and yt are the data points of two time series, µx and µy are their respective mean

values, σx and σy are the respective standard deviations, and N is the number of data

points.

This correlation method assumes that signals depend on each other linearly and that

there is no time delay between the analyzed signals; linear dependency effectively means

that the signals have the same waveforms in the case of time series.

In the case of macroscopic electric signals from the brain, high correlation, and thus

high instantaneous linear coupling, is often the consequence of electric cross-talk between

electrodes and wires or the effect of far fields. If high correlation is observed, care should

be taken to eliminate these effects.

Besides the assumption of instant and linear interaction, the correlation method has a

third important constraint: it is a symmetric measure, and hence, an undirected measure

of connection strength. There are methods to exceed these limitations and overcome these
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three constraints, but there is no one perfect method. The simplicity of the linear correla-

tion is always an advantage because it not only requires less computational resource, but

more importantly less data and is also less sensitive to noise.

1.6.2 Mutual Information

The most important symmetric connection measure, which can reveal any types of non-

linear dependencies, is mutual information. It is based on the entropy measure of a signal

and quantifies the information known about a random variable with knowledge of an other

random variable. Specifically, it calculates the difference between the entropy of the joint

distribution of the two variable (H (X,Y )) and the entropies of the individual variables

(H (X), H (Y )):

I (X;Y ) = H (X) +H (Y )−H (X,Y )

Although it can reveal nonlinear connections, its calculation requires constructing proba-

bility density functions for each marginal variable and for the joint variable, typically by

means of histograms. Much more data is typically required to determine the full proba-

bility distribution function with the necessary precision, especially when compared to the

simpler linear correlation method. Generally, calculation of mutual information requires

more data and more computational efforts, but rarely gives proportionally more informa-

tion about the existence of the interaction. It is because the majority of the interactions,

even the nonlinear forms can be approximated linearly to some extent, thus can be re-

vealed by linear correlation, and those forms of interactions are rare which can not be

approximated linearly at all, thus can not be revealed by correlation.

1.6.3 Cross correlation function and coherence

The cross correlation function measures the linear correlation coefficient between one

signal and a time-delayed version of a second signal as a function of the time delay between

the two signals, thereby overcoming the instantaneous assumption of the simple linear

correlation:

ρxy (τ) =

∑
t (xt − µx) (yt+τ − µy)

Nσxσy

.

Here, ρxy (τ) is the correlation coefficient for τ time lag and yt+τ is the τ -lagged version

of the time series yt.

The cross correlation function is also used to determine two functions: cross-spectrum

(Sxy (ω)) and its normalized version called the coherence (Cxy (ω)) given by

Cxy (ω) =
|Sxy (ω)|2

|Sxx (ω) ||Syy (ω) |
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Specifically, the cross spectrum Sxy (ω), also called cross-spectral density, is the Fourier

transform of the cross-correlation function.

Coherence expresses the stability of the phase lag on different frequency regimes be-

tween the two time series. As a Fourier-spectrum, coherence represents phase relations

with complex numbers. High amplitude in a given frequency regime means that the two

oscillations follow each other by a constant phase lag through the majority of the time,

whereas small amplitude means that the phase lag changes randomly in that frequency

regime. The specific phase lag between the two signals is contained by the argument of

the complex number. By using complex wavelet transform, instead of Fourier transform,

even temporal changes in the phase coherence and phase lag can be described.

An interesting application of coherence can be found in the micro electric imaging

concept introduced by Somogyvári et al. [70], where they applied coherence clustering on

Local Field Potential (LFP) recordings of high-density micro-electrode arrays implanted

in the hippocampus of the rat. They performed the coherence clustering in different fre-

quency bands and by this, he could identify the anatomical structure of the hippocampus

based solely on the LFP recordings.

Applying this coherence clustering method to neocortical micro-electrode recordings

resulted in a less clear structure, but supragranular, granular and infragranular layers can

be identified clearly on the micro-electroanatomical structure [70, 71].

Coherence were applied to identify differences in subtypes of temporal lobe epilep-

sies [72]. Walker et al. [73] found excessive delta and theta power in slow foci in all

intractable patients, and hypocoherence in theta in 75% of patients. In this study, the aim

for neurofeedback training was to restore the normal, healthy coherence pattern between

EEG channels. When power and coherence abnormalities could be restored by the neuro-

feedback training, patients become seizure free [73].

1.6.4 Causality analysis

Detecting causal relations between observed components would be extremely useful to

exploit the vast amount of data provided by measurement technologies to understand com-

plex systems such as the ecosystem of our planet or the human brain.

David Hume was the first, who approached causal effect from an empirical viewpoint

and introduced the notion of counterfactual statements [74].

We define causal effect between two variables – in the spirit of Hume and Miguel

Hernán [75] – through counterfactual statements, that is changed values of one variable

would have led to different future values of the other variable, meanwhile values of all the
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other variables are kept unchanged at the present (Eq. 11).

xt+i = fi (xt, yt, θt) (11)

y → x := ∃y′t 6= yt : fi (xt, yt, θt) 6= fi (xt, y
′
t, θt) (12)

Where xt+i and xt are the value of x in the future and in the present respectively and i > 0.

fi is a stochastic or deterministic function determining the time evolution of x.

In real world cases, it is almost impossible to test the outcome of counterfactuals,

therefore additional assumptions are necessary to infer causal structures. On the one hand

as a standard approach for emulating counterfactuals, randomized experiments were in-

troduced to ensure the exchangeability of elements, allowing the approximation of the

average causal effect in a population [75–77]. On the other hand observational causal dis-

covery methods were invented to infer causal relations based purely on observations [78]

or specifically time series observations [21, 79, 80]. These latter methods use stationarity

and ergodicity assumptions to ensure, that during the time evolution, the system visits the

all the (x, y) state pairs necessary to evaluate the counterfactuals .

1.6.5 From cross-correlation to causality

The cross correlation function, as well as coherence spectrum, could be used to determine

directional effects between the analyzed signals based on the phase of the peak, corre-

sponding to the time delay between the signals in a given frequency (eq. phase lag index).

However, this approach builds on two main assumptions. First, it assumes that there are

no difference in the observational delays for the two signals; second, it assumes similar

wave-shapes on the two channels, as it is based on the linear correlation coefficient im-

plicitly. Although both assumptions can be valid in many situations, it is hard to verify

them in general.

1.6.6 Granger Causality

The majority of causality analysis methods are based on Norbert Wiener’s principle on

predictability: a time series is said to be causal to an other, if it’s inclusion makes the

prediction of the caused time series more precise [79]. The first practical and applicable

implementation of this principle is the Granger-causality introduced by Clive Granger in

1969 [81]. The Granger formalization is based on auto-regressive (AR) models, where the

next element of a time series is approximated by the linear mixture on the recent elements.
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Specifically, the formalization can written as follows:

xt =

p∑
i=1

aixt−i + εt

xt =

p∑
i=1

bixt−i +

q∑
j=1

cjyt−j + ηt

Fy→x = log

(
σ2
ε

σ2
η

)
where ai, bi and cj are the AR coefficients; p and q control the order of the models; εt

and ηt are error residuals; σ-s are the variances of residual errors and Fy→x is the directed

Granger-causality index. Inclusion of the recent past of the other time series into the

auto-regressive model does not necessarily results same improvement of prediction error

in both directions, thus Fy→x and Fx→y are generally non-equal. The original Granger

method quantifies the effect of including the other time series using the log-ratio of the

variance of the residual error signal between a prediction with the other time series and a

prediction without the other time series.

Since then, numerous versions and improvements of the original Wiener-Granger idea

exist. Directed transfer function and Partial Directed Coherence solves the Granger prob-

lem in the frequency domain instead of time domain [82–84]. Conditional or multivariate

Granger causality includes non-pairwise comparisons and there are nonlinear extensions

as well. A version of Granger-causality called short-time directed transfer function has

been adapted to analyze the event related activity, developed by [85] and applied to reveal

information transmission during visual stimulation of the brain.

1.6.7 Transfer Entropy

A non-parametric translation of Norbert Wiener’s original idea to information theory’s

language is Transfer Entropy introduced by Thomas Schreiber in 2008 [86]. Transfer

Entropy quantifies the predictive information transfer, the Mutual Information between

present X values and past Y states (Y −) conditioned on past X states (X−):

TE (Y → X) = I
(
X;Y −|X−)

Transfer Entropy and Granger causality are equivalent in the case of jointly Gaussian

variables. TE was used to reconstruct interaction delays in turtle visual system and for

various other applications [87]. There are several toolboxes for the computation of TE,

for example JIDT with python bindings or TRENTOOL for MATLAB.
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1.6.8 Convergent Cross Mapping causality

A new approach of causal discovery were introduced by George Sugihara based on theo-

rems of nonlinear dynamical systems [88]. Given a dynamical systemwhose state changes

with time, from the current state, one can predict all the coming future states, if time evo-

lution rules are known. The actual state is a point in state space, the space with state

variables on each axis. As time evolves, the system’s state traces out a trajectory in state

space. In many cases, the system’s state is attracted to a lower dimensional subset of state

space and the points form a manifold.

Sugihara’s idea is based on Takens theorem [89]. Deyle and Sugihara [90] generalized

Takens theorem into a multivariate form, when not only the different time lags of a time

series provides the state-space embedding, but different observation functions of the same

dynamical systems as well. Based on this theorem, they found a new principle for causality

analysis: The new idea is that if two time series measurements (X , Y ) were from the

same dynamical system, then the reconstructed state spaces can be mapped back to the

same original manifold, and so, there should also be a smooth mapping between the two

reconstructed state spaces. In this case, one can identify causality between the two variable

as well.

An asymmetrical relationship between the variables can also be revealed when their

original state-spaces are not the same, but one of them is a lower dimensional sub-manifold,

a (not necessarily linear) projected version of the other. The mapping works in one direc-

tion, but is non-invertible. In this case, one can speak about unidirectional causal relation-

ship, wherein one variable causes the other variable but not the reverse.

If there are no such mappings between the two reconstructed manifolds, they do not

belong to the same dynamical system. In this case, one can say that there is no causality

between the two variables. Convergent Cross-Mapping is a procedure which tests the

existence of thismapping. It is considered a cross-mapping procedure, because it estimates

themapping between the two reconstructedmanifolds; it is considered convergent because

this estimate converges to the true mapping as one lengthens the time series.

To check the existence of the casual effect of x on y, the steps of the CCM procedure

are as follows :

1. State space reconstruction from the scalar time series.

One can apply time delay embedding to reconstruct the state of the system, where

a modified version of Eq. 5 ensures a time-centered embedding

Y (t) = [y(t−Dτ), ..., y(t), ..., y(t+Dτ)] (13)

Where y(t) denotes the original time series, Y (t) is the time series of the embedded,
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E = 2D + 1 dimensional vectors and τ is the delay used for the embedding.

2. Fitting a mapping function by robust local kNN regression. The algorithm runs

through all the points of Y (t) and identify a local neighborhood around each point.

The E+1 nearest neighbor points Y (ti) are chosen and a weighting factorWi(t) is

calculated for each neighbor Y (ti) through: 1, normalizing the distances by the dis-

tance of the closest neighbor Y (t1); 2, using an exponential kernel; 3, renormalizing

the sum to 1:

Wi(t) =
e
− |Y (ti)−Y (t)|

|Y (t1)−Y (t)|

E+1∑
i

e
− |Y (ti)−Y (t)|

|Y (t1)−Y (t)|

(14)

where, |Y (ti)−Y (t)| denotes the Euclidean distance between the ith closest neigh-
bor Y (ti) and the original point Y (t) in the embedding space.

3. Compute predictions based on the mapping. An estimation x̂(t) is calculated from

x(t) as a weighted average of the mapped x(ti) points, by using the Wi(t) weight

factors:

x̂(t) =
∑
i

Wi(t) ∗ x(ti) (15)

4. Evaluation of the model-fit. The estimated x̂(t) and the original x(t) time series are

compared by calculating the linear correlation coefficient between them:

CCMx→y = r (x, x̂) (16)

High values of the CCMx→y show, that the consequence y(t) contains information

about the cause x(t), thus refers to the existence of a directed causal connection

from the cause to the consequence. Causality CCMy→x in the reverse direction

calculated similarly, only the role of the x and y is reversed.

Ye et al. [91] extended the original CCM method by introducing time delay between

the cause and consequence and examining the causal relationships at many time lags.

Parallel work of Schumacher et al. is based on similar principles and also contains time

delay detection and in addition they applied their method to neural data [92].

There are various methods to test the existence of the smooth mapping between the

reconstructed trajectories. Ma et al. used a feed forward neural network to explicitly esti-

mate the smooth mapping between the embedded times series. When the mapping error

was sufficiently small, they detected a causal relationship, otherwise they said that the two

time series were independent in the time segment [93].
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CCMworks well on deterministic data and when there is direct causality between vari-

ables, but it cannot detect hidden common causes. So far, we found only one attempt in the

data analysis literature to distinguish direct causality from common cause, but this method

has yet to be applied neural data [94]. Moreover the cross-talk or linear mixing, which

always appears between multiple electric signals recorded in a volume conductor restricts

the applicability of CCM on raw extracellular signals. Due to linear mixing, each of the

recorded signals contains the effect of all neural sources with different weights. Thus, all

the sources can be reconstructed from all recorded mixtures to some extent, resulting false

detection of circular causal connections between all recordings. To avoid these false pos-

itive detections, determination of the individual sources from the measured potentials is

necessary and the causality analysis should be applied between the reconstructed time se-

ries of the sources, instead of potentials. This could be achieved by current source density

calculation [95–99] or linear demixing due to independent component analysis [100].

1.6.9 State-space reconstruction and cross-mappig on coupled logistic maps

State variables are x and y and the state of the system is (xt, yt) at time t. The update rule

for time evolution is:

f : xt = rxt−1(1− xt−1) (17)

g : yt = ryt−1(1− yt−1 − βxt−1) (18)

where r is a constant parameter, and β is the coupling constant.

We can express xt−1 from Eq. 18:

w : xt−1 =
1− yt−1 − yt

ryt−1

β
(19)

So we could reconstruct xt−1 from Yt = (yt, yt−1). From the function composition

(f ◦w) (Yt) = xt we can also reconstruct xt. From this follows, that we could reconstruct

any xδ, where δ >= t− 1 with (f ◦ f ◦ f ◦ · · · ◦ f ◦ w) (Yt) = xδ.

In contrast, using xt−1 alone, one can not infer yt, because yt−1 is also present in Eq.

18. So one can try to express yt−1 with the help of xt−2, but then yt−2 shows up in the

equation. This can be continued to the initial condition x0 and y0, but y0 is unknown.

From these we can see, that the time-delay embedding with D = 2 and τ = 1 applied

on yt is enough to reconstruct the state of the system. So we can build the dynamics solely

on the Y state-space alone (no need for xt):

yt+1 = ryt(1− yt − β(f ◦ w) (Yt)) (20)

22



Also, from here we can predict the time-shift properties between X and Y

(yt, yt−1) → (xt, xt−1) (21)

.

1.7 Local Field Potential and Intrinsic Optical Signal on ex vivo slices

1.7.1 The intrinsic optical signal

Different methods are used to monitor activity-dependent changes in nervous tissue, when

both neuronal and glial cell function may be altered. Beside detection of fast electrical

changes with different electrophysiological approaches, optical techniques can also be

used to follow neuronal activity with a non-invasive manner [101,102]. The intrinsic op-

tical signal (IOS) quantifies the changes of optical properties of the tissue by measuring

the transmitted or the reflected light in brain slices. Contrary to the in vivo IOS method,

the in vitro IOS is independent of the blood flow changes, and it may develop as a result

of different cellular processes, such as ionic movement across the membranes, synaptic

activity and metabolic changes, which may cause cell swelling or shrinkage [103]. These

volumetric changes of both neural and glial cells lead to changes in the light scattering

properties of the tissue, thus it is widely accepted, that they form the basis of the IOS gen-

eration: swelling of the cells decreases the scattering, thus increases the transmittance of

the tissue [101–105]. Although most of these processes are slow, there are evidences of

faster IOS components as well, which may change on time scales similar to the electro-

physiological signals.

1.7.2 LFP versus IOS and causality

While the correlation between electrical- and intrinsic optical signals has been known for

a long while [104, 106], the precise causal relationship of electrical and intrinsic optical

signals has not yet been analyzed in detail. In spite of several studies, it is not yet clar-

ified, how different IOS components parallel develop, and it is also questionable, which

types of underlying processes are consecutively activated [107]. Epileptiform activity can

be easily provoked in acute brain slices in various ways. Different chemicals, i.e., 4-

aminopyridine (4AP) applied into the incubation solution results in spontaneous epileptic

discharges in hippocampal or cortical brain slices [108]. In Mg2+-free solution, sponta-

neous epileptiform activity develops with slightly different characteristics [109]. Strong

electrical stimulation of the white matter results in after-discharges, which can be regarded

as an electrically evoked epileptiform activity [110]. The aim of our present investigation
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was to analyze the processes of IOS generation following seizure induction in acute brain

slices, when both fast and slow IOS components are detectable [111].

The correlated appearance of epileptiform electrophysiological and IOS signals raised

the question of the direction and type of the causal connection between them. At least two

alternative hypothesis can be set up for the causal relation between the activity observed in

the local field potential (LFP) and the activity dependent IOS components: On one hand,

it is possible that the epileptiform activity causes the osmotic changes, and the resulting

swelling of the cells is measured by the IOS, while the electrophysiological activity de-

velops and runs independently from those osmotic changes. In this case a unidirectional

causal drive would exist from the LFP to the IOS. On the other hand, it is also possible that

the changes within the ionic concentration, reflected by the IOS signal, have a feedback

effect on the epileptic activity, presumably determining the termination and the recurrence

of the epileptic bursts. In this case, circular or bidirectional causal connection would exists

between the LFP and the IOS signals.

As the CCM, introduced by Sugihara et al. [88] and extended to delayed causal effects

by Ye et al. [91], is well suited to determine both unidirectional and circular causal cou-

plings, we applied this method in this work, to determine the causal relationship between

the electrophyisiological and optical signals.
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2 Objectives

2.1 Unsupervised identification of clusters in cone pedicle data

At the outer synapse layer of the human retina cone cells contact and interact with each

other and with bipolar cells through gap junctions. We attempt to explore that whether

different types of cone pedicles can be distinguished in a statistically robust manner in the

human outer retina. We will use lognormal mixture model, fit by the expectation maxi-

mization algorithm and Bayesian information criteria for model selection to determine the

optimal number of clusters.

2.2 An algorithm to detect rareness-based outliers in time series

Outliers are rare and different compared with normal samples. Most outlier detection

algorithms use explicitly the latter – difference – criteria to identify outliers.

We develop a new outlier detection algorithm, which explicitly leverages the rareness

of anomalies. We will call the new method as Temporal Outlier Factor (TOF). We will

compare the performance of TOF algorithmwith the performance of the density-based Lo-

cal Outlier Factor (LOF). We will investigate on various real-world datasets, that whether

this rareness-based approach provides us with excess information or not, compared with

the density-based anomaly detection approach.

2.3 An improved measure of intrinsic dimensionality

Intrinsic dimensionality provides a direct measure of data complexity and the reliability

of such information is often crucial to convey successful data analysis.

Here, we will formulate the probability density function of the – manifolds adaptive

– Farahmand-Szepesvari-Audibert intrinsic dimensionality estimator to develop more re-

liable methods estimating intrinsic dimension of datasets. Given the probability density

function, we attempt to calculate maximum likelihood solution, then we investigate possi-

ble improvements in the Farahmand-Szepesvari algorithm. We will benchmark the orig-

inal and improved algorithm against the classical Levina-Bickel and DANCo estimators.

We will leverage the improved estimator to map out the dynamics of epileptic seizures

from human intracranial EEG recordings.
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2.4 Explore the causal relationship between intrinsic optical signal

and Local Field Potential

The intrinsic optical signal stems from the reflection and absorption changes of the neural

tissue caused by mostly the swelling due to osmotic changes. Therefore, it has complex

connections with the electrical environment and the measured local field potentials, but

this relationship is highly unexplored.

We apply Convergent Cross Mapping algorithm – a causal discovery technique lever-

aging theorems of nonlinear dynamical systems – to explore the causal relationship be-

tween intrinsic optical signal and local field potential measured in rodent brain-slices dur-

ing resting state and evoked seizure events. We will compare the results of the analysis

with the ones produced with linear cross-correlation function and further explore the im-

plications of this comparison. Finally we will build an empirical model – based on the

exploratory analysis – to infer one signal from the other, if it is possible.
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3 Methods

3.1 Statistical analysis of retinal gap junctions

For experimental procedures see Kantor et al [112]. We then estimated the probability

density function (P (x)) of the pedicle area, the convex hull area and the number of Cx36

plaques with a weighted sum of log-normal components for each case:

P (x) =
K∑
k=1

πkpk(x) (22)

where K is the number of components and πk is the mixing coefficient of the k-th com-

ponent. The coefficients are normalized, that is
∑K

k=1 πk = 1. pk(x)-s are the log-normal

components which are given by:

pk(x) =
1

xσk

√
2π

exp(
(logx− µk)

2

2σ2
k

) (23)

where µ and σ are the location and the shape parameters of the distribution, respectively.

We fitted the model through maximization of the likelihood given the model using an

iterative procedure called the Expectation Maximization (EM) algorithm. The likelihood

is the probability of the data set given the parameters:

L = P (data|π, µ, σ) =
n∏

i=1

P (xi) (24)

The data set is the co-occurrence of observed data points (xi), so the probability of the

data set is the product of the n individual data-point probabilities (here, we assumed that

the data points are independent and identically distributed). We initialized the parameters

randomly and then waited 800 iteration steps, this procedure was repeated 20 times and

the solution with maximal likelihood was accepted. We performed the above procedure

for a different number of components (from 1 to 9). The optimal number of components

(?K) was chosen according to the Bayesian Information Criterion (BIC). BIC shows the

optimality of a model by introducing a trade-off between the likelihood and model com-

plexity:

BIC(K) = −2 logL+ (3K − 1) logn (25)

The first term on the right-hand side is the negative logarithm of the likelihood, which is

a monotonically decreasing function ofK. In the second term is the number of free fitted

parameters, namely the log-scale, the shape and themixing coefficient for each component
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and minus one due to the normalization restriction for mixing coefficients. This latter

term is a monotonically increasing function of K, acting as a penalty for the number of

parameters, which is a simple estimate of model complexity. The optimal model has the

smallest BIC value.

3.2 Analysing time series with the Temporal Outlier Factor

3.2.1 TOF Analysis workflow

1. Preprocessing and applicability check:

This step varies from case to case, and depends on the data or on the goals of anal-

ysis. Usually it is advisable to make the data stationary. For example, in the case

of oscillatory signals, the signal must contain many periods even from the lowest

frequency components. If this latter condition does not hold, then Fourier filtering

can be applied to get rid of the low frequency components of the signal.

2. Time delay embedding:

We embedded the scalar time series into an E dimensional space with even time

delays (τ , Eq. (5), Fig. 4 a). The embedding parameters can be set with prior knowl-

edge of the dynamics or by other optimization methods. Such optimization methods

include the first minimum or zerocrossing of the autocorrelation function (for delay

selection), the false nearest neighbor method [113, 114] or the differential entropy

based embedding optimizer that we applied [115].

3. kNN Neighbor search:

We search for k-Neighborhoods around each data-point in state-space and save the

distance and temporal index of neighbors.

4. Compute TOF score:

We compute the TOF score according to equation (51).

5. Apply a threshold θ on TOF score to detect unicorns (Fig. 4 c):

The threshold can be established by prior knowledge, by clustering techniques or

supervised learning. The maximum event length parameter (M ) determines the

level of threshold on TOF score (Eq. 56): we set the threshold according to prior

knowledge about the longest possible occurrence of the event. After thresholding,

we may apply a padding around detected points with symmetric window length

w = k/2, since the k parameter sets the minimal length of the detectable events.
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We implemented these steps in the python programming language (python 3). Time de-

lay embedding and embedding parameter optimization was carried out by custom python

scripts. We used the scikit-learn package [116] to calculate LOF, and the neighbor search

was established by the kd-tree algorithm of the scipy package [117].

Figure 4: The workflow for TOF and LOF analysis for time series. (a) We start

with a time series generated by a dynamical system, orange and blue marks TOF and LOF

detections respectively. (b) As a next step of our analysis we apply time delay embedding,

then kNN search in the reconstructed state-space. (c) We calculate TOF and LOF scores

and apply thresholds on the outlier scores to detect anomalies.

3.2.2 Local Outlier Factor

The Local Outlier Factor [37] compares local density around a point (X) with the density

around its neighbors (Eq. 26).

LOFk(X) =
1

|Nk(X)|
∑

o∈Nk(X)

lrdk(o)

lrdk(X)
(26)

Where |Nk(X)| is the cardinality of the k-distance neighborhood of X , lrdk is the local

reaching density for k-neighborhood (see Breunig et al. [37] for details, Fig. 4).

3.2.3 Generation of simulated datasets

Simulation of outlier datasets. We simulated 4 systems: logistic map with linear tent

map outlier segment, logistic map with linear outlier segment, simulated ECG data with

tachycardia outlier segment and random walk with linear outlier segment. The first three

datasets stem from deterministic dynamics, whereas the last simulated dataset has stochas-

tic nature.
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We generated 100 time series from each type, the length and the position of outlier

segments were determined randomly in each case.

Logistic map with tent-map anomaly. 100 instances of logistic map data-series

were simulated (N = 2000) with one randomly (uniform) inserted outlier period in each

dataset. The length of outlier periods was randomly chosen with length between (2−200).

The basic dynamics in normal conditions were governed by the update rule:

xt+1 = rxt(1− xt) (27)

where r = 3.9. The equation was changed during anomaly periods:

xt+1 = 1.59− 2.15× |xt − 0.7| − 0.9× xt. (28)

Logistic map with linear anomaly. The background generation process exhibited

the logistic dynamics (Eq. 27) while the anomaly can be described by linear time depen-

dence:

xt+1 = a ∗ xt + xt (29)

Here we used a = ±0.001, where the sign of the slope is positive by default and changes

when the border of the (0, 1) domain is reached ensuring reflective boundary condition.

Random walk data with linear anomaly. We simulated 100 instances of multi-

plicative random walks with 2-200 time-step long linear outlier-insets. The generation

procedure was as follows:

1. Generate wi random numbers from a normal distribution with µ = 0.001 and σ =

0.01

2. Transformwi to get the multiplicative randomwalk data as follows: xi =
∏i

j=1(1+

wj)

3. Draw the length (L) and position of outlier-section from discrete uniform distribu-

tions between 2− 200 and 1− (N − L) respectively.

4. Use linear interpolation between the section-endpoint values.

SimulatedECGdatasets with tachyarrhythmic segments. Wegenerated artificial

ECG data series according to the model of Ryzhii and Ryzhii [118]. The pacemakers of
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the heart: the sinoatrial node (SA), the atroventricluar node (AV) and the His-Purkinje

system (HP) are simulated by van der Pol equations:

SN

ẋ1 = y1

ẏ1 = −a1y1(x1 − u11)(x1 − u12)− f1x1(x1 + d1)(x1 + e1)
(30)

AV

ẋ2 = y2

ẏ2 = −a2y2(x2 − u21)(x2 − u22)− f2x2(x2 + d2)(x2 + e2) +KSA−AV (y
τSA−AV

1 − y2)

(31)

HP

ẋ3 = y3

ẏ3 = −a3y3(x3 − u31)(x1 − u32)− f3x3(x3 + d3)(x3 + e3) +KAV−HP (y
τAV −HP

2 − y3)

(32)

where the parameters were set according to Ryzhii [118]: a1 = 40, a2 = a3 = 50,

u11 = u21 = u31 = 0.83, u12 = u22 = u32 = −0.83, f1 = 22, f2 = 8.4, f3 = 1.5,

d1 = d2 = d3 = 3, e1 = 3.5, e2 = 5, e3 = 12 and KSA−AV = KAV−HP = f1.

The following FitzHugh-Nagumo equations describe the atrial and ventricular muscle

depolarization and repolarization responses to pacemaker activity:

P wave

ż1 = k1(−c1z1(z1 − w11)(z1 − w12)− b1v1 − d1v1z1 + IATDe)

v̇1 = k1h1(z1 − g1v1)
(33)

Ta wave

ż2 = k2(−c2z2(z2 − w21)(z2 − w22)− b2v2 − d2v2z2 + IATRe)

v̇2 = k2h2(z2 − g2v2)
(34)

QRS

ż3 = k3(−c3z3(z3 − w31)(z2 − w32)− b3v3 − d3v3z3 + IVNDe
)

v̇3 = k3h3(z3 − g3v3)
(35)

T wave

ż4 = k4(−c4z4(z4 − w41)(z4 − w42)− b4v4 − d4v4z4 + IVNRe
)

v̇4 = k4h4(z4 − g4v4)
(36)
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where k1 = 2 × 103, k2 = 4 × 102, k3 = 104, k4 = 2 × 103, c1 = c2 = 0.26, c3 = 0.12,

c4 = 0.1 b1 = b2 = b4 = 0, b3 = 0.015, d1 = d2 = 0.4, d3 = 0.09, d4 = 0.1, h1 =

h2 = 0.004, h3 = h4 = 0.008, g1 = g2 = g3 = g4 = 1, w11 = 0.13, w12 == w22 = 1,

w21 = 0.19, w31 = 0.12, w32 = 0.11, w41 = 0.22, w42 = 0.8.

The input-currents (Ii) are caused by pacemaker centra.

IATDe =

0 for y1 ≤ 0

KATDey1 for y1 > 0
(37)

IATRe =

−KATRey1 for y1 ≤ 0

0 for y1 > 0
(38)

IVNDe
=

0 for y3 ≤ 0

KVNDe
y3 for y3 > 0

(39)

IVNRe
=

−KVNRe
y3 for y3 ≤ 0

0 for y3 > 0
(40)

where KATDe = 4× 10−5, KATRe = 4× 10−5, KVNDe
= 9× 10−5 and KVNRe

= 6× 10−5.

The net ECG signal is given by the weighted sum of muscle depolarization and repo-

larization responses:

ECG = z0 + z1 − z2 + z3 + z4 (41)

where z0 = 0.2 is a constant offset.

We simulated 100 instances of t = 100 seconds long ECG data with base rate pa-

rameter chosen from a Gaussian distribution (f1 ∼ N (µ = 22, σ = 3)). We randomly

inserted 2 − 20 seconds long fast heart-beat segments by adjusting the rate parameter

(f1 ∼ N (µ = 82, σ = 3)). The simulations were carried out by the ddeint python pack-

age, with simulation time-step ∆t = 0.001 from random initial condition and warm-up

time of 2 seconds. Also, a 10× rolling-mean down-sampling was applied on the data

series before analysis.

Generating non-unique anomalies dataset. To show the selectiveness of TOF for the

detection of unicorns, we simulated logistic map data with two tent-map outlier segments.

The governing equations were the same as in the previous section, but instead of one, we

randomly placed two non-overlapping outlier segments into the time series during data

generation, (N = 2000, L = 20− 200).
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Figure 5: Point density in normal and anomalous data. The density around each data

point is computed by the inverse distance from the k-th neighbor (E = 3, τ = 1, k = 20).

3.2.4 Analysis steps on simulations.

We applied optional preprocessing, embedded the time series, then applied TOF and LOF

with specific threshold value and neighborhood size on all simulated datasets.

For logistic map with tent map anomaly datasets no preprocessing was applied. Since

the generated dynamics is known and simple, we could chose embedding parameters man-

ually, without any sophisticated selection criteria. The dynamics is approximately one

dimensional (d = 1), therefore E = 3 is sufficient to embed the dynamics according to

Takens theorem (2d+1 = 3). Also for this discrete time dynamics τ = 1 is a good choice

of embedding delay. The expected anomaly length was calculated from the simulations

and the threshold was set accordingly, more specificallyM = 110 time steps (Eq. 42).

M =
Lmax + Lmin

2
=

200 + 20

2
= 110 (42)

Where L is the possible length of inserted anomalies. Since this event length is 5.5% of

the whole data series’ length, we set LOF threshold to detect the top 5.5% of points based

on LOF score. The neighborhood size was scanned between 1 and 100 points and ROC
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AUC was computed on the range for TOF and LOF. Also the F1, precision and recall

score were calculated, where kTOF=4 neighbors and the best neighborhood size based on

ROC AUC were selected for TOF and LOF respectively. We used this setting for kTOF

as an uninformed rule of thumb, since E + 1 points define a simplex in embedding-space

determining unequivocally the position of the neighborhood’s center. For LOF we used

kLOF = 28. This parameter setting scheme was used for all simulated datasets.

For the logistic map with linear anomaly segment datasets we set the parameters as

in the tent map anomaly’s case, the only difference being that the neighborhood size for

LOF was set to kLOF = 28 as the maximal place of ROC AUC.

For the simulated ECG data we applied a tenfold down-sampling, thus sampling period

became∆t = 0.01 s. The dynamics seems approximately 2 dimensional, so we setE = 3,

which may be enough to reconstruct the dynamics, also τ = 0.01 s was set as embedding

delay. The threshold was set toM = 11 for TOP and 11%s for LOF as the expectation of

tachycardia event length. The neighborhood size was scanned for ROC AUC values, and

k = 4 and k = 99 were used to compute F1 score, precision and recall for TOF and LOF

respectively.

We applied a logarithmic difference for the multiplicative random walk with linear

anomaly dataset as a preprocessing step in order to get rid of nonstationarity in the time

series (Eq. 43).

yt = log(xt)− log(xt−1) (43)

where x is the original time series, log is the natural logarithm and y is the preprocessed

time series. Embedding parameters were set to E = 3 and τ = 1 arbitrarily, since the

basic dynamics is stochastic. We set the event threshold parameter toM = 110 and 5.5%

for TOF and LOF respectively. We also used kTOF = 4 and kLOF = 1 since the later was

the maximal of a ROC AUC performance scanning.

On the logistic map with two tent-map anomalies dataset we did not apply any prepro-

cessing and we set the embedding parameters toE = 3 and τ = 1. Also the neighborhood

size was set to kTOF = 4 and kLOF = 28 for TOF and LOF respectively. We calculated the

ROC AUC values for each simulated instance and plotted these values as the function of

inter event interval (Fig. 16).

3.2.5 Model Evaluation metrics

We used precision, recall, F1 score and ROC-AUC to evaluate the detection-performance

on the simulated datasets.

34



The precision metrics characterizes how precise the detections were:

precision =
true positives

true positives+ false positives
(44)

The recall evaluates what fraction of the points to be detected were actually detected:

recall =
true positives

true positives+ false negatives
(45)

F1 score is a mixture of precision and recall and it provides a single scalar to rate model

performance:

F1 = 2
precision× recall

precision+ recall
(46)

As an alternative evaluation metrics we applied the area under Receiver Operating

Characteristic curve [119]. The ROC curve consists of point-pairs of True Positive Rate

(recall) and False Positive Rate parameterized by a threshold (α, Eq. 47).

ROC(α) := (precision(α),FPR(α)) (47)

where FPR = 1− recall is the false positive rate and α ∈ [−∞,∞].

We computed the median and median absolute deviance from the 100 simulations on

each simulated datasets (Fig. 15).

3.2.6 Analysis of real-world datasets

Polysomnography data-set. We analysed a part of the first recording of the MIT-BIH

polysomnographic database [120] on Physionet [121]. The ECG data was sampled at 250

Hz. At the 300. s of the recording we selected a 160 s long segment to be analyzed. The

embedding parameters were set by a manual procedure to ETOF = 3 and τ = 0.02 s.

The embedding delay was set according to the first zero-crossing of the autocorrelation

function, embedding dimension was determined by an iterative embedding process, where

the intrinsic dimensionality [69] of the dataset was measured for various embedding di-

mensions (Fig 6). The embedding dimension where the intrinsic dimensionality started to

saturate was selected. For LOF, the embedding dimension was set higher (ELOF = 7),

because the results became more informative about the apnoe event. The neighborhood

size was set according to simulation results; we used a smaller neighborhood for TOF

(k = 11) and a large neighborhood for LOF (k = 200). Moreover we set the event length

toM = 5 s for TOF, corresponding to 3.125% for LOF, which turned out to be a too loose

condition. Therefore we used the more conservative 0.5% threshold for LOF to get more

informative results.
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Figure 6: Embedding parameter selection for the polysomnography data. a Embed-

ding delay was selected (τ = 5 sampling period) according to the first zero-crossing of
the autocorrelation function. The time-shift ensures the most linearly independent axes

in reconstructed state-space. b The intrinsic dimensionality is measured in the function

of embedding dimension (E) for various neighborhood sizes. The dimension-estimates
start to deviate from the diagonal at E = 3. c Intrinsic dimensionality in the function of
neighborhood size (k) for various embedding dimensions.

Gravitational wave dataset. We analyzed the 4096 Hz sampling rate strain data of the

LIGO Hanford (H1) detector around the GW150914 merger event. The analysed 12 s

recording starts 10 s before the event. We investigated the q transform spectogram of the

time series around the event at 5×10−4 s time resolution by using the gwpy python package

(https://doi.org/10.5281/zenodo.3598469). Based on the spectogram we applied 50-300

Hz band-pass filtering on the time series as a preprocessing step. Embedding parameters
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were selected manually (Fig. 7), by choosing the first minima of the autocorrelation func-

tion for the embedding delay (τ = 8 sampling periods ≈ 1.95ms) and then we selected

the embedding dimension according to a manual procedure. Successive embedding of

the time series into higher and higher dimensional space showed, that the intrinsic dimen-

sionality of the dataset starts to deviate from the embedding dimension at E = 6. Thus,

we set this latter value as embedding dimension for TOF. For LOF a higher embedding

dimension (E = 11) led to informative results. We set the neighborhood sizes based on

our experiences with the simulated data-sets: smaller value was set for TOF (k = 12) and

larger for LOF (k = 100). The event length was set toM = 146ms for TOF as the visible

length of the chirp on the spectogram and 0.5% for LOF. Also, aw = 7widening window

was applied on the TOF detections.

LIBOR dataset. The monthly LIBOR dataset was analyzed to identify interesting peri-

ods. As a preprocessing step, the first difference was applied for detrending purposes.

Optimal Embedding parameters were selected according to the minima of the relative

entropy (E = 3, τ = 1 month, Fig. 8-9). The neighborhood size was set manually to

kTOF = 5 and kTOF = 30 for TOF and LOF respectively. Also, the event length was

M = 30 for TOF and the threshold was set to 18.86% for LOF. Also, a widening window

w = 3 was applied on the TOF detections.

3.3 Simulations and FSA dimension-analysis details

The simulations and the FSA algorithms were implemented in python3 [122] using the

numpy [123], scipy [117] and matplotlib [124] packages, unless otherwise stated.

3.3.1 Simulations

We generated test-datasets by uniform random sampling from the unitD-cube to demon-

strate, that theoretical derivations fit to data. Wemeasured distances with a circular bound-

ary condition to avoid edge effects, hence the data is as close to the theoretical assumptions

as possible.

To illustrate the probability density function of the FSA estimator, we computed the

local FSA intrinsic dimension values (Fig. 20). We generated d-hypercubes (n = 10000,

one realization) with dimensions of 2, 3, 5, 8, 10 and 12, then computed histograms of local

FSA estimates for three neighborhood sizes: k = 1, 11, 50 respectively (Fig. 20A-F). We

drew the theoretically computed pdf to illustrate the fit.

To show that the theoretically computed sampling distribution of the mFSA fits to

the hypercube datasets, we varied the sample size (n = 11, 101, 1001) with N = 5000
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Figure 7: Embedding parameter selection for the gravitational wave data. a Em-

bedding delay was selected (τ = 8 sampling period) according to the first minima of the
autocorrelation function. The first zeropoint was between 16 and 17 sampling periods. b
The intrinsic dimensionality is measured in the function of embedding dimension (E) for
various neighborhood sizes. The dimension estimates start to deviate from the diagonal

at E = 5. c Intrinsic dimensionality in the function of neighborhood size (k) for various
embedding dimensions.

realizations from each. We computed the mFSA for each realization and plotted the results

for d = 2 (Fig. 21A) and d = 5 (Fig. 21B).

We investigated the dimensionality and sample-size effects onmFSA estimates ( Fig. 22A-

F). We simulated the hypercube data in the 2-30 dimension-range, and applied various

sample sizes: n = 10, 100, 1000, 2500, 10000; one hundred realizations each (N = 100).

We computed the mFSA values with minimal neighborhood size (k = 1), and observed
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Figure 8: Autocorrelation and intrinsic dimension measurement of the preprocessed

LIBOR time series.

finite-sample-effects, and asymptotic convergence. The finite sample effect was pro-

nounced at low sample sizes and high dimensions, but we experienced convergence to

the real dimension value as we increased sample size. We repeated the analysis with hard

boundary conditions.

We fitted a correction formula on the logarithm of dimension values and estimates

with the least squares method (Eq. 48), using all 100 realizations for each sample sizes

separately.

α =

∑
(lnEi)d

(i)∑
(d(i))

2 (48)

Where Ei = Di/d
(i) is the relative error, Di is the intrinsic dimension of the data, and
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Figure 9: Preprocessing and embedding parameter selection for the LIBOR time

series with differential entropy. (left) The simple difference of the original time series

were taken to detrend the data (right) The minima of the entropy landscape marks the

optimal embedding parameters (E = 3, τ = 1 time-step).

d(i) are the corresponding mFSA estimates. This procedure fit well to data in the intrinsic

dimension range 2-30 (Fig. 24A-F).

Wider range of intrinsic dimension values (2-80) required more coefficients in the

polynomial fit procedure (Fig. 26A). Also, we used orthogonal distance regression to fit

the mean over realizations of lnEi with the same Di value (Fig. 26B). We utilized the

mean and standard deviation of the regression error to compute the error rate of cmFSA

estimator, if the error-distributions are normal (Fig. 26C-D). We applied this calibration

procedure (n = 2500) to compute cmFSA on the following benchmark datasets.

3.3.2 Comparison on synthetic benchmark datasets

We simulatedN = 100 instances of 15manifolds (Mi, n = 2500) with various intrinsic di-

mensions (see Table 1, 2, 4 in Campadelli et al. [55], http://www.mL.uni-saarland.de/code/Int-

Dim/IntDim.htm).

We measured the performance of the mFSA and corrected-mFSA estimators on the
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benchmark datasets, and compared them with the performance of ML [56] and DANCo

[61] estimators. We used the matlab [125, 126](https://github.com/cran/intrinsicDimen-

sion) and an R package [64] implementation of DANCo.

To quantify the performance we adopted the Mean Percentage Error (MPE, Eq.49)

metric [55]:

MPE =
100

MN

M∑
j=1

N∑
i=1

|Dj − d̂ij|
Dj

(49)

Where there is N realizations ofM types of manifolds, dj are the true dimension values,

d̂ij are the dimension estimates.

Also, we used the error rate – the fraction of cases, when the estimator did not find

(missed) the true dimensionality – as an alternative metric.

We found that the corrected-mFSA estimator produced the second smallest MPE and

the smallest error rate on the test datasets (Fig. 25).

3.3.3 Dimension estimation of interictal and epileptic dynamics

We used data of intracranial field potentials from two subdural grids positioned – pari-

etofrontally and frontobasally – on the brain surface and from three strips located in the

left and the right hippocampus and in the right temporal cortex as part of presurgical pro-

tocol for a subject with drug resistant epilepsy. This equipment recorded extracellular

field potentials at 88 neural channels at a sampling rate of 2048 Hz. Moreover, we read

in – using the neo package [127]– selected 10 second long chunks of the recordings from

interictal periods (N = 16) and seizures (N = 18) to further analysis.

We standardized the data series and computed the Current Source Density (CSD) as

the second spatial derivative of the recorded potential. We rescaled the 10 second long

signal chunks by subtracting the mean and dividing by the standard deviation. Then, we

computed the CSD of the signals by applying the graph Laplacian operator on the time-

series. The Laplacian contains information about the topology of the electrode grids, to

encode this topology, we used von Neumann neighborhood in the adjacency matrix. After

CSD computation, we bandpass-filtered the CSD signals [128] (1-30 Hz, fourth order

Butterworth filter) to improve signal to noise ratio.

We embedded CSD signals and subsampled the embedded time series. We used an

iterative manual procedure to optimize embedding parameters (Fig. 10). Since the fastest

oscillation is (30 Hz) in the signals, a fixed value with one fourth period (2048/120 ≈ 17

samples) were used as embedding delay. We inspected the average space-time separation

plots of CSD signals to determine a proper subsampling, (with embedding dimension of

D=2 (Fig. 27A). We found, that the first local maximum of the space-time separation was

at around 5ms: 9−10, 10−11, 11−12 samples for the 1%, 25%, 50% percentile contour-
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curves respectively. Therefore, we divided the embedded time series into 10 subsets to

ensure the required subsampling. Then, we embedded the CSD signal up to D = 12 and

measured the intrinsic dimensionality for each embeddings (Fig. 27BC). We found that

intrinsic dimension estimates started to show saturation atD ≥ 3, therefore we choseD =

7 as a sufficiently high embedding dimension (averaged over k = 10− 20 neighborhood

sizes).

We measured the intrinsic dimensionality of the embedded CSD signals using the

mFSA method during interictal and epileptic episodes (Fig. 27). We selected the neigh-

borhood size between k = 10 and k = 20 and averaged the resulting estimates over the

neighborhoods and subsampling realizations. We investigated the dimension values (Fig.

27AB) and differences (Fig. 27C) in interictal and in epileptic periods.

We found characteristic changes in the pattern of intrinsic dimensions during seizures,

which may help to localize seizure onset zone.

3.4 Causality analysis between LFP and IOS

3.4.1 Experimental procedures

Experiments were performed on adult, male Wistar rats weighing 100-200 g (Toxicoop,

Budapest, Hungary). Experimental design conformed to the rules of European Communi-

ties Council Directive of 24 November 1986 (86/609/EEC), and the study was approved

by the Animal Care and Use Committee of Eötvös Loránd University and Budapest An-

imal Health Care Authority (p.n.: 22.1/829/003/2007). Efforts were made to minimize

the number of animals used. Rats were kept under a 12:12 h LD cycle (lights on at 8:00

a.m.) in a temperature-controlled room at 22±2 °C. Standard food-pellets and tap water

were available ad libitum.

Slice preparation. In vitro experiments were performed on rat cortical slices (13 slices

from 13 rats) using standard procedures. Animals were decapitated in deep chloral-hydrate

(Hungaropharma, Budapest, Hungary) anesthesia and the brain was quickly removed from

the skull. A block was dissected from the somatosensory cortex and 400µm thick coro-

nal slices were prepared with a vibratome (EMS-4000, Electron Microscopy Sciences,

Fort Washington, PA, USA) in ice-cold artificial cerebrospinal fluid (ACSF). Slices were

incubated at room temperature for an hour in oxygenated ACSF (pH 7.01-7.12), the com-

position of which was (in mM): 126 NaCl; 1.8 KCl; 1.25 KH2PO4; 1.3 MgSO4; 26

NaHCO3; 2.4 CaCl2; and 10 glucose.
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Figure 10: Subsampling and embedding of the CSD signals. A Mean space-time sep-

aration plot of the CSD recordings, the lines show the contours of the 1% (blue), 25%
(orange), and 50% (green) percentiles for the 34 - 16 interictal and 18 seizures - record-

ings (thin lines) and their average (thick line, D = 2). The first local maximum is at

around 5 ms (10 time steps), which appoints the proper subsampling to avoid the effect
of temporal correlations during the dimension estimation. B Intrinsic dimension in the

function of the embedding dimension for the 88 recording-channels (averaged between
k = 5 − 10, for the first seizure). Dimension-estimates deviate from the diagonal above

D = 3, thus we choseD = 2 ∗ 3+1 = 7 as embedding dimension. C Intrinsic dimension

in the function of neighborhood size for various embedding dimensions (88 channels, for

the first seizure). The dimension estimates are settled at the neighborhood size between

k=10 − 20 (dashed blue). The knee because of the autocorrelation becomes pronounced
for D ≥ 8.
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Induction and recording of seizure activity – interface conditions. A single slice

was placed into an interface-type recording chamber, which was perfused continuously

(3ml/min) with ACSF. In the recording chamber, slices were maintained at 32 ± 0.5 ºC in

humidified, carbogenated (95%O2, 5%CO2) gas atmosphere. A total number of 12 record-

ing sites in 12 slices were included in the final analysis. To test the change in the LFP,

glass extracellular electrode (5−10MΩ) filled with 1MNaCl was positioned into layer 3

of the somatosensory cortex. For stimulation a bipolar tungsten electrode was placed at the

border of the white and gray matter below the recording electrode (Fig 28). Electrophys-

iological signals were amplified by an Axoclamp 2B amplifier (Axon Instruments Inc.,

Union City, CA), filtered and further amplified (0.16 – 1000Hz, 1000x) by a Supertech

Signal Conditioner (Supertech Ltd., Pécs, Hungary) and digitized by an NI-6023E A/D

card (National Instruments, Austin, Texas) for off-line analysis. Intrinsic optical signals

(IOS) were recorded also from the beginning of treatment with convulsant solution, si-

multaneously with local field potential (LFP). The slice was illuminated with unfiltered

white light, using a voltage-stabilized cold light source (Fiber-Lite MI-150, Dolan-Jenner,

Boxborough, UK). Alteration of reflected light was recorded by a monochrome 12-bit

CCD camera (FOculus FO-432B, NET Gmbh, Lerchenberg, Germany) attached to an up-

right 3-way Olympus SZX-9 (Olympus, Tokyo, Japan) stereomicroscope. Digital images

were taken at a resolution of 1024x768 pixels at 2 fps sampling rate, and stored in uncom-

pressed format on an x86 based personal computer for off-line analysis Epileptiform dis-

charges were provoked either by high frequency electric stimulation or by convulsant ap-

plication into the perfusion solution. Evoked seizures developed as afterdischarges, which

immediately followed the high frequency electric stimulation (50Hz, 5 s). Spontaneous

epileptiform activity developed after exchanging the perfusion solution in the recording

chamber from ACSF to Mg2+-free- or 4-aminopiridine (4-AP, 50µM ) containing solu-

tion. These types of activity usually appeared in 10-25 min in following the perfusion of

the convulsant.

Data acquisition of IOS and LFP was made simultaneously by a custom Matlab (The

MathWorks Inc., Natick, MA, USA) based software, which made snapshots of continuous

video signal from the CCD camera at a pre-defined sampling rate, based on the timing

process of NI-6023E A/D card. For the analysis of the optical changes a region of interests

(ROI) was manually defined in the slice beside the site of electrophysiological recording,

optical alterations in a small box was determined (Fig. 28).

Recording of seizure activity – submerged conditions. Under submerged conditions

the recording of LFPwas carried on aMEAUSB-1060 INV (Multichannel Systems, Reut-

lingen, Germany) system. Slices were transferred to a 60 channel 200/30 3D multielec-
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trode array (MEA) chip (Qwane Biosciences, Lausanne, Switzerland), where 30 µm di-

ameter electrodes are positioned in a 8x8 grid of 200 µm distances. The slice is positioned

directly on the bottom of MEA chip using a net, electrodes with the height of 50-70 µm

penetrate into the lower surface of slice. Continuous ACSF perfusion was carried out at a

5-6ml/min rate, temperature is maintained at 33±1 °C using TC02 Temperature Controller

(Multichannel Systems, Reutlingen, Germany) with PH01 perfusion heater (Multichan-

nel Systems, Reutlingen, Germany) and the built-in heating pad of MEA 1060 Amplifier

(Multichannel Systems, Reutlingen, Germany). The slice was trans illuminated with un-

filtered white light, using a Rebel Star LED (Ledium Ltd, Szeged, Hungary) light source,

placed under the MEA chip. Alteration of transmitted light was recorded by a 10-bit

CCD camera (Qimaging Micropublisher 3.3, Qimaging, Surrey, Canada) attached to an

upright 3-way Nikon SMZ 800 (Nikon Instruments Europe BV, Amsterdam, Netherlands)

stereomicroscope. Digital images were taken at a resolution of 1024x768 pixels at 1 fps

sampling rate, and stored in uncompressed format on an x86 based personal computer

for off-line analysis Data acquisition of IOS and LFP was also made simultaneously in

the case of submerged slice experiments. The STG4002 stimulator (Multichannel Sys-

tems, Reutlingen, Germany) provided continuous triggering for a custom Matlab (The

MathWorks Inc., Natick, MA, USA) based framegrabber software during data acquisition

made by MEA 1060 amplifier. Epileptic activity was provoked by Mg2+-free perfusion

solution application.

The intrinsic optical signals. Image series of interface and submerged slice experi-

ments were analyzed with the same method, using a custom Mathworks Matlab based

software. Since the first 2-3 min of video data acquisition was made in normal ACSF, the

first 10 frames of each image series were averaged and served as control Fcont, and then

it was subtracted from each subsequent images according to the following formula:

IOS =
∆Ft

Fcont

· 100 =
Ft − Fcont

Fcont

· 100 (50)

where Fcont is the luminance of control image (the average of first 10 frames) at a given

pixel, Ft is the luminance of each subsequent experimental image, ∆F is the change of

reflectance or transmittance, depending on experimental conditions. Fcont in the denomi-

nator serves to normalize the data across regions differing in luminance. The images were

converted to 256-scale pseudocolour images for further off-line analysis. For causality

analysis a region of interests (ROI) was defined in the somatosensory cortical region of

the slice around the site of electrophysiological recording. The mean IOS value was cal-

culated for the ROI. This data was used to characterize the IOS changes of the slice during

1 h seizure induction and correlate with single-channel field potential recordings.
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4 Results

4.1 Detecting clusters in slices of retinal cell pedicles

To obtain more information on the variability of subpedicle Cx36 conglomerates we de-

termined pedicle area sizes (n = 379), subpedicle Cx36 convex hull area sizes (n = 379)

and the number of Cx36 plaques in subpedicle conglomerates. The probability density dis-

tributions of all three measures showed the marks of multimodality. Thus, we performed

a mathematical model selection process to determine the optimal number of components

of the observed distributions (see Methods). Since the Gaussian distribution can take both

positive and negative values, but all three examined measures here (pedicle area, convex

hull area and number of Cx36 plaques/pedicle) are restricted to positive values by defini-

tion, we chose lognormal distributions to describe the form of each component.

The selection process resulted in two components (minimum BIC value occurred at

2 log-normal components) for the optimal model of the pedicle area distribution. This

suggested the presence of two pedicle populations, including a less frequent population

with smaller area sizes of 42.848µm2 (±18.479µm2 SD) and a more numerous one with

area sizes of 54.802µm2 (±10.804µm2 SD; Fig. 11A). Interestingly, a three components

solution was the optimal choice when convex hull area size values were analyzed. The

modes were at 0.166µm2 (±1.226µm2 SD), 19.62µm2 (±15.667µm2 SD) and 31.678µm2

(±5.811µm2 SD). However, the first component was confined to small values that most

likely corresponded to convex hull fragments, and the majority of the distribution was

well described by two components (Fig. 11B). Thus, we concluded that two populations

of subpedicle Cx36 conglomerates existed. Similarly, the optimal choice for the number

of Cx36 plaques/pedicle dataset occurred for the three-components calculationwithmodes

at 1.731 (±2.065 SD), 9.048 (±4.242 SD) and 17.455 (±4.374 SD) (Fig.11C). Again, the

first component was too small and likely corresponded to conglomerate fragments. This

latter analysis further supported the existence of two Cx36 conglomerate populations.

4.2 An algorithm to detect unique events in time series

4.2.1 Temporal Outlier Factor

Wepresent a newmodel-free unsupervised anomaly detection algorithm to detect unicorns

(unique events), that builds on nonlinear time series analysis techniques, such as time delay

embedding [15] and upgrades time-recurrence based non-stationarity detection methods

[39] by defining a local measure of uniqueness for each point.

The key question in unicorn search is how to measure the uniqueness of a state, as this
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Figure 11: Clusterings of retinal gap junction based on morphological features

is the only attribute of a unique event. The simplest possible definition would be, that a

unique state is one visited only once in the time series. A problem with this definition

arises in the case of continuous valued observations, where almost every state is visited

only once. Thus, a different strategy should be applied to find the unicorns. Our approach

is based on measuring the temporal dispersion of the state-space neighbors. If state space

neighbors are separated by large time intervals, then the system returned to the same state

time-to-time. In contrast, if all the state space neighbors are temporal neighbors as well,

then the system never returned to that state again. This concept is shown on an example
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ECG data series from a patient with Wolff-Parkinson-White (WPW) Syndrome (Fig. 3).

The WPW syndrome is due to an aberrant atrio-ventricular connection in the heart. Its

diagnostic signs are shortened PR-interval and appearance of the delta wave, a slurred

upstroke of the QRS complex. However, for our representational purpose, we have chosen

a data segment, which contained one strange T-wave with uniquely high amplitude (Fig. 3

a).

To quantify the uniqueness on a given time series, the Temporal Outlier Factor (TOF)

is calculated in the following steps (Fig. 4):

Firstly, we reconstruct the system’s state by time delay embedding (Eq. 5), resulting

in a manifold, topologically equivalent to the attractor of the system (Fig. 3 c-d and Fig. 4

b).

Secondly, we search for the kNNs in the state space at each time instance on the at-

tractor. Two examples are shown on Fig. 3 c: a red and a blue diamond and their 6 nearest

neighbors marked by orange and green diamonds respectively.

Thirdly, the Temporal Outlier Factor (TOF ) is computed from the time indices of the

kNN points (Fig. 4 c):

TOF (t) =

q
√∑k

i=1 |t− ti|q

k
. (51)

Where t is the time index of the sample point (X(t)) and ti is the time index of the i-th

nearest neighbor in reconstructed state-space. Where q ∈ R+, in our case we use q = 2

(Fig. 3 e).

As a final step for identifying unicorns, a proper threshold θ should be defined for TOF

(Fig. 3 e, dashed red line), to mark unique events (orange dots, Fig. 3 f).

TOF measures an expected temporal distance of the kNN neighbors in reconstructed

state-space (Eq. 51) and has time dimension. A high or medium value of TOF implies that

neighboring points in state-space were not close in time, therefore the investigated part of

state-space was visited on several different occasions by the system. In our example, green

diamonds on (Fig. 3 c) mark states which were the closest points to the blue diamond in

the state space, but were evenly distributed in time, on Fig. 3 a. Thus the state marked by

the blue diamond was not a unique state, the system returned there several times.

However a small value of TOF implies that neighboring points in state-space were

also close in time, therefore this part of the space was visited only once by the system. On

Fig. 3 c and d orange diamonds mark the closest states to the red diamond and they are also

close to the red diamond in time, on the (Fig. 3 b). This results in low value of TOF in the

state marked by the red diamond and means that it was a unique state never visited again.

Thus, small TOF values feature the uniqueness of sample points in state-space, and can be

interpreted as an outlier factor. Correspondingly, TOF values exhibit a clear breakdown
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at time interval of the anomalous T-wave (Fig. 3 f).

The number of neighbors (k) used during the estimation procedure sets the possible

minimal TOF value:

TOFmin =

√∑bk/2c+k mod 2
i=−bk/2c i2

k
∆t, (52)

Where bk/2c is the integer part of k/2, mod is themodulo operator and∆t is the sampling

period.

The approximate possiblemaximumof TOF is determined by the length (T ) and neigh-

borhood size (k) of the embedded time series:

TOFmax =

√∑k−1
i=0 (T − i∆t)2

k
(53)

TOF shows a time-dependent mean baseline and variance (Fig. 3 e, Fig. 13) which can

be computed if the time indices of the nearest points are evenly distributed along the whole

time series. The approximate mean baseline is a square-root-quadratic expression, it has

the lowest value in the middle and highest value at the edges (Fig. 13-14):

√〈
TOFnoise (t)

2〉 =√t2 − tT +
T 2

3
(54)

VAR
(
TOF2noise (t)

)
=

1

k

(
t5 + (T − t)5

5T
−
(
t2 − tT +

T 2

3

)2
)

(55)

Based on the above considerations, imposing a threshold θ on TOFk has a straightfor-

ward meaning: it sets a maximum detectable event length (M ) or vice versa:

θ =

√∑k−1
i=0 (M − i∆t)2

k

∣∣∣∣ k∆t
!

≤ M (56)

Where in the continuous limit, the threshold and the event length becomes equivalent:

lim
∆t→0

θ(M) = M (57)

Also, the parameter k sets a necessary detection-criteria on the minimal length of the

detectable events: only events longer than k∆t may be detected. This property comes

from the requirement, that there must be at least k neighbors within the unique dynamic

regime of the anomaly.

We compare ourmethod to the standard Local Outlier Factor (LOF)metrics (seeMeth-

ods). The main purpose of the comparison is not to show that our method is superior to
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Figure 12: Simulated time series with anomalies of different kinds. a Logistic map

time series with tent-map anomaly. b Logistic map time series with linear anomaly. c

Simulated ECG time series with tachycardia. d Random walk time series with linear

anomaly, where the TOF was measured on the discrete time derivative (∆logxt). Each

subplot shows an example time series of the simulations (black) in arbitrary units and in

three forms: Top left the return map, which is the results of the 2D time delay embedding,

and defines the dynamics of the system or its the 2D projection. Bottom: Full length of the

simulated time series (black) and the corresponding TOF values (green) shaded areas show

anomalous sections. Top right: Zoom to the onset of the anomaly. In all graphs outliers

detected by TOF and LOF are marked by orange and blue dots respectively. While in a

and b cases the anomalies form clear collective outliers, d shows an example where the

unique event is clearly not an outlier neither pointwise nor collectively, it is in the centre

of the distribution. Both LOF and TOF detected well the anomalies in cases a and c, but

only TOF was able to detect the anomalies in b and d cases.

the LOF in outlier detection, but to present the fundamental differences between the tra-

ditional outlier concept and the unicorns. The difference between the anomaly-concepts

are further emphasized by the fact that the first steps of the LOF and TOF algorithms are

parallel: The LOF uses time-delay embedding as well as a preprocessing step to define a

state-space and it also searches for the kNNs in the state-space for each time instance. As
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a key difference, LOF calculates the distance of the actual points in state-space from their

nearest neighbors and normalizes it with themean distance of those nearest neighbors from

their nearest neighbors. LOF values around 1 are considered the signs of normal behavior,

while higher LOF values mark the outliers. LOF concentrates on the spatial distances in

the state-space, while TOF considers the temporal distance of the state-space neighbors

(Fig. 3).

4.2.2 Mean and variance for q = 1

Themean and the variance of TOF can be computed for uncorrelated noise in the continuous-

time limit, where the typical properties of the metrics can be introduced. The expectation

of the first neighbor is easy to compute (Eq. 58), if we take the probability density func-

tion (p(τ)) as uniform, this is the assumption of white noise. Also, the pdf is independent

of the rank of the neighbor (k), thus the mean is same for all neighborhood sizes. By the

previous assumptions the mean is simply a quadratic expression:

〈TOFq=1〉 =
∫ T

0
|t− τ | p(τ) dτ = 1

T

∫ T

0
|t− τ | dτ = t2

T
− t+ T

2
(58)

with the method of moments, we calculate the variance for k = 1:

〈TOF 2
q=1〉 =

∫ T

0
(t− τ)2 p(τ) dτ = 1

T

∫ T

0
(t− τ)2 dτ = t2 − tT + T 2

3
(59)

σ2
q=1 = 〈TOF 2

q=1〉 − 〈TOFq=1〉2 = − t4

T 2 +
2t3

T
− t2 + T 2

12
(60)

if we have k neighbors, then the variance is reduced by a 1/k factor:

σ2
q=1,k = 〈TOF 2

q=1〉 − 〈TOFq=1〉2 = 1
k

(
− t4

T 2 +
2t3

T
− t2 + T 2

12

)
(61)

To test whether these theoretical arguments fits to data, we simulated random noise

time series (n = 100, T = 1000) and computed mean TOF score and standard deviation

(Fig. 13). We found, that theoretical formulas described perfectly the behavior of TOF.

4.2.3 Mean and variance for q = 2

The exact statistics is hard to calculate, when the value of the q exponent is not equal to

one, here we compute a vague approximation for q = 2. By computing the mean and

variance for squared TOF, and taking the square-root of these values can give a feeling
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Figure 13: Properties of TOF for white noise data: theory and simulations. The

expectation of TOF is computed as a function of temporal position in the time series (q =
1, thick red line), also the standard deviation was calculated (dashed red line). The average
(thick black line) and standard deviation (thin black line) of n = 100 instances (grey

shading). The minimal and maximal possible TOF vales are also charted (blue lines).

about the properties of TOFq=2 respectively.

〈
TOF2noise,q=2

〉
=
∫ T

0
(t− τ)2 p(τ) dτ = 1

T

∫ T

0
(t− τ)2 dτ = t2 − tT + T 2

3
(62)

the second moment is as follows:

〈
TOF4noise,q=2

〉
=
∫ T

0
(t− τ)4 p(τ) dτ = 1

T

∫ T

0
(t− τ)4 dτ = t5+(T−t)5

5T
(63)

Thus using the method of moments we can get the variance of the TOF 2
q=2:

Var
(
TOF2noise,q=2

)
= t5+(T−t)5

5T
−
(
t2 − tT + T 2

3

)2
(64)
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Figure 14: Properties of TOF for white noise data 2: simulations The baseline of

TOF with q = 2. The average (thick black line) and standard deviation (thin black line)
of n = 100 instances (grey shading).

4.2.4 Evaluation of performance on simulated data series

Simulated data series with discrete temporal dynamics. We simulated two datasets

with deterministic chaotic discrete-time dynamics generated by a logistic map [12] (N =

2000, 100− 100 instances each) and inserted variable-length (l = 20− 200 step) outlier-

segments into the time series at random times (Fig. 12 a-b). Two types of outliers were

used in these simulations, the first type was generated from a tent-map dynamics (Fig. 12

a) and the second type was simply a linear segment with low gradient (Fig. 12 b) for sim-

ulation details see Methods. The tent map demonstrates the case, where the underlying

dynamics is changed for a short interval, but it generates a very similar periodic or chaotic

oscillatory activity (depending on the parameters) to the original dynamics. This type of

anomaly is hard to distinguish by naked eye. In contrast, a linear outlier is easy to identify

for a human observer but not for many traditional outlier detecting algorithms. The linear

segment is a collective outlier and all of its points represent a state that was visited only

once during the whole data sequence, therefore they are unique events as well.

Simulated ECG datasets with tachycardia. As a continuous deterministic dynam-
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Figure 15: Performance evaluation of TOF and LOF on simulated datasets. a and b:

Median ROC AUC score and the median absolut difference for TOF (a) and LOF (b) are

showed in the function of neighborhood size (k). TOF showed the best results for small
neighborhoods. In contrast, LOF showed better results for larger neighborhoods in the

case of logistic map and ECG datasets, but did not reach reasonable performance on linear

outliers. c TOF: Median F1 score, precision and recall values showed very good precision

scores on all datasets. The recall was very high for the linear anomalies and slightly lower

for logistic map - tent map anomaly dataset. d LOF: Median F1 shows very low-valued

metrics on datasets with linear anomaly and mediocre values on tent-map anomaly and

simulated ECG time series.

ics with realistic features, we simulated electrocorticogramswith short tachycardic periods

where beating frequency was higher (Fig. 12 c). The simulations were carried out accord-

ing to the model of Rhyzhii & Ryzhii [118], where the three heart pacemakers and muscle

responses weremodeled as a system of nonlinear differential equations (seeMethods). We

generated 100 seconds of ECG and randomly inserted 2−20 seconds long faster heart-rate

segments, corresponding to tachycardia (n = 100 realizations).

Deterministic anomaly on stochastic background dynamics. Takens time delay
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Table 1: Detection performance on simulations in terms ofmaximalROCAUC scores

and the optimal neighborhood parameter k. Maximal median ROC AUC values and

the corresponding median absolute difference ranges are shown. LOF detected tent map

outliers and tachycardia with reasonable reliability but TOF outperformed LOF for all

data series. Linear outliers can not be detected by the LOF method at all, while TOF

detected them almost perfectly. TOF reached its maximal performace mostly for low k
values, only random walk with linear outlier required larger neighborhood to compute,

while LOF required larger k for optimal performance on those two data series, on which
it worked reasonably.

dataset TOF LOF

k AUC k AUC

logmap tent 2 0.953± 0.027 28 0.928± 0.075

logmap linear 6 0.996± 0.004 1 0.662± 0.016

sim ECG tachy 3 0.941± 0.030 99 0.834± 0.053

randwalk linear 70 0.993± 0.007 1 0.573± 0.012

embedding theorem is valid for time series generated by deterministic dynamical systems,

but not for stochastic ones. In spite of this, we investigated the applicability of time delay

embedded temporal and spatial outlier detection on stochastic signals with deterministic

dynamics as outliers. We established a dataset of multiplicative random walks (n = 100

instances, T = 2000 steps each) with randomly inserted variable length linear outlier

segments (l = 20−200, see Methods). As a preprocessing step, to make the random walk

data series stationary, we took the log-difference of time series as is usually the case with

economic data series. (Fig. 12 d).

Performance measures and dependency on neighborhood size. To detect anoma-

lies we applied TOF and LOF on the datasets (E = 3, τ = 1) and measured detection-

performance by area under receiver operating characteristic curve (ROC AUC), F1 score,

precision and recall metrics. (Fig. 15 and Table 1). F1 score is especially useful to evaluate

detection performance in case of highly unbalanced datasets as in our case.

Fig. 15 a and b show, the performance of the two methods in terms of median ROC

AUC for (n = 100) realizations and its dependency on the neighborhood size (k = 1−100)

that was used for the calculations.

Two types of behavior were observed among the four experimental setup: First, the

linear anomalies were almost perfectly detected by the TOF, with no significant depen-

dency on the k neighborhood, while LOF was not able to detect these anomalies at all

(ROC AUC was close to 0.5) again independently from the k neighborhood. The sec-

ond group is formed by the logistic-tent map data series and the simulated ECG with
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tachycardia. Both TOF and LOF resulted in reasonably high ROC AUC values on these

anomalies, however with different k dependency. TOF reached the highest scores for low

neighborhoods while LOF required higher k for its optimal performance. As we compared

the achieved ROC AUC scores of the two methods for each cases at their optimal neigh-

borhood size, we can conclude, that TOF slightly outperformed LOF even in this second

group of data series as well (Table 1).

To further evaluate the components of the performances and the type of errors of these

algorithms, F1 score, precision and recall were computed for both TOF and LOF (Fig. 15

c, d and Table 2). As the TOF showed best performance with lower k neighborhood sizes

on logmap-tent and simulated ECG-tachycardia values and showed no significant depen-

dency with linear anomalies, the F1 scores were calculated at a fixed k = 4 neighborhood

forming a simplex in the 3 dimensional embedding space [21]. In contrast, as LOF showed

stronger dependency on neighborhood size, the optimal neighborhood sizes were used for

F1 score calculations. Finally, thresholds corresponding to M = 110 time-steps and the

top 5.5% percentile were used for TOF and LOF respectively, which is the expected sim-

ulated anomaly length.

For the linear outlier datasets, TOF performed almost perfectly with high precision

and recall, hence with high F1 score as well. In contrast LOF performed poorly in all

these measures. On the logmap-tent dataset TOF showed good F1 score due to very high

precision and slightly lower recall score, while LOF reached a mediocre F1-score. On the

simulated ECG-tachycardia data series, TOF produced reasonably high precision, recall

and F1 score, while LOF produced low quality measures in all means.

Based on these simulations, we can conclude that there are anomalous events such as

tent map logistic background or high frequency tachycardic events, which can be found by

both TOF and LOF based methods. However, other types of unique events, such as linear

sequences can only be found by TOF methods. Table 3 shows, that the tent map and the

tachycardia produce lower density, thus more dispersed points in the state space, presum-

ably making them detectable by the LOF. In contrast, linear segments resulted in similar

density of points to the normal logistic activity or higher density of points compared to the

random walk background. Detrending via differentiation of the logarithm was applied as

a preprocessing step in the latter case, making the data series stationary and drastically in-

creasing the state space density of the anomaly. While LOF counted only the low density

sets as outliers, TOF was able to find the unique events independently of their density. To

sum it up, TOF has reached better performance to detect anomalies in all the investigated

cases.
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Table 3: State space densities and LOF values within normal and anomalous activ-

ity. Median and median absolute difference of the points density and LOF values in the

reconstructed state space are shown, calculated from the distance of the 20 nearest neigh-

bors. The density of the anomaly was significantly lower than the density generated by

normal activity in two cases: the tent map anomaly in logistic background and the tachy-

cardia within the normal heart rhythm and resulted in higher LOF values of anomalies in

these two cases too. While the density of the linear anomaly segments were not signifi-

cantly different from the logistic background, the linear anomalies generated much higher

density than the normal random walk time series after detrending. Correspondingly, LOF

values were not significantly higher in these two cases within the anomaly than the normal

activity.

dataset Density LOF

Normal Anomaly Normal Anomaly

logmap tent 95.759± 12.070 11.606± 1.146 1.039± 0.010 3.424± 1.990

logmap linear 95.190± 9.305 97.413± 51.289 1.040± 0.012 1.398± 0.451

sim ECG tachy 10146± 2227 168.370± 38.699 1.106± 0.022 1.264± 0.227

randwalk linear 197.919± 3.866 52590± 61527 1.623± 0.661 1.872± 0.920

Figure 16: TOF detects unique events. Detection performance measured by ROC AUC

as a function of the minimum inter event interval between two inserted tent-map outlier

segments. Below 300 step inter event intervals, TOF found outliers with good perfor-

mance, however for greater than 300 steps the algorithm found fewer outliers. In contrast,

LOF’s performance remained constant over the whole IEI range.

4.2.5 TOF detects unicorns

To show that TOF enables detection of only unique events, additional simulations were

carried out, where two, instead of one, tent-map outlier segments were inserted into the

logistic map simulations. We detected outliers by TOF and LOF and subsequently ROC

AUC values were analyzed as a function of the inter event interval (IEI, Fig. 16) of the

outlier segments. LOF performed independent of IEI, but TOF’s performance showed

58



strong IEI-dependence. Highest TOF ROC AUC values were found at small IEI-s and

AUC was decreasing with higher IEI. Also the variance of ROC AUC values was increas-

ing with IEI. This result showed, that the TOF algorithm can detect only unique events:

if two outlier events are close enough to each other, they can be considered as one unique

event together. In this case, the TOF can detect it with higher precision, compared to

LOF. However if they are farther away than the time limit determined by the detection

threshold, then the detection performance decreases rapidly.

The results also showed, that anomalies can be found by the TOF only if they are alone,

a second appearance decreases the detection rate significantly. Based on these results we

can conclude, that the TOFmethod can be applied to real world datasets to reveal unicorns

in them.

4.2.6 Application examples on real-world data series

Detecting hypopnea events on ECG time series. We applied TOF to the MIT-BIH

Polysomnographic Database’s [120, 121] ECG measurements to detect hypopnea events.

Multichannel recordings were taken on 250 Hz sampling frequency, and the ECG and

respiratory signal of the first recording was selected for further analysis (n = 40000 data

points 1600 secs).

While the respiratory signal clearly showed the hypopnea, there were no observable

changes on the parallel ECG signal.

We applied time delay embedding withETOF = 3, ELOF = 7 and τ = 0.02 s according

to the first zero-crossing of the autocorrelation function (Fig. 6). TOF successfully de-

tected hypopnea events in ECG time series, interestingly, the unique behavior was found

mostly during T-waveswhen the breathing activity was almost shut down (Fig. 17, k = 11,

M = 5 s). In contrast, LOF was sensitive to the increased and irregular breathing before

hypopnea (k = 200, threshold= 0.5 %). This example shows that this new method could

be useful for biomedical signal processing and sensor data analysis.

Detecting gravitational waves. As a second example of real world datasets, we an-

alyzed gravitational wave detector time series around the GW150914 merger event [36]

(Fig. 18). The LIGOHanford detector’s signal (4096Hz)was downloaded from theGWOSC

database [129].

A 12 s long segment of strain data around the GW150914 merger event was selected

for further analysis. As a preprocessing, the signal was bandpass-filtered (50-300 Hz).

Time delay embedding was carried out with embedding delay of 8 time-steps (1.953 ms)

and embedding dimension ofE = 6 andE = 11 for TOF and LOF respectivelyWe set the

parameters of the algorithms as follows: k = 12,M = 146.484ms for TOF and k = 100,
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Figure 17: Detecting hypopnea with arousal on ECG by TOF and LOF. a ECG time

series with unique events detected by TOF (orange, E = 3, τ = 0.02 s, k = 11,M = 5 s)
and outliers detected by LOF (blue, E = 7, τ = 0.02 s, k = 100, threshold= 0.5%). The
inset shows amore detailed pattern of detections: unique behavior mainly appears on the T

waves. bAir-flow time series with coloring corresponds to the TOF score at each sample.

Low values mark the anomaly. After a normal period, the breathing gets irregular and

almost stops, then after arousal the breathing pattern becomes normal again. TOF finds

the period, when the breathing activity almost stops. c Air-flow time series with coloring

corresponds to the LOF score at each sample. Higher LOF values mark the outliers. LOF

finds irregular breathing preceding the hypopnea.

threshold= 0.5% for LOF (Fig. 7).

Both TOF and LOF detected the merger event, however TOF selectively detected the

period when the chirp of the spiraling mergers was the loudest (Fig. 18 b, c).

London InterBank Offer Rate dataset We also applied TOF and LOF on the London

InterBank Offer Rate (LIBOR) dataset. As a preprocessing, discrete time derivative was
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Figure 18: Detection of the GW150914 event on LIGO open data with LOF and TOF.

a Strain time series (black) from Hanford detector around GW150914 event (grey) with

LOF (blue) and TOF (orange) detections. TOF score values (b) and LOF scores (c) are

mapped to the time series (orange and blue respectively), the most strong colors shows

the detected event around 0 seconds. d The Q-transform of the event shows a rapidly

increasing frequency bump in the power spectra right before the merger event (grey).

The grey dashed lines show the lower (50 Hz) and upper (300 Hz) cutoff frequencies of
the band-pass filter, which was applied on the time series as a preprocessing step before

anomaly detection. e Filtered strain data at 0.1 second neighborhood around the event.
LOF and TOF detected the merger event with different sensitivity, LOF detected more

points of the event, while TOF found the period which has the highest power in the power

spectra. (ETOF = 6, τTOF = 1.953ms, kTOF = 12, M = 146.484ms, w = 7; ELOF = 11,
τLOF = 1.953ms, kLOF = 100, threshold= 0.5%)

calculated to eliminate global trends, then TOF (E = 3, τ = 1, k = 5,M = 30month) and

LOF (E = 3, τ = 1, k = 30, threshold= 18.86%)was applied on the derivative (Fig. 8-9).

TOF found the uprising period prior to the 2008 crisis and the slowly rising period from

2012 onwards as outlier segments. LOF detected several points, but no informative pattern

emerges from the detections (Fig. 19). While in this case the ground-truth was not known,

the two highlighted periods show specific patterns of monotonous growth. Moreover, the

fact that both two periods were detected by the TOF shows that both dynamics are unique,
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Figure 19: Analysis of LIBOR dataset. The detections were run on the temporal deriva-

tive of the LIBOR time series. a time series with detections. b TOF score values. c LOF

score values. TOF detected two rising periods: the first between 2005 and 2007 and a

second, started in 2012 and lasts until now. While both periods exhibit unique dynamics,

they differ from each other as well.

therefore different from each other during the two periods.

4.3 Estimating intrinsic dimensionality to explore seizure dynamics

4.3.1 Manifold adaptive dimension estimator revisited

The probability density of Farahmand-Szepesvári-Audibert estimator We compute

the probability density function of Farahmand-Szepesvári-Audibert (FSA) intrinsic di-

mension estimator based on normalized distances.

The normalized distance density of the kNN can be computed in the context of a K-

neighborhood, where the normalized distance of K − 1 points follows a specific form:

p(r|k,K − 1, D) =
D

B(k,K − k)
rDk−1(1− rD)K−k−1 (65)

where r is the normalized distance of the kth neighbor by the distance of Kth neighbor
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(rk = Rk/RK , k < K) and B is the Euler-beta function. The formula in Eq. 65 can

be derived from the uniform local density and independent sampling assumptions [130].

A maximum likelihood estimator based on Eq. 65 leads to the formula of the classical

Levina-Bickel estimator [56, 130].

We realize that the inverse of normalized distance appears in the formula of FSA es-

timator, so we can express it as a function of r:

dk =
log 2

log (R2k/Rk)
= − log 2

log (Rk/R2k)
= − log 2

log rk
(66)

Where rk = Rk/R2k.

Thus, we can compute the pdf of the estimated values as plugging in K = 2k into

Eq. 65 followed by change of variables:

q (dk) ≡ p (r|k, 2k − 1, D)

∣∣∣∣ drddk
∣∣∣∣ = D log (2)

B(k, k)

2
−Dk

dk

(
1− 2

− D
dk

)k−1

d2k
(67)

Theorem 2. The median of q(dk) is at D.

Proof. We apply the substitution a = 2−D/dk in Eq. 67 (Eq. 70):

p(a) = q(dk)

∣∣∣∣ddkda

∣∣∣∣ = (68)

=
D log (2)

B(k, k)

ak(1− a)k−1 log2 a

D2 log2 2

D log 2

a log2 a
(69)

=
1

B(k, k)
ak−1(1− a)k−1 (70)

The pdf in Eq.70 belongs to a beta distribution. The cumulative distribution function of

this density is the regularized incomplete Beta function with k as both parameters sym-

metrically.

P (a) = Ia(k, k) (71)

The median of this distribution is at a = 1
2
, thus at dk = D since:

a = 2
− D

dk =
1

2
(72)

D = dk (73)

This means that the median of the FSA estimator is equal to the intrinsic dimension
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independent of neighborhood size, if the locally uniform point density assumption holds.

The sample median is a robust statistic, therefore we propose to use the sample median

of local estimates as a global dimension estimate. We will call this modified method the

median Farahmand-Szepesvári-Audibert (mFSA) estimator.

Let’s see the form for the smallest possible neighborhood size: k = 1 (Fig. 20). The

pdf for the estimator takes a simpler form (Eq. 74).

q(d|k = 1, D) = D log(2)
2
− D

d1

d21
(74)

Also, we can calculate the cumulative distribution function analytically (Eq. 75).

Q(d|k = 1, D) =

∫ d1

0

q(t|k = 1, D) dt = 2−D/d1 (75)

The expectation of dk diverges for k = 1– but not for k > 1 – although the median

exists.

From Eq. 75 the median is at D (Eq. 76).

Q(d1 = D) = 0.5 (76)

Sampling distribution of the median. We can easily compute the pdf of the sample

median if an odd sample size is given (n = 2l + 1) and if sample points are drawn inde-

pendently according to Eq. 67. Roughly half of the points have to be smaller, half of the

points have to be bigger and one point has to be exactly atm (Eq. 77).

p(m|k,D, n) =
1

B(l + 1, l + 1)

[
P
(
a = 2−D/m

) (
1− P

(
a = 2−D/m

))]l
q(m) (77)

Where p(a) and P (a) are the pdf and cdf of a (Eq. 70, 71) and q is the pdf of the FSA

estimator (Fig. 21).

Maximum Likelihood solution for the manifold-adaptive estimator If the samples

are independent and identically distributed, we can formulate the likelihood function as the

product of sample-likelihoods (Eq. 78). We seek for the maximum of the log likelihood

function, but the derivative is transcendent for k > 1. Therefore, we can compute the

place of the maximum numerically (Eq. 81).
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Figure 20: Probability density function of the Farahmand-Szepesvári-Audibert esti-

mator (d) for various dimensions (D) and neighborhood sizes (k). A-F The sublots

show that theoretical pdfs (continuous lines) fits to the histograms (n = 10000) of local
estimates calculated on uniformly sampled hypercubes (D = 2, 3, 5, 8, 10, 12). The three
colors denote three presented neighborhood sizes: k = 1 (blue), k = 11 (orange) and
k = 50 (green).

L =
n∏

i=1

D log (2)

B(k, k)

2−Dk/dk
(i)
(1− 2−D/dk

(i)
)k−1(

dk
(i)
)2 (78)

logL = n log
log (2)

B(k, k)
+ n logD −Dk log(2)

∑ 1

dk
(i)

(79)

+(k − 1)
∑

log
(
1− 2−D/dk

(i)
)
− 2

∑
log(dk

(i))

∂ logL
∂D

=
n

D
− log(2)k

∑ 1

dk
(i)

(80)

+ log(2)(k − 1)
∑ 1

dk
(i)(2D/dk

(i) − 1)

!
= 0 (81)

For k = 1, the ML formula is equal to the Levina-Bickel (k = 1) and MIND1ML

formulas.
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Figure 21: The sampling distribution of the median for the FSA estimator (k = 1)
on uniformly sampled hypercubes. The figure shows the pdf of median-FSA estimator

of points uniformly sampled from a square (A) and from a 5D hypercube (B) for three

sample sizes: n = 11 (blue), n = 101 (orange) and n = 1001 (green) respectively. The
solid lines represent the theoretical pdf-s of the median and the shaded histograms are the

results of simulations (N = 5000 realizations).

Results on randomly sampled hypercube datasets Theoretical probability density func-

tion of the local FSA estimator fits to empirical observations (Eq. 67, Fig. 20). We sim-

ulated hypercube datasets with fixed sample size (n = 10000) and of various intrinsic

dimensions (D = 2, 3, 5, 8, 10, 12). We measured the local FSA estimator at each sample

point with 3 different k parameter values (k = 1, 11, 50). We visually confirmed that the

theoretical pdf fits perfectly to the empirical histograms.

The empirical sampling distribution of mFSA fits to the theoretical curves for small

intrinsic dimension values (Fig. 21). To demonstrate the fit, we drew the density of mFSA

on two hypershpere datasets D = 2 and D = 5 with the smallest possible neighborhood

(k = 1), for different sample sizes (n = 11, 101, 1001). At big sample sizes the pdf

is approximately a Gaussian [131], but for small samples the pdf is non-Gaussian and

skewed.

The mFSA estimator underestimates intrinsic dimensionality in high dimensions. This

phenomena is partially a finite sample effect (Fig. 22), but edge effects make this underes-

timation even more severe. We graphically showed that mFSA estimator asymptotically

converged to the real dimension values for hypercube-datasets, when we applied periodic

boundary conditions (Fig. 23). We found, that the convergence is much slower for hard

boundary conditions, where edge effects make estimation errors higher.

We could estimate the logarithm of relative error with an s-order polynomial:

log(Erel) = log

(
D

d

)
=

s∑
i=1

αid
i (82)
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The order of the polynomial was different for the two types of boundary conditions.

When we applied hard boundary, the order was s = 1, however in the periodic case

higher order polynomials fit the data. Thus, in the case of hard-boundary, we could make

the empirical correction formula:

D ≈ C(d̂) = deαnd (83)

where αn is a sample size dependent coefficient that we could fit with the least squares

method.
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Figure 22: Intrinsic dimension dependence of the median-FSA estimator for uni-

formly sampled unit hypercubes with various sample sizes (k = 1). Subplots A-F

show the mean of median-FSA estimator (thick line) values from N = 100 realizations
(shading) of uniformly sampled unit hypercubes with periodic boundary.

4.3.2 Results on synthetic benchmarks

We tested the mFSA estimator and its corrected version on synthetic benchmark datasets

[55, 132]. We simulated N = 100 instances of 15 manifolds (Mi, n = 2500) with vari-

ous intrinsic dimensions (see Table 1, 2, 4 in Campadelli et al. [55], http://www.mL.uni-

saarland.de/code/IntDim/IntDim.htm).
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Figure 23: Sample size dependence of the median-FSA estimator for uniformly sam-

pled unit hypercubes with varied intrinsic dimension value (k = 1). Subplots A-F
show the mean of median-FSA estimator (thick line) values from N = 100 realizations
(shading).

We estimated the intrinsic dimensionality of each sample and computed the mean, the

error rate and Mean Percentage Error (MPE) for the estimators. We compared the mFS,

cmFS, the R and the matlab implementation of DANCo, and the Levina-Bickel estimator

(Table 4). cmFSA and DANCo was evaluated in two modes, in a fractal-dimension mode

and in an integer dimension mode.

The mFSA and the Levina-Bickel estimator underestimated intrinsic dimensionality,

especially in the cases when the data had high dimensionality.

In contrast, the cmFSA (cmFSA) estimator found the true intrinsic dimensionality

of the datasets, it reached the best overall error rate (0.277) and 2nd best MPE (Fig. 25,

Table 4). In some cases, it slightly over-estimated the dimension of test datasets. Interest-

ingly, DANCo showed implementation-dependent performance, the MATLAB algorithm

showed the 2nd beast error rate (0.323) and the best MPE value (Table 4). The R version

overestimated the dimensionality of datasets in most cases.
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Figure 24: Bias-correction of the median-FSA estimator for uniformly sampled unit

hypercubes with various sample sizes (k = 1). SubplotsA-F show the mean of median-

FSA estimator (grey line) values from N = 100 realizations (shading) of uniformly sam-
pled unit hypercubes. The boundary condition is hard, so the edge effect makes under-

estimation more severe. The colored lines show the corrected estimates according to the

ŵc = ŵ exp(αŵ).

4.3.3 Analysing epileptic seizures

To show howmFSAworks on real-world noisy data, we applied it to human neural record-

ings of epileptic seizures.

We acquired field potential measurements from a patient with drug-resistant epilepsy

by 2 electrode grids and 3 electrode strips. We analyzed the neural recordings during

interictal periods and during epileptic activity to map possible seizure onset zones (see

Methods, Fig. 10).

We found several characteristic differences in the dimension patterns between nor-

mal and control conditions. In interictal periods (Fig. 27A), we found the lowest average

dimension value at the FbB2 position on the fronto-basal grid. Also, we observed a diag-

onal gradient of intrinsic dimensions on the cortical grid (Gr). In contrast, we observed

the lowest dimension values at the hippocampal electrode strip (JT), and the gradient on

the cortical grid disappeared during seizures (Fig. 27B). Curiously, the intrinsic dimen-
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Figure 25: Performance-comparison between cmFSA and DANCo on synthetic

benchmark datasets. ADataset-wise Mean Percentage Error (MPE) on benchmark data.

cmFSA (blue) shows smaller MPE in 4 cases and bigger MPE in 4 cases compared with
DANCo (matlab). B Dataset-wise error rate for cmFSA and DANCo. cmFSA shows

smaller error rates in 5 cases and bigger error rates in 2 cases compared with DANCo.

sionality became higher at fronto-basal recording sites during seizure (Fig. 27C).

4.4 Investiating the causal relation between Local Field Potential ant

Intrinsic Optical Signal

Three methods have been applied to evoke the epileptiform activity in rat neocortical slice

preparations: electric stimulation (STIM, 5 slices), application of Mg2+-free artificial

cerebrospinal fluid (4 slices) and 4-aminopiridine (4AP) treatment (4 slices). All the three

methods evoked epiletiform activity by means of recurrent population burst discharges

in the slices. There were specific differences between the burst discharges which were

characteristic for the method of induction and there were large variation among slices as

well. The induction-specific characteristic properties include the amplitude, the intraburst

and interburst frequencies as well as the temporal development of the activity during the

1 hour long measurements [133]. The IOS was measured parallel, by quantifying the rel-
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Figure 26: Calibration procedure for the n = 2500 datasets up toD = 80 (k = 5). The
figure shows the calibration procedure on 100 instances of uniformly sampled hypercubes.
A Dimension estimates in the function of intrinsic dimensionality for the calibration hy-

percubes. The diagonal (dashed) is the ideal value, however the mFSA estimates (blue)

show saturation because of finite sample and edge effects. cmFSA estimates (red) are

also shown, with the mean (yellow) almost aligned with the diagonal. B The relative error

(E) in the function of uncorrected mFSA dimension on semilogarithmic scale. The error-

mFSA pairs (blue) lie on a short stripe for each intrinsic dimension value. The subplot

also shows id-wise average points (yellow) and the polynomial fitting curve (red). C The

error of cmFSA estimates in the function of intrinsic dimension on the calibration datasets.

The mean error (blue line) oscillates around zero and the 99.7% confidence interval (blue

dashed) widens as ID grows. The rounding switch-points are also shown. D The proba-

bility that cmFSA hits the real ID of data, or misses by one, two or more as a function of

ID on the calibration dataset.
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Table 4: Dimension estimates on synthetic benchmark datasets.

The table shows true dimension values, median-Farahmand-Szepesvári-Audibert, Maxi-

mum Likelihood, corrected median Farahmand-Szepesvári-Audibert and DANCo mean

estimates fromN = 100 realizations. The MPE values can be seen in the bottom line, the

matlab version of DANCo estimator produced the smallest error followed by the cmFSA

estimator.

dataset d mFSA cmFSAfr cmFSA R-DANCo M-DANCofr M-DANCo Levina

1 M1 10 9.09 11.19 11.08 12.00 10.42 10.30 9.40

2 M2 3 2.87 3.02 3.00 3.00 2.90 3.00 2.93

3 M3 4 3.83 4.14 4.00 5.00 3.84 4.00 3.86

4 M4 4 3.95 4.29 4.00 5.00 3.92 4.00 3.92

5 M5 2 1.97 2.00 2.00 2.00 1.98 2.00 1.99

6 M6 6 6.38 7.38 7.16 9.00 6.72 7.00 5.93

7 M7 2 1.95 1.98 2.00 2.00 1.96 2.00 1.98

8 M9 20 14.58 20.07 20.10 19.13 19.24 19.09 15.56

9 M10a 10 8.21 9.90 10.00 10.00 9.56 9.78 8.64

10 M10b 17 12.76 16.95 16.96 16.01 16.39 16.24 13.60

11 M10c 24 16.80 24.10 24.06 23.15 23.39 23.26 18.05

12 M10d 70 35.64 69.84 69.84 71.52 71.00 70.91 40.12

13 M11 2 1.97 2.00 2.00 2.00 1.97 2.00 1.98

14 M12 20 15.64 21.96 21.98 21.03 20.88 20.00 17.26

15 M13 1 1.00 0.96 1.00 1.00 1.00 1.00 1.00

MPE 13.58 4.73 2.89 10.07 3.39 2.35 10.81

ative changes in the reflected or transmitted light flux over the somatosensory cortex. In

12 slices, the IOS signal was measured in interface setup, which allowed the measure-

ment of the reflected light, but in one slice, theMg2+-free induced activity was measured

in submerged setup, which made possible the measurement of the transmitted light. An

example of the Mg2+-free evoked epileptiform activity, the parallel recorded LFP and

reflected IOS are shown in Fig. 28B.

4.4.1 The slow and the fast components of the IOS signal

The general temporal development of the reflected IOS signal during the epileptic activity

induction is consists of two components: The first component is a slow and slowly sat-

urating negative shift in the baseline, while the second, faster component takes shape in

negative waves descending after each epileptic discharge and slowly converging back to

the baseline during the discharge-free periods (Fig. 28). Comparing the IOS time courses

in transmitted and reflected light, we found that the slow component is negative in both

cases, while the faster component changed its sign: negative in reflected, but positive
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Figure 27: mFSA Dimension estimates on intracranial Brain-LFP measurements

during interictal activity and epileptic seizures. The figure shows the dimension es-

timates on an intracranial cortical grid (Gr A-F), a smaller Frontobasal grid (Fb A, B) and

3 electrode strips with hippocampal and temporal localization (JIH, BIH, JT). The areas

with lower-dimensional dynamics are marked by stronger colors. A Average of mFSA

dimension values from interictal LFP activity (N=16, k=10-20). B Average of mFSA di-

mension values from seizure LFP activity (N=18, k=10-20). C Difference of dimension

values. Stronger red color marks areas, where the dynamics during seizure was smaller-

dimensional than its interictal counterpart. However, stronger blue indicates electrodes,

where the during-seizure dynamics was higher dimensional than the interictal dynamics.

in the transmitted light (Fig. 29A and C). Considering, that scattering decreases the flux

of the transmitted light but increases the amount of the reflected light, while absorption

decreases both the transmitted and the reflected components, we concluded, that the two

components differ not only in their time scale, but also in the underlying mechanisms.

The slow component is a result of the absorption of the tissue, while the faster component

corresponds to the changes in the scattering or reflectance of the neural tissue. Thus, we

divided the two signals by subtracting a 100 s long moving window average from the raw

IOS, resulting in a slower, low frequency component IOSl and a faster, high frequency

component IOSh signal (Fig. 29B and D).

4.4.2 Time delayed causality between LFP power and the fast component of IOS

The sampling frequency of the LFP signal was 1 kHz, while the sampling rate of the par-

allel IOS recordings were only 2Hz. As the dynamics of IOS is much slower than the

LFP, this low sampling rate was enough to track the temporal changes of the IOS. How-

ever, the causality analysis requires fully synchronous time series. To reach this, the LFP

signal was undersampled, by calculating the sum of the squared LFP amplitudes (the LFP

power) within each 0.5 s long sampling interval.

The CCMmethod of Sugihara [88], extended for delayed effects by Ye et al. [91], was
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Figure 28: The spatial distribution and temporal evolution of the IOS. A: Pseudo

color plot of the relative reflectance changes (IOS) of the coronal brain slice. The tempo-

ral evolution of the IOS was tracked by calculating the mean IOS within the ROI in the

somatorensory cortex (rectangle with solid black line) close to the electrode position (open

circle) in which the LFP was recorded. B and D: Parallel recorded LFP (black) and the

IOS (red) during epileptiform activity induced byMg2+-free artificial cerebrospinal fluid.
C and E: Downsampled LFP power (black) and detrended IOSh (red) are the variables for

which the causality was analyzed.
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Figure 29: Comparison of the IOS activity in reflected and transmitted light during

epileptic activity evoked byMg2+-free solution A: LFP (black) and IOS (red) signal in
reflected light. B: High (IOSh, solid line) and low (IOSl, dashed line) frequency compo-

nents of the IOS signal. IOSl was calculated by moving window averaging the IOS time

series, while IOSh is a result of the subtraction of IOSl from IOS. C: LFP (black) and IOS

(red) signal in transmitted light. D: IOSh and IOSl in transmitted light. Note, that IOSl

were negative in both the reflected and the transmitted measurements, while the negative

IOSh changed its sign in the transmitted setup.
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Figure 30: Causality as a function of time delay during epileptiform activity evoked

by three different forms of evoked activity. A: Epileptiform activity is evoked by electri-

cal stimulation. The mean cross-map function and the SE over the slices (n=5) are shown.

The LFP clearly drives the IOS with short time delay: the causality peak is observed at

1 s delay (black line). The causality peak in the IOSh→LFP direction with positive (anti-

causal) time delay shows delayed correlation: the IOSh follows the LFPwith 3 s delay (red

line). B: Cross-correlation function between LFP and IOSh (blue line) and between the

LFP and the time derivative of the IOSh (black line). The peaks of the LFP-IOSh cross-

correlation function does not corresponds to the causality peaks, while the derivative of

the IOSh correlates with the LFP at 0 time lag, which is closer to time lag of the causality.

C and D: Same as in A and B, but in epileptic activity was evoked byMg2+-free artificial
cerebrospinal fluid, mean and SE (n=3). Similarly, the causality analysis implies unidirec-

tional effect: the LFP causes the IOSh, but with only 0.5 s time delay, which corresponds

to the negative peak of the cross-correlation function between the derivative of the IOSh

and the LFP power (D black line). E and F: Same as A and B, but epilepsy was evoked by

4-aminopyridyn (4AP) mean and SE (n=4). Both the causality and the correlation peaks

are smaller but their temporal relations are the same. The causality peak coincides with

the correlation peak between the LFP and the derivative of the IOSh.
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implemented in Scilab and applied to reveal the causality between the 1 hour long LFP

and the IOSh recordings. Applying the time-delayed CCM analysis to the downsampled

LFP power and to the IOSh recordings from each slice in the reflected light setup, we

constructed the cross-map functions, which express the strength of the causal connections

in both directions, as a function of the time delay between the two time series (Fig. 30).

The resulting cross-map functions were averaged for slices sharing the same induction

process: electric stimulation,Mg2+-free solution and 4AP treatment.

The causality analysis revealed similar structure in all the three cases. The cross-map

functions have two significant peaks: a sharper peak for the LFP→IOSh causal direction,

where the LFP precedes the IOSh with 1 s in case of electric stimulation and with 0.5 s in

Mg2+-free and 4AP cases (Fig. 30A, C, E black lines, peaks on the negative half of the

x axis) and a wider peak in the IOS→LFP direction, where IOSh follows LFP with 2.5 s

time delay in the electric stimulation case and 1.5 s delay in theMg2+-free and 4AP cases

(Fig. 30A, C, E red lines, peaks on the positive half of the x axis).

In all cases, the peaks of the IOSh→LFP causality function are located at an anti-causal

time delay, which means, that the presumed cause, the IOSh, in these cases, follows the

presumed effect (the LFP) in time. Assuming that there is no difference in the observa-

tional delay, this is clearly impossible if the causal premise is correct. But, how can these

anti-causal peaks be interpreted? Sugihara’s CCM search for the fingerprints of the cause

in the caused time series, thus a delayed CCMpeak, means that the past cause can be recon-

structed best from a later section of the caused time series. In our case, the real cause, the

past LFP, can be reconstructed from the IOSh 0.5-1 s later. In the reverse (IOSh→LFP)

direction, the algorithm checks, if the IOSh can be determined from the LFP. Thus the

anti-causal peaks in the IOSh→LFP direction mean that the future of the IOSh can be de-

termined based on the earlier LFP. We expect the appearance of such an anti-causal peak

if the caused dynamics are more deterministic and non-chaotic, thus their future can be

determined from the cause for a long time.

Thus, the conclusion of the causality analysis is that the LFP drives the IOSh activ-

ity, which follows quite predictably the LFP dynamics. There were no significant peaks

on the negative half axis of the cross-map functions in the IOSh→LFP direction, which

means that we did not find evidence for a feedback effect from the IOSh to the LFP in the

examined range of time delays.

As the cross-map functions showed similar structures in all the three cases, we can

assume that although the mechanisms generating the epileptic activity are different in the

three cases, the causal link, thus the underlying mechanism, connecting the LFP to the

IOSh may be similar.

Theoretically, the cross-map between two fully deterministic systems should reach the
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amplitude 1 for data series long enough. Thus, maxima smaller than 1 could be the effect

of noise (which is non-deterministic) and that the recordings are not long enough. We

found, that the amplitude of the causality peak was highest for the electrical stimulation

case (mean 0.62±0.09 SE), smaller for theMg2+-free (mean 0.44±0.16 SE) and smallest

for the 4AP evoked activity (mean 0.3 ± 0.11 SE). The difference within the amplitudes

could be the result of the different activity level (less discharges) within the cases as well

as the different signal to noise ratio.

4.4.3 Causality versus correlation

We have compared the cross-map function to the traditional cross-correlation function.

The cross-correlation function between LFP power and IOSh also showed similar struc-

ture in all cases, albeit with some differences (Fig. 30B, D, F blue lines). All the three cor-

relation functions had a significant negative peak on the negative half axis (corresponding

to the LFP lead) although at different delays: at -4.5 s in case of electric stimulation (mean

−0.36± 0.007 SE), at -2.5 s in theMg2+-free case (mean−0.21± 0.06 SE) and at -1 s in

the 4AP case (mean −0.16± 0.016 SE). The cross-correlation function showed a second

significant but positive peak on the positive half axis only at the Mg2+-free case (mean

0.11±0.004 SE), but increased monotonically in the two other cases. Considering, that for

very large time delays, the two data series become independent, thus the cross-correlation

function should decay to zero, this monotonic increase implies the existence of a second

even wider positive peak shifted far into the positive direction in these cases as well.

Comparison of the cross-correlation functions (Fig. 30B, D, F blue lines) to the LFP

- IOSh causality function (Fig. 30A, C, E black lines) shows, that none of peaks of the

cross-correlation functions corresponds to the real delay of the causal effect represented

by the peaks of the cross-map functions. We concluded that the real causal effect is not

clearly reflected in the peaks of the cross-correlation functions in these cases.

As the short delay (δ < 0.5 s-1 s) causal effect from the LFP to the IOSh is not ac-

companied by high correlation with similar short delay, the effect from the LFP to the

IOSh should take a form, which can not be well approximated with the linear dependence.

One possibility is that, instead of the IOSh, the derivative of the IOSh depends on the

LFP power. This assumption is supported by the shape of the cross-correlogram: highest

steepness is close to zero time delay.

Thus, we also calculated the cross-correlation function between the LFP power and the

time derivative of the IOSh signal. We found, that the peaks of the causality (Fig. 30A, C,

E black lines) well matches to the negative peaks of the LFP-dIOSh/dt cross-correlation

function (Fig. 30B, D, F black lines) in all the three cases. This implies the possibility,

that the temporal derivative of the IOSh depends on the LFP power during the epileptiform
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discharges in the tissue.

4.4.4 Autonomous dynamics of IOSh without discharges

According to the above results, a causal link clearly exists between LFP and IOSh. How-

ever, between the burst discharges, the IOSh decays towards the baseline, which, in lack

of observable electric activity, seems to be a result of autonomous dynamics (Figs. 28 E

and 29). In order to determine the form of the decay functions, we collected the IOSh

time series during those interburst periods which were longer than 25 s from all slices.

The amplitude of the IOSh was normalized to 1 for each period and averaged over all

bursts within a slice. The logarithm of the absolute value of the IOSh showed clear lin-

ear temporal dependence, during large part of these interburst periods in all cases, which

is the hallmark of exponential decay dynamics. Thus, a linear function was fitted to the

logarithm of the mean IOSh values between 2.5 and 25 s for each slices. Finally the mean

and the SD of the decay time constant were calculated for the three forms of the epileptic

activity. The mean decay time constant was the shortest in theMg2+-free evoked activity

with τ1 = 30.3± 3.2 s (11, 9 and 11 intervals from 3 slices); the decay was longer in the

4AP treated slices: τ1 = 54.9± 18.7 s (15, 7, 7, 11 intervals from 4 slices) and the longest

for the electrically stimulated slices: τ1 = 73 ± 19.2 s (25, 25, 6, 15, 6 intervals from 5

slices). Three examples of the exponential fits are shown in Fig. 31, one for each of the

three forms of evoked epileptic activity.
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Figure 31: Three examples of the exponential decay of IOSh mean absolute value

between discharges. The mean normalized IOSh amplitudes after initiation of epilepti-

form bursts at 0 s on Lin-Log plots (diamonds) and the fitted exponentials (solid lines)

are shown. In all the three cases the decay closely followed the exponential rule between

2.5 and 25 s. The characteristic decay time of the fitted exponentials in these examples

were (A) 32.3 s in the Mg2+-free case; (B) 58 s in the 4AP case and (C) 65.62 s in the

electrically stimulated case.

79



4.4.5 Reconstruction of IOSh based on LFP

By combining these observations, a simple formula is inferred, approximately describing

the dependency of the IOSh on the LFP power in the form of a differential equation:

dIOSh

dt
= W (t) ∗ LFP 2(t)− IOSh

τ1
(84)

where W(t) scales the causal effect from LFP to IOSh. Here we assumed, that the decay

constant τ1 is constant through whole recordings. This simple model has been used to esti-

mating the IOSh signal based on the known LFP power in theMg2+-free and 4AP elicited

cases, where the epileptiform activity has developed autonomously, without external stim-

ulation. The reconstructed IOShwere filtered similarly by subtracting the moving window

average as the real observed signal and were compared to it. The optimal model parame-

ters were determined by numerical optimization, minimizing the Root Mean Square Error

(RMSE) of the IOSh reconstruction.

First, W(t) was set to a constant value according to the negative peak of the correlation

between LFP power and the time derivative of the IOSh, but we found, that the residual

error of the IOSh reconstruction showed clear temporal tendency in majority of the record-

ings. Thus we introduced a time dependent weight factor W(t) in form of an exponential

decay:

W (t) = W0e
− t

τ2 (85)

The optimal W0 and the τ2 time constant was determined by a grid search. The opti-

mization converged to a minimum of the RMSE in 6 cases out of the 7 slices (2 out of 3

Mg2+-free and all the 4 4AP slices). Thus we concluded, that the exponentially decay-

ing effective connection strength was a reasonable description of the long term temporal

development in the majority of the cases. The optimal time constant were found to be

τ2 = 2839± 582 s (mean and SD) for theMg2+-free cases and τ2 = 2061± 1121 s (mean

and SD) for the 4AP cases.

The comparisons between the reconstructed and the observed IOSh show that recon-

struction follows closely the actual observations during the 1 h long experiment, through

several dynamical changes in both the Mg2+-free and the 4AP cases. An example for

Mg2+-free elicited activity is shown in Fig. 32 and another for 4AP in Fig. 33. Note, the

large difference between the two dynamics and waveshape.
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Figure 32: Reconstruction of IOSh based on LFP inMg2+-free case. A: The recorded
LFP signal showing the epileptiform activity induced by Mg2+-free solution (black). B:
Comparison of the high pass filtered IOS (red) and the reconstructed IOSh (blue) based on

the LFP signal. C and D: Zoom of the original and reconstructed IOSh signal in the early

and late phase of the epileptic activity. Our simple model reconstructs the IOSh signal

based on the LFP with high precision, through the 1 hour long experiment.
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Figure 33: Reconstruction of IOSh based on LFP in 4AP case. A: The recorded LFP

signal showing the epileptiform activity induced by 4AP treatment (black). B: Comparison

of the high pass filtered IOS (red) and the reconstruction (blue) based on the LFP signal.

C: Zoom of the original and reconstructed IOSh signal shows clear dynamical changes,

but our simple model reconstructs the IOSh signal based on the LFP with high precision,

through the 1 hour long experiment.
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4.4.6 Simulations

Based on the derived formula for the LFP→IOSh dependence, simulations have been run

in order to cross-validate the causality analysis results.

The simulations consist of a driving variable (X), a logistic chaotic oscillator, from

which a spike-like discharge activity is derived, by raising it to the 4th power, and a second

driven variable exhibiting linear dynamics and exponential decay corresponding to the

inferred model of the IOSh:

X(t+ 1) = 3.8X(t)(1−X(t)) (86)

IOSh(t+ 1) = (1− dt/τ1)IOSh(t)−X4(t− δ) (87)

The time delay δ of the driver effect have been varied and the causal relationship have been

measured by the cross-map function. These simulations showed, that the exact value of

the time delay between the two variables was inferred precisely by the peaks of the cross-

map function, and even the shape of the cross-map function and the anti causal peak in the

IOSh→LFP direction resembles very much to the observed one (Fig. 34). Based on these

simulations, we can conclude that the time delay of the causal effect can be determined

precisely by this method, in this case.
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Figure 34: Test of causality analysis on simulated test data. Simulated IOSh have been

driven by the simulated LFP with three different time delays in the three cases: δ = 0,

5 and 10 time samples. The positions of the peaks of the black lines (solid, dashed and

dash-dot) on the negative half of the x axis clearly mark both the direction and the delays

of the driving force. The peaks of the red lines at positive delay values show, that the IOSh

follows predictably the LFP.
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5 Discussion

5.1 About the clusters of cell pedicules in theOPLof the human retina

We clustered retinal cone pedicules according to pedicule area size, pedicule convex hull

area size and connexin36 plaque number by fitting a lognormal mixture model on the

data. The optimization was carried out by the EM algorithm and we utilized the Bayesian

information criteria to select the optimal number of clusters.

The results were that two clusters were the optimal number of components for pedicule

sizes and three clusters were the optimal for the convex hull area and the plaque number

data. From the latter cases, one of the three clusters contained very small values, hinting

that they consist of small fragments, not morphologically distinct groups. This means

that in general, two meaningful clusters were found by the mixture model on all features

respectively. Also, one can speculate that the two groups can be mapped to the distinct S

and M/L cone population of the retina.

5.2 About unicorns and the Temporal Outlier Factor

We introduced a new concept of anomalous event called unicorn and we have defined

the Temporal Outlier Factor to quantify this concept. Unicorns are the unique states of

the system, which were visited only once. A new anomaly concept can be valid only if a

proper detection algorithm is provided. We demonstrated that TOF is a model-free, non-

parametric, domain independent anomaly detection tool, which can detect unicorns. TOF

measures the temporal dispersion of state space neighbors for each point. If state space

neighbors are temporal neighbors as well, then the system has never returned to that state,

therefore it is a unique event ie. a unicorn.

The unicorns are not just outliers in the usual sense, they are conceptually different.

As an example of their inherently different behavior, one can consider a simple linear

data series: As all of its points are visited only once and the system never returned to

either one of them, all of the points of that line will be unique events. Whilst this property

may seem counter-intuitive, it ensures that our algorithm finds unique events regardless

of their other properties, such as amplitude or frequency. This example also shows, that

the occurrences of unique events are not necessarily rare: actually, all the points of a time

series can be unique. This property clearly differs from other anomaly concepts: most of

them assume that there is a normal background behavior which generates the majority of

the measurements and outliers form only a small minority.

Detection performance comparison of TOF and LOF on different simulated datasets

highlighted the conceptual difference between the traditional outliers and the unique events
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as well. LOF detected classic outliers based on the drop in the local density, therefore it de-

tected those anomalies well, which generated low density sets in the state space. The short

segment of tent map within a logistic map background and the higher frequency beating of

tachycardia within the background of the normal heart rhythm generated such low density

sets. However, depending on the parameters, linear segment anomalies can form higher,

lower or equal density sets compared to the background. In our simulations the linear

anomaly formed similar density sets to the logistic background and much higher density

states than the random walk background, which made them invisible for the LOF. As our

simulations showed, TOF with the same parameter settings was able to find both higher

and lower density anomalies, based on the sole property that they were unique events. As a

striking difference to the outlier concept, in the case of the detrended random walk dataset

with linear anomaly, the anomalous points not only formed a higher density set, but were

located right in the center of the normal data distribution. In our tests, TOF showed good

precision and recall on simulated dynamical and stochastic anomaly datasets, as well as on

simulated ECG time series. The algorithm has very low false detection rate, but not all the

outlier points were found or not all the points of the event were unique. As an example,

QRS waves of ECG simulations do not appear to be different from normal waves, hence

the algorithms did not find them.

It was also shown in the simulations with multiple events that TOF only detects unique

events or unicorns. However when two outliers were so close to each other that the elapsed

time was in the same order of magnitude as the threshold event length, then TOF identified

both events as outliers, since the two events formed one longer one. On the contrary, when

the elapsed time between outlier segments is much greater than the threshold event length,

TOF detected none of the events. In this latter case, ROC AUC values were much smaller

than by-chance meaning, that TOF score during the events was higher than average score

over the whole time period.

On the polysomnographic dataset, the anomaly was known from the parallel respira-

tory signal, but there was no evident change on the ECG signal. It was shown that TOF

and LOF can both detect parts of the apnoe event from an ECG measurement. TOF found

the actual stalling period of respiration, but LOF detected the preceding irregular breaths.

While ECG analysis mostly concentrates on the temporal relations of the identified wave

components, here we apply the detection methods to the continuous ECG data. Interest-

ingly, TOF marked mainly the T waves of the heart cycle as anomalous points. T-waves

are signs of the ventricular repolarization and are known to be largely variable, thus they

are often omitted from the ECG analysis. This example showed, that they can carry rele-

vant information as well.

On the gravitational wave dataset both TOF and LOF was able to detect the merger

85



GW150914 event, however TOF needed lower embedding dimension (E = 6) and neigh-

bor number (k = 11) than LOF (E = 11, k = 100). Clearly, the specific, model-based de-

tectors that were originally used to recognize gravitational waves are much more sensitive

to the actual waveforms of merger black holes or neutron stars than the model-free method

that we implemented [36]. However, model-free methods can have a role in finding signs

of events with unpredicted waveforms such as gravitational waves of supernovas.

Whilst LOF showed no specific detection pattern, TOF detected two rising periods on

the temporal derivative of the USD LIBOR dataset: one preceding the 2008 crisis and

an other one from 2012 onwards. Both detected periods showed unique dynamics that

differ from each other as well. The period between 2005-2007 can be considered unique

in many ways; not only was there an upswing of the global market, but investigations

revealed that several banks colluded in manipulation and rigging of LIBOR rates in what

came to be known as the infamous LIBOR scandal. [134]. Note, that this was not the

only case, when LIBOR was manipulated: During the economic breakdown in 2008 the

Barclys Bank submitted artificially low rates to show healthier appearance [135–137].

As a consequence of these scandals, significant reorganization took place in controlling

LIBOR calculation, starting from 2012.

To sum it up, gravitational waves of the merger black-holes on the filtered dataset

formed a traditional outlier which was well detectable by both the TOF and LOF, while

LIBOR exhibited longer periods of unique events only detectable by the TOF. Hypopnoe

generated a mixed event on ECG, where the period of irregular breathing formed outliers

and was detectable by LOF, while the apnoe generated a unique event on the ECG during

failed respiration detectable only by the TOF.

Comparing TOF and LOF proved that temporal scoring has advantageous properties

and adds a new aspect to anomaly detection. One advantage of TOF can be experienced

when it comes to threshold selection. Since the TOF score has time dimension, an actual

threshold value means the maximal expected length of the event to be found. Also, on

the flip-side the neighborhood size k parameter sets the minimal event length. Because of

these properties, domain knowledge about possible event lengths renders threshold selec-

tion to a simple task. An other advantage of TOF is from the computational point of view:

the method performs optimally on small embedding dimensions and neighborhood sizes,

which makes computations faster and less memory hungry.

Time indices of k nearest neighbors have been previously utilized differently in non-

linear time series analysis to diagnose nonstationary time series [39, 40, 138], measure

intrinsic dimensionality of system’s attractors [41–43], monitor changes in dynamics [44]

and even for fault detection [45]. Rieke et al. utilized very resembling statistics to TOF:

the average absolute temporal distances of k nearest neighbors from the points. However
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they analyzed the distribution of temporal distances to determine nonsationarity and did

not interpret the resulting distance scores locally. Gao & Hu and Martinez-Rego et al.

used recurrence times (T1 and T2) to monitor dynamical changes in time series locally,

but these statistics are not specialized for detecting extremely rare unique events. TOF

utilizes the temporal distance of k nearest neighbors at each point, thus provides a locally

interpretable outlier score. This score takes small values when the system visits an undis-

covered territory of state-space for a short time period, therefore it is suitable to detect

unicorns.

Future directions to develop TOF would be to form a model which is able to represent

uncertainty over detections by creating temporal outlier probabilities just like Local Out-

lier Probabilities [139] created from LOF. Moreover, an interesting possibility would be

to make TOF applicable also on different classes of data, for example on point processes

like spike-trains, network traffic time-stamps or earthquake dates.

5.3 About the cmFSA algoritm

We revisited and improved the manifold adaptive FSA dimension estimator. We com-

puted the probability density function of local estimates if the local density was uniform.

From the pdf, we derive the maximum likelihood formula for intrinsic dimensionality.

We proposed to use the median of local estimates as a global measure of intrinsic

dimensionality, and demonstrated that this measure is asymptotically unbiased.

We tackled edge effects with a correction formula calibrated on hypercube datasets.

We showed that the coefficients are sample-size dependent. Camastra and Vinciarelli [63]

took a resembling empirical approach, where they corrected correlation dimension esti-

mates with a perceptron, calibrated on d-dimensional datasets. Our approach is different,

because we tried to grasp the connection between underestimation and intrinsic dimen-

sionality more directly, by showing that the dimension-dependence of the relative error

is exponential. The calibration procedure of DANCo may generalize better, because it

compares the full distribution of local estimates rather than just a centrality measure [61].

Also, we are aware that our simple correction formula overlooks the effect of curvature

and noise. We tried to address the former with the choice of minimal neighborhood size

(k = 1), thus the overestimation effect due to curvature is minimal. Additionally, the

effect of noise on the estimates is yet to be investigated. There are several strategies

to alleviate noise effects such as undersample the data while keeping the neighborhood

fixed [62], or using a bigger neighborhood size , while keeping the sample size fixed.

Both of these procedures make the effect of curvature more severe, which makes the di-

mension estimation of noisy curved data a challenging task.

We benchmarked the new mFSA and corrected-mFSA method against Levina-Bickel
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estimator and DANCo on synthetic benchmark datasets and found that cmFSA showed

comparable performance to DANCo. For many datasets, R-DANCo overestimated the

intrinsic dimensionality, which is most probably due to rough default calibration [64]; the

matlab implementation showed the best overall results in agreement with Campadelli et

al [55]. This superiority was however dataset-specific: cmFSA performed genuinely the

best in 4, DANCo in 2 out of the 15 benchmark datasets (with 7 ties, Table 4). Also,

cmFSA showed better overall error rate than DANCo. Combining the performance mea-

sured by different metrics, we recognise that cmFSA found the true intrinsic dimension

of the data in more cases, but when mistaken, it makes relatively bigger errors compared

with DANCo.

The mFSA algorithm revealed diverse changes in the neural dynamics during epilep-

tic seizures. In normal condition, the gradient of dimension values on the cortical grid

reflects the hierarchical organization of neocortical information processing [140]. Dur-

ing seizures, this pattern becomes disrupted pointing to the breakdown of normal acti-

vation routes. Some channels showed lower dimensional dynamics during seizures; that

behaviour is far from the exception: the decrease in dimensionality is due to widespread

synchronization events between neural populations [141], a phenomenon reported by var-

ious authors [49, 142, 143]. These lower-dimensional areas are possible causal sources

[24, 52, 54] and candidates for being the seizure onset zone. Interestingly, Esteller et al

found, that the Higuchi fractal dimension values were higher at seizure onset and de-

creased to lower values as the seizures evolved over time [144]. We found, that most

areas showed decreased dimensionality, but few areas also showed increased dimension

values as seizure takes place. This may suggests that new - so far unused - neural circuits

are activated at seizure onset; whether this circuitry contributes to or counteracts epileptic

seizure is unclear.

5.4 About IOS and its relation to LFP

Two components of the IOS signal have been distinguished during induced epileptic ac-

tivity in in vitro cortical slices. They were different not only in their time scale, but pre-

sumably the underlying mechanisms as well. The faster, activity-dependent component

(IOSh) was positive in transmitted light and negative in reflected light measurements. It

can be interpreted as the decrease of the scattering of the tissue, caused by swelling of

the cells due to the activation and underlying movement of ions across the membranes

followed by water [145]. In this processes not only the neurons but also the glial cell

might play significant role [146, 147]. The later types of cells are more prone to swell,

but the glial reaction is preceded by neuronal activation [148]. During this activation,

an abundance of excitatory transmitters are released and intensive ionic movements take

88



place increasing significantly the extracellular K+ concentration, which is then buffered

in glial cell and causes its swelling [149].

The slower component (IOSl), however was negative in both transmitted and reflected

experiments, thus it can be attributed to the increase of the absorption of the tissue. While

different components of the in vitro, blood-free IOS signal were distinguished previously

[101,105,150] all of them were attributed to the change of the scattering of the tissue, thus

none of them corresponds to the observed increase of the absorption. Cell death could be

one of the possible reasons of this phenomena, however, as the electrical responsiveness of

the slices haven’t changed significantly during the recording, we can suppose, that cellular

destruction is not necessarily substantial. In order to verify the possible role of the cell

death in the IOSl component, its irreversibility should be checked.

A candidate mechanism, showing that absorption plays role in IOS generation, was

presented by Mané and Müller [151]: Multispectral analysis of the IOS showed a signif-

icant dip in the IOS spectrum at 440 nm wavelength during spreading depression. This

absorption line, referred to as Soret band, is a mark of the absorption of porphyrins. The

changes of the light absorption by cytochromes appear at this wavelength, thus, reduc-

tion of cytorchromes as well as its unpacking from the mitochondria could increase the

absorption of the tissue.

The directed causal relationships were examined between the LFP and the IOSh by

Sugihara’s causality analysis method, the convergent cross mapping. We have found a

strong, unidirectional, delayed causal effect from LFP to IOSh with 0.5-1 s delay, without

signs of feedback from the IOSh to the LFP. However, it is also showed, that a “shadow

peak” in the IOSh→LFP direction appeared at anticausal time delays.

In general, we found, that the delay of the causality peaks significantly affects the

interpretation of the results. Assuming no observational delay, two different cases should

be distinguished: the peak of the cross-map functions, located on the negative half of the

time axis, should be considered as a sign of the real causal effect, since the cause preceded

the consequence. However, the peaks on the positive half-axis should be interpreted, as

a sign of the delayed prediction, ie. the caused time series follows the effect of the cause

faithfully with some delay, thus not only the cause can be reconstructed from the caused

time series (this corresponds to the peaks on the negative axis), but the caused time series

can be predicted from the cause as well. While the peaks on the negative half of the delay

axis are signs of the causality in terms of the Sugihara et al. [88], the peaks on the positive

half-axis correspond more to the predictive causality according to the Wiener-Granger

principle [79, 81].

In our case, due to the relatively smooth and continuous nature of the IOSh signal, the

IOSh→LFP causality peak on the anti causal half-axis become wider, and the “shoulder”
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of that peak produced relatively high causality values at the negative half of the time lag

axis as well. If only the instantaneous CCMwere calculated, the IOSh→LFP causality co-

efficients would have similar values to the LFP→IOSh drive, thus one would erroneously

conclude, that a significant feedback exists in the IOSh→LFP direction as well. Obser-

vation of the full, time dependent, cross-map function reveals, that the relatively high

causality at zero time lag in the IOSh→LFP direction is only a side effect of a peak in

the anti-causal regime. We concluded, that the delay dependent calculation of the CCM

is important not only to determine the delays of the causal effects, but to find the correct

causal directions and strengths as well.

The causality structurewas very similar in all the three inductionmethods of the epilep-

tic activity: electrical stimulation, Mg2+-free solution or 4AP induction, although the

causal connection strength was stronger in the stimulated and weaker in the presence of

4AP than in Mg2+-free solution. The similarity of the causal structures may imply sim-

ilar underlying mechanisms in all three cases, meaning, that the generation of the IOSh

component is independent of the method of induction.

It was demonstrated, that although the cross-correlation functions showed peaks, those

peaks did not reflect the actual causal dependency in these cases. Instead, the temporal

derivative of the IOSh was correlated with the LFP power at the time delay of the actual

causal peak.

During the interdischarge intervals, the IOSh signal decays towards the baseline ex-

ponentially, without significant causal influence from the LFP, which implies a linear

autonomous dynamics.

To sum up our observations on the dynamics of IOSh, a simple model has been set

up to describe the dependency of the IOSh on the LFP power. The model allowed the

reconstruction of the IOSh based on the LFP signal. Model fitting showed, that during the

slow development of the epileptiform activity, the effective causal connection strength

slowly decreased. This decrease could be well approximated by an exponential decay.

Quantitatively good reconstruction of IOSh, based on the LFP signal by our model during

the 1 h long recordings, supports the results of the causality analysis as well.

The model provided us the possibility to cross-validate the causality analysis, with

known causal dependency and effect delays. The causality analysis on the simulated data

series resulted in very similar cross-map functions on the model as it was found on the

measurements: the peaks on the negative half of the time delay axis precisely marked

the direction and the delay of the simulated causal effects, while “shadow peaks” were

generated on the positive, anti-causal half of the delay axis. The only slight difference was

that in case of simulated data series, the shadow peaks position was always symmetric to

the main peak on the delay axis, while in case of the measurements, the “shadow peak”
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showed larger lags.

Our results on LFP→IOSh unidirectional causality do not exclude the possible pres-

ence of causal connections on a slower time scale either in the reverse direction or in the

same direction but between the observable epileptic bursts, where we now observe only

the autonomous dynamics of the IOSh. Inference of possible interactions on slower time

scale now excluded by filtering out the slower component (IOSl) which was necessary

to make the IOSh available for the causal analysis.The causal relation between the LFP

and the slower, IOSl component could not be determined based on these measurements,

because the IOSl does not satisfy the necessary conditions. The application of the CCM

method requires, that the system went through multiple times on its attractor. This con-

dition is satisfied for the IOSh component, but not for the IOSl, which exhibits only one

sweep through the state space, during these experiments. We can suppose that IOSh is

determined by relatively quick cellular processes, while IOSl is determined by slow ex-

tracellular space processes [152].

The application of CCM for LFP and IOSh demonstrates, that the significantly dif-

ferent inherent speed and sampling rate of the signals, and the necessary downsampling

does not preclude the determination of the causal relationships, thus raises the possibility

of application of the new method to other signal modalities with different speed, such as

fMRI and EEG as well.
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6 Conclusions

6.1 Determination of clusters based on cell pedicule-features

As part of characterization of the connexin36 gap junctions in the human outer retina I

have determined the optimal number of cone pedicle clusters by fitting lognormal mixture

models supplemented with model selection based on Bayesian information criterion. I

showed, that twomain subpopulaton of cell-pedicules can be differentiated based on either

pedicule area size, subpedicule convex hull area size and connexin36 plaque numbers per

subpedicules.

6.2 Temporal Outlier Factor to detect unique events

Recognition of anomalous events is a challenging but critical task in many scientific and

industrial fields, especially when the properties of anomalies are unknown. I introduced

a new anomaly concept called “unicorn” or unique event and presented a new, model-

independent, unsupervised detection algorithm to detect unicorns. I created the Temporal

Outlier Factor (TOF) to measure the uniqueness of events in continuous data sets from

dynamic systems. The concept of unique events differs significantly from traditional out-

liers in many aspects: while repetitive outliers are no longer unique events, a unique event

is not necessarily outlier in either pointwise or collective sense; it does not necessarily fall

out from the distribution of normal activity. I examined the performance of the algorithm

by recognizing unique events on different types of simulated data sets with anomalies and

I compared the results with the standard Local Outlier Factor (LOF). TOF had superior

performance compared to LOF even in recognizing traditional outliers and it also recog-

nized unique events that LOF did not. I illustrated the benefits of the unicorn concept

and the new detection method by example data sets from very different scientific fields.

The TOF algorithm successfully recognized unique events in those cases where they were

already known such as the gravitational waves of a black hole merger on LIGO detector

data and the signs of respiratory failure on ECG data series. Furthermore, unique events

were found on the LIBOR data set of the last 30 years.

6.3 The correctedmedian Farahmand-Szepesvari-Audibert intrinsic

dimensionality estimator

Data dimensionality informs us about data complexity and sets limit on the structure of

successful signal processing pipelines. I revisited and improved the manifold adaptive

Farahmand-Szepesvari-Audibert dimension estimator, making it one of the best nearest
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neighbor-based dimension estimators avaible. I computed the probability density function

of local dimension estimates, if the local density was taken uniform. Based on the prob-

ability density function, I proposed to use the median of local estimates as a basic global

measure of intrinsic dimensionality, and I demonstrated the advantages of this asymptot-

ically unbiased estimator over the previously proposed statistics: the mode and the mean.

Additionally, from the probability density function, I derived the maximum likelihood for-

mula for global intrinsic dimensionality, if the sampling is independent and identically dis-

tributed. I tackled edge and finite-sample effects with an exponential correction formula,

calibrated on hypercube datasets. I compared the performance of the corrected median

Farahmand-Szepesvari-Audibert estimator with kNN estimators: the Levina-Bickel esti-

mator and two implementation of DANCo (R and MATLAB). I showed that the corrected

median-Farahmand-Szepesvari-Audibert estimator beats the Levina-Bickel estimator and

it is on equal footing with DANCo for standard synthetic benchmarks according to mean

percentage error and error rate metrics. With the median-FS algorithm, I revealed diverse

changes in the neural dynamics while resting state and during epileptic seizures. I iden-

tified brain areas with lower-dimensional dynamics that are possible causal sources and

candidates for being seizure onset zone.

6.4 Causal relationship between local field potential and intrinsic op-

tical signal

We examined the relationship between the local field potential (LFP) and the intrinsic

optical signal (IOS) during induced epileptiform activity in in vitro cortical slices by the

convergent cross-mapping causality analysis method. During the examinations, we have

distinguished two components of the IOS signal: a faster, activity dependent component

(IOSh) which changes its sign between transmitted and reflected measurement, thus it is

related to the reflectance or the scattering of the tissue and a slower component (IOSl),

which is negative in both cases, thus it is resulted by the increase of the absorption of the

tissue. We have found a strong, unidirectional, delayed causal effect from LFP to IOSh

with 0.5-1s delay, without signs of feedback from the IOSh to the LFP, while the corre-

lation was small and the peaks of the cross correlation function did not reflect the actual

causal dependency. Based on these observations, we set up a model to describe the de-

pendency of the IOSh on the LFP power and IOSh was reconstructed, based on the LFP

signal. By this study we demonstrated that causality analysis could lead to better under-

standing of the physiological interactions, even in case of two data series with drastically

different time scales.
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7 Summary

This work takes the reader into rock hard data analysis. First, we present an unsupervised

investigation of static neuroanatomical structures in the human outer retina. Second, we

turn to nonlinear time series analysis to detect anomalies and estimate intrinsic dimensions

on various datasets. Finally, we investigate the relationship of the Local Field Potential

and the Intrinsic Optical Signal measured on ex vivo mouse brain slices.

The human retina is an intricately organized structure, where photo-reception and the

first steps of visual processing takes place. Gap junction-forming connexin36 plays a not

straightforward role in this signalprocessing and anatomical description helps to explore

this function. We applied unsupervised lognormal mixture models on connexin36-related

features and determined two main clusters of cone pedicules in the OPL of the human

retina.

Anomalies are rare and abnormal patterns and it is often critical to detect them. This is

especially difficult when we do not know how the anomaly differs from normal activity.

We developed a detection method that finds unique patterns that we have named “uni-

corns”. We showed that in addition to finding the anomalies that traditional methods do,

it also recognizes anomalies that they do not. This is demonstrated on various data sets,

from gravitational waves through ECG to economic indicators.

Data intrinsic dimensionality bears information about the redundancies and interac-

tions between observed features. To access such information, we improved the manifold-

adaptive FSA dimension estimator. We calculated the pdf of local estimates and proposed

the median as an estimate of global intrinsic dimension. We corrected finite-sample and

edge effects to increase the performance of the corrected mean FSA estimator to the level

of DANCo, one of the most reliable state-of-the-art estimators. We investigated the intrin-

sic dimension of intracranial LFP measurements of a human subject with drug resistant

epilepsy. During seizures, the right temporal cortex showed the most low-dimensional

dynamics, which hints that it is a seizure onset zone.

We characterized the relation of LFP and IOS in ex vivo brain slices from mice during

induced epileptic seizures. We found that the reflected IOS signal during epileptic activity

consists of a slow trend and a fast component which showed association with the electric

discharges of the LFP signal. We applied the delayed Convergent Cross Mapping method

to reveal the causal relations between the recordings. We revealed that the LFP drives the

IOSh activity, the time delay of the effect is half second. Finally, we inferred an empirical

model to describe the the effect of the LFP power on the IOSh.
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8. Összefoglalás

Ez a dolgozat statikus neuroanatómiai adatok nem-felügyelt analízisétől indulva, a nem-

lineáris dinamikai rendszerek elméletének idősorokon való alkalmazásán keresztül jut el,

agy-szeleteken mért optikai és elektromos jelek kapcsolatának feltárásáig.

Az emberi retina egy rendkívül jól szervezett anatómiai struktúra, mely a fényérzé-

kelésért felelős és a vizuális feldolgozás első lépéseit is elvégzi. E jelfeldolgozásban ját-

szanak nem teljes egészében feltárt szerepet a rés-kapcsolat-alkotó konnexinek, például a

connexin36. Az anatómiai vizsgálat részeként lognormális keverék eloszlások illesztésé-

vel klasztereztük a konnexin-hordó csap szinaptikus talpak méret-eloszlását az OPL-ben

készült metszeteken és ez alapján két fő csoportot tudtunk elkülöníteni.

Az anomáliák ritka és a szokványostól eltérő mintázatok, melyek észlelése nagy gya-

korlati jelentőséggel bírhat. A dolgozat ezen részében kifejlesztettünk egy anomália de-

tektáló módszert, ami extrém ritka egyedi események – úgynevezett unikornisok – meg-

találását teszi lehetővé. Megmutattuk, hogy az algoritmus és unikornis-koncepció többlet

értéket ad a tradicionális anomália-detekció irodalmához és demonstráltuk a módszer po-

tenciális gyakorlati hasznát EKG, gravitációs hullám és LIBOR adatsorokon.

A dimenzió az adatok komplexitásának mértéke, utal a megfigyelt változók közötti

redundanciákra és kapcsolatokra. Hogy ezen információhoz hozzáférjünk, a dolgozatban

az FSA dimenzióbecslő algoritmust vizsgáltuk meg és fejlesztettük tovább. Kiszámol-

tuk a lokális becslések valószínűség-sűrűségfüggvényét és megállapítottuk, hogy az el-

oszlás mediánja megegyezik a dimenzióval. A véges mintaszám és a szél-hatás okozta

torzítást kalibrációval korrigáltuk, ez pedig egy szintre emelte az algoritmus teljesítmé-

nyét DANCo-éval, mely az egyik legmegbízhatóbb dimenzióbecslő algoritmus. A medi-

án FSA módszert ezután epilepsziás betegből származó intrakraniális potenciál adatokon

alkalmaztuk és azt találtuk, hogy a rohamok alatt a jobb temporális kéreg mutatta a legala-

csonyabb dimenziójú dinamikát, mely sejteti, hogy a terület rohamindulásért felelős zóna

része.

Egér ex vivo agyszeleteken vizsgáltuk az extracelluláris potenciál és a saját optikai

jel közti kapcsolatot indukált epilepsziás rohamok során. Megállapítottuk, hogy az epi-

lepsziás aktivitás alatt reflektált optikai jel egy lassú trendből és egy gyors, az elektromos

potenciálhoz kapcsolódó komponensből áll. A késleltetett konvergens keresztleképezési

módszert alkalmazva kiderült, hogy az elektromos jel hajtja meg az optikait, és a hatás fél

másodperc időkéséssel jelenik meg. A megfigyelések alapján egy empirikus differenciál-

egyenletben modelleztük a mezőpotenciál és az optikai jel kapcsolatát.
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