
Data Mining in Complex Networks:
Missing Link Prediction and Fuzzy

Communities

A dissertation submitted for the degree of Doctor of Philosophy

Tamás Nepusz

Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Budapest, Hungary

Advisors:

Dr. Fülöp Bazsó, Ph.D.,
KFKI Research Institute for Particle and Nuclear Physics,
Hungarian Academy of Sciences, Budapest, Hungary

Dr. György Strausz, Ph.D.,
Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

Ph.D. School: Informatics
Head: Dr. Endre Selényi
Ph.D. Program: Intelligent systems

Budapest, 2008

Abstract

This dissertation is devoted to networks: complex interconnected systems
where the individual components are connected by binary links arranged
in seemingly random but intrinsically structured patterns. Networks are
used to model various real-world phenomena ranging from protein interaction
in living organisms to the large-scale organisation of human society or the
structure of technological networks such as software systems or the Internet.

The first part of the dissertation studies a stochastic graph model, which
can be considered as a possible extension of Erdős–Rényi random graphs. I
discuss some basic statistical properties of the model and devise methods to
find the best fit of the model to a given network instance. I also demonstrate
how the fitted model can be used to predict previously unknown connections
in the network.

The second part of the dissertation studies overlapping communities (i.e.,
dense subgraphs) in sparse networks. I introduce a method based on the con-
cept of fuzzy partition matrices and vertex similarity to uncover meaningful
communities with possible overlaps and to identify bridge vertices that belong
to more than one community significantly. Finally, I present applications of
the link prediction and community detection methods on real-world datasets.

I

Kivonat

Disszertációm témája a hálózatok világa. Az általam tanulmányozott hálóza-
tok egyedi elemekből bináris relációk által képzett összetett rendszerek, ahol
a kapcsolatok véletlenszerűnek tűnő mintázata mögött rendszerint belső sza-
bályszerűség rejlik. A hálózatok elméletét számos valós jelenség model-
lezésére használták már az élő szervezetek fehérjéi közti interakcióktól kezdve
az emberi társadalom nagyléptékű szerveződéséig, vagy éppen olyan, ember
alkotta technológiai hálózatokig, mint a szoftverrendszerek vagy az Internet.

A disszertáció első felében egy sztochasztikus gráfmodellt vizsgálok, amely
az Erdős–Rényi véletlen gráfok egy lehetséges kiterjesztésének tekinthető. A
modell alapvető statisztikai jellemzése után két módszert ismertetek a mo-
dell adott hálózatra való legjobb illesztésének megkeresésére. Bemutatom,
hogyan használható az illesztett modell a hálózat esetlegesen még nem is-
mert kapcsolatainak feldeŕıtésére.

A második rész az egymással átfedő csoportosulások (sűrű részgráfok)
jelenségét vizsgálja ritka hálózatokban. Bevezetek egy, a fuzzy part́ıciós
mátrixokon és a hálózat pontjainak egy megfelelő hasonlósági mértéken ala-
puló algoritmust, amely alkalmas a hálózat potenciálisan átfedő csoporto-
sulásainak és a csoportosulások között átkötő h́ıdpontjainak azonośıtására.
Végül bemutatok néhány esettanulmányt a léırt módszerek valós adathalma-
zokon történő alkalmazásáról.

II

Nyilatkozat

Aluĺırott Nepusz Tamás kijelentem, hogy ezt a doktori értekezést magam
késźıtettem és abban csak a megadott forrásokat használtam fel. Minden
olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva
más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Budapest, 2008. július 5.

. .
Nepusz Tamás

III

Acknowledgments

I would like to thank my advisors, Fülöp Bazsó and György Strausz for
guiding my work during the last few years. I learned a lot during this time
and I am convinced that this knowledge will help me in the future.

I would like to thank my colleagues and co-authors whom I worked with
on the projects presented in this dissertation: Andrea Petróczi for discussing
issues related to social networks and for supervising my work during my visit
at Kingston University; László Négyessy and László Kocsis for our work on
cortical networks (which would be fairly incomplete without the additional
biological conclusions that I could not have come to due to my limited in-
sight on the field); Gábor Tusnády and Péter Erdős for introducing us to
Szemerédi’s regularity lemma and for initiating the whole research direction
that led to one of the models presented in this dissertation; László Zalányi
for always being ready for discussions and debates on my research.

My thanks to all the members of the Computational Neuroscience Group
at KFKI. It was a pleasure to work there and to enjoy the friendly atmosphere
of the group. My special thanks to Gábor Csárdi for starting the igraph

project and letting me obfuscate and abuse his carefully written source code
to aid me in my research.

Last, but not least, I am grateful to my family and Ági for their continuous
and unconditional support. This dissertation could not have been brought
to completion without their patience, understanding and love.

IV

Köszönetnyilváńıtás

Köszönettel tartozom témavezetőimnek, Bazsó Fülöpnek és Strausz György-
nek, amiért iránýıtották munkámat az utóbbi néhány évben. Sokat tanultam
tőlük ez idő alatt, és biztos vagyok benne, hogy ez a tudás a későbbiekben
még hasznomra válik.

Szeretném megköszönni kollégáim és szerzőtársaim seǵıtségét, akikkel a
jelen disszertációban bemutatott témákon együtt dolgoztam. Hálás vagyok
Petróczi Andreának a közösségi hálózatokon végzett közös munkáért és a
lehetőségért, hogy fél évet eltölthettem a Kingston University-n; Négyessy
Lászlónak és Kocsis Lászlónak az agykérgi hálózatokkal kapcsolatos kutatá-
sainkért (amely nélkülük bizonyára csak félkész állapotban lenne még most
is, hiszen a munka biológiai következményeinek vizsgálata az ő érdemük);
Tusnády Gábornak és Erdős Péternek, amiért megismertettek engem és kol-
légáim a Szemerédi regularitási lemmával és elind́ıtották azt a kutatási irányt,
amely eredménye a jelen disszertáció egyik teljes fejezete lett; Zalányi Lász-
lónak, amiért mindig készen állt arra, hogy a kutatásaimmal kapcsolatos
kérdéseket megvitassuk.

Köszönetet mondok a KFKI Részecske- és Magfizika Kutatóintézete Bio-
fizikai osztályának a kutatócsoport barátságos légköréért és a kutatásaim
során nyújtott seǵıtségükért az utóbbi négy év során. Külön köszönet illeti
Csárdi Gábort, amiért belevágott az igraph projektbe és rendelkezésemre
bocsájtotta a forráskódot, hogy a saját munkámhoz felhasználjam.

Végül, de nem utolsósorban hálás vagyok családomnak és Áginak a fo-
lyamatos és feltétel nélküli támogatásukért. Ezt a disszertációt nem tudtam
volna befejezni szeretetük, megértésük és végtelen türelmük nélkül.

V

Contents

1 Introduction 1
1.1 Basics of graph theory . 1
1.2 Random graph models . 4

1.2.1 Erdős-Rényi graphs . 4
1.2.2 Small world networks 5
1.2.3 Scale-free networks and the principle of preferential at-

tachment . 7
1.2.4 Community structure 9

1.3 Further reading . 12

2 Link prediction in complex networks 13
2.1 Overview . 15

2.1.1 Prediction by local similarity indices 15
2.1.2 Prediction by path ensembles and random walks 17
2.1.3 Prediction based on stochastic network models 18

2.2 The model framework . 19
2.2.1 Formal description . 19
2.2.2 Extended preference model 21

2.3 Basic statistical properties . 22
2.3.1 Analytical results . 22
2.3.2 Numerical simulations 26

2.4 Fitting the model to data . 27
2.4.1 The goal function for model fitting 28
2.4.2 Fitting by expectation-maximisation 30
2.4.3 Fitting by Markov chain Monte Carlo methods 33
2.4.4 Combining EM and MCMC methods 39
2.4.5 Choosing the number of vertex types 40

2.5 Running time considerations 44
2.5.1 Network generation . 44
2.5.2 Model fitting . 46

2.6 Performance measurements . 48

VI

2.6.1 Fitting the model with given number of groups 49
2.6.2 Choosing the number of groups 51
2.6.3 Rapid mixing of the Markov chain 54

2.7 Using the preference model for predicting unknown links . . . 54
2.8 Conclusion . 57

3 Fuzzy community structure in complex networks 58
3.1 Overview . 61
3.2 Basic concepts . 63

3.2.1 Fuzzy partition matrices 63
3.2.2 Similarity and the goal function 64

3.3 Finding fuzzy communities in undirected networks 66
3.3.1 Outline of the algorithm 66
3.3.2 Connection weights . 73
3.3.3 Choosing the number of communities 74

3.4 Identifying bridge vertices . 75
3.4.1 Bridgeness . 75
3.4.2 Centrality-weighted bridgeness 76
3.4.3 Exponentiated entropy 77

3.5 Benchmark results . 78
3.5.1 Nonoverlapping community structure 79
3.5.2 Overlapping community structure 79
3.5.3 Running time . 81

4 Applications 83
4.1 Predicting missing neural connections in cortical networks . . 83

4.1.1 The dataset . 84
4.1.2 Results . 85
4.1.3 Other prediction approaches 94

4.2 Higher level brain areas in the visuo-tactile cortex 95
4.2.1 Results . 96
4.2.2 Comparison with other approaches 98

4.3 Detection of social bridges via fuzzy communities 99
4.3.1 The UK university faculty dataset 99
4.3.2 The network science co-authorship graph 100

5 Conclusions 105
5.1 Link prediction in complex networks 105
5.2 Fuzzy communities in complex networks 106

VII

A Technical background 109
A.1 Generating random numbers 109
A.2 The igraph library . 110

A.2.1 The basic graph representation in igraph 111
A.2.2 An example: calculating SimRank scores 113

Bibliography 114

VIII

List of Figures

1.1 An example graph and one of its diameters 3
1.2 A comparison of regular lattices, small world networks and

Erdős-Rényi random graphs 7
1.3 Comparison of Poisson and power-law distributions 9
1.4 A social network with strong community structure 10

2.1 Two graphs generated by the preference model 21
2.2 Expected and observed degree distribution of a random graph

according to the undirected preference model 27
2.3 Acceptance rates (left) and log-likelihoods (right) during a

typical run of the MCMC algorithm in the function of time. . 36
2.4 Illustration of SVD-based matrix approximation 42
2.5 Performance assessment of the preference model fitting method 51
2.6 Eigenvalues of the directed Laplacian matrix for graphs gen-

erated by the preference model 52
2.7 Singular values of the adjacency matrix of a graph generated

by the preference model . 53
2.8 Rapid mixing of the Markov chain in the fitting process of the

preference model . 55

3.1 Illustration of hard and fuzzy partitions of a graph 60
3.2 Drawing Dirichlet-distributed random vectors from the range

allowed in the fuzzy community detection problem. 69
3.3 Local goal function of the fuzzy community detection algorithm 71
3.4 Performance of the fuzzy community detection algorithm. . . . 80
3.5 Running time of the fuzzy community detection algorithm . . 82

4.1 Adjacency matrix of the visuo-tactile cortex dataset. 86
4.2 The predicted adjacency matrix of the visual cortex 89
4.3 Predicted pobability of connections in the visuo-tactile cortex. 93
4.4 Comparison of the prediction method to alternative approaches 95
4.5 Bridge areas in the visuo-tactile cortex of the macaque monkey 96

IX

4.6 Bridgeness scores versus vertex degrees in the cortical network
dataset . 97

4.7 Fuzzy communities of the UK university dataset 100
4.8 Comparison of the unweighted and degree-weighted bridgeness

scores in the UK university dataset 101
4.9 Vertex pair weight distribution in different networks. 102
4.10 Visualisation of the network science co-authorship dataset. . . 103

X

List of Tables

4.1 Basic properties of the cortical networks 85
4.2 Log-likelihoods, AIC values,

√
rprn and MCC in the visual

cortex . 87
4.3 Comparison of the reconstruction of the known parts of the

cortical network base on the preference model and the results
of Costa et al. [25]. 88

4.4 Comparison of the predictions of Costa et al. and Jouve et
al. with the preference model regarding the unknown parts of
the cortical network dataset. 90

4.5 Likelihoods, AIC values,
√

rprn and MCC in the visuo-tactile
cortex . 91

4.6 Identified bridge vertices in the cortical network dataset by
various overlapping community detection algorithms. 98

XI

List of Algorithms

1 Generating graphs according to the Gn,p model 4
2 Generating graphs according to the preference model 20
3 Fitting the preference model by expectation-maximisation . . 33
4 Canonical rearrangement of vertex type assignments 34
5 Fitting the preference model by the Metropolis–Hastings al-

gorithm . 38
6 Post-processing fuzzy community detection results based on

the exponentiated entropy . 78

XII

1
Introduction

T
his dissertation is about networks: complex interconnected systems,
where individual entities are connected by binary links arranged in
seemingly random but intrinsically structured patterns. These enti-

ties can practically be anything that is of interest to science: proteins in
the human genome, related to each other by their possible interactions [58];
modules or functions of a large software system connected by dependence
relations [84]; financial networks [100]; even human beings linked together
by their everyday social intercourse [105]. Real computer networks also fit in
this framework in a very straightforward way; in fact, the router-level net-
work model of the Internet was in the focus of numerous studies since the
emergence of network theory as a separate field in the late nineties (see [38]
for an introductory paper). Excellent overviews of the advances in the study
of complex networks are given in [6, 15, 129], while [98] contains a collection
of relevant papers, starting from the early work of Erdős and Rényi [35].

Networks are collections of binary relations among entities. Binary re-
lations can naturally be transformed to graphs, allowing one to study the
properties of the network by the tools of a well-established field of mathe-
matics, namely graph theory. It is thus appropriate to start the introduction
with the fundamental definitions and theorems related to graphs.

1.1 Basics of graph theory

There are many equivalent graph definitions in the literature. The one pre-
sented here is according to the book of Diestel [30]. A graph is a pair
G = (V, E) of sets such that E ⊆ V × V ; thus, the elements of E are 2-

1

subsets of V 1. Elements of V are called the vertices of the graph (hence
the notation: V stands for the initial of “vertex”). Similarly, elements of E
are called edges. A graph with no edges (E = ∅) is called an empty graph,
denoted by ∅. Vertex pairs in E can either be ordered or unordered. In the
former case, we are talking about directed graphs; otherwise the graph is
undirected. Edges are said to connect the vertices. A directed edge e = (x, y)
(x, y ∈ V) is said to originate from x and terminate in y. x and y are both
endpoints of the edge. In an undirected graph, we simply say that x and y
are adjacent to edge e. An edge (x, y) is a loop if x = y. Graphs without
loop edges are called simple graphs.

Sometimes it is easier to think about an undirected edge as directed edges
in both directions. From now on, all definitions related to directed graphs can
also be applied to undirected ones by substituting every undirected edge by
two directed ones. For the sake of notational simplicity, we often abbreviate
e = (x, y) as x → y if the graph is directed, and x ↔ y if it is undirected.

Adjacency is also defined for vertex and edge pairs: two vertices x and y
are adjacent if and only if x ↔ y is an edge of the graph, while two edges e
and f are adjacent if they have an endpoint in common. For directed graphs,
we can also define successors and predecessors : vertex y is a successor of x
(and x is a predecessor of y) if and only if x → y ∈ E.

The degree of a vertex x is the number of adjacent edges of this vertex.
For directed graphs, one can separately define the out-degree and the in-
degree of vertex x as the number of edges originating from and terminating
in x. It is straightforward that the degree of x equals the sum of the out-
and the in-degree of x. A vertex with degree 0 is isolated.

The graph G′(V ′, E ′) is a subgraph of graph G(V, E) if V ′ ⊆ V and
E ′ ⊆ E. This can be denoted by G′ ⊆ G. If G′ ⊆ G and E ′ contains all the
edges x → y ∈ E where x, y ∈ V ′, we say that V ′ induces G′ in G.

A path P of a graph is a sequence of edges {v0 → v1, v1 → v2, . . . ,
vn−1 → vn}. It is said that P goes from v0 to vn and its length is n (since
it contains n edges). The path is a cycle if v0 = vn. These definitions also
apply to undirected graphs, since one can convert every undirected graph to a
directed counterpart by replacing vi ↔ vj with vi → vj and vj → vi. A path
is said to be shortest between vertices vi and vj if it starts in vi, terminates
in vj and there is no shorter path between these two vertices. There can
be multiple shortest paths between any two vertices, but the length of the
shortest path is uniquely defined (and assumed to be infinity if there is no

1This definition assumes that we do not allow multiple edges connecting the same pair
of vertices. However, this is not a limitation in our case, the networks studied in this
dissertation do not possess multiple edges.

2

Figure 1.1: An example graph and one of its diameters

appropriate path between the vertices). The length of the shortest path
is sometimes called the distance of the vertices involved. The diameter of
a graph is the maximum distance over all possible vertex pairs, or a path
attaining that distance, depending on context.

A graph is strongly connected if there exists a path between any two ver-
tices. Graphs with only a single vertex are strongly connected by definition.
Graphs that are not strongly connected can be decomposed to subgraphs that
are strongly connected themselves. More precisely: given an arbitrary graph
G(V, E), there exists a partition of V into k disjoint subsets V1, V2, . . . , Vk

such that ∪k
i=1Vi = V and every subgraph of G induced by Vi is strongly

connected. (Note that k = 1 if the graph itself is strongly connected). The
subgraphs induced by Vi’s are called the strongly connected components of
G. The diameter of a disconnected graph is infinite.

A graph is bipartite if there exists a partition of its vertex set V into
subsets V1 and V2 such that V1 ∩ V2 = ∅, V1 ∪ V2 = V and E ⊆ V1 × V2.
Informally speaking, vertices of a bipartite graph can be coloured by red and
blue in a way that all edges go between a red and a blue vertex.

The usual way of visualising a graph is to draw its vertices as dots in the
2D or 3D Euclidean space and connect pairs of vertices with a (not necessarily
straight) line if there is an edge connecting them. Arrowheads are drawn on
the edges when they are directed. The actual placement of the vertices in
space does not matter; however, certain layouts are more pleasing to the eye
than others. To illustrate some of the concepts introduced in this section,
Fig. 1.1 shows an example graph with one of its diameters highlighted by
thick edges.

3

1.2 Random graph models

We study networks in order to understand the underlying mechanisms that
generated these networks, and a possible way to do that is to construct
models that are simple enough to work with while simultaneously conveying
enough detail to reconstruct the most important features of the network being
studied. This section will introduce some basic network models that were
either able to reproduce significant aspects of real-world networks or have
proven to be useful null models for significance tests of statistical hypotheses
regarding real networks.

1.2.1 Erdős-Rényi graphs

Probably the most basic random graph model one can conceive is as follows:
let there be n vertices and for every undirected pair of vertices, connect them
with probability p, independently of other possible edges or any intrinsic
properties of the vertices. This model (denoted by Gn,p) was first introduced
by Solomonoff and Rapoport [117] and studied further in the papers of Erdős
and Rényi [35, 36, 37]. A practically equivalent definition of the model
(denoted by Gn,m) is as follows: consider the ensemble of all simple graphs
with n vertices and m edges and choose one of them randomly with equal
probabilities. From now on, I study the Gn,p model, noting that p = 2m/(n2−
n) results in a random graph whose expected edge count is exactly m.

An algorithm for generating graphs according to the Gn,p model is de-
scribed by pseudo-code in Algorithm 1. The loop in line 2 iterates all possible
ordered vertex pairs if the graph is directed or over all possible unordered
vertex pairs if it is undirected, excluding loop edges.

Algorithm 1 Generating graphs according to the Gn,p model

Require: n ≥ 0 and 0 ≤ p ≤ 1
1: G := empty graph with n vertices
2: for all {v1, v2} ∈ V (G)× V (G) do
3: q := random number between 0 and 1, inclusive
4: if q ≤ p then
5: E(G) := E(G) ∪ {v1, v2}
6: end if
7: end for
8: return G

Erdős and Rényi were interested in answering questions about specific
properties of these graphs as n approaches infinity while keeping z = np

4

constant. They showed that the degree distribution of the limit graph is a
Poisson distribution around z, the mean degree of the network. They also
proved that the size of the largest connected component of the Gn,p model
tends to infinity in the limit of the infinite graph (n → ∞) if z > 1, but
not if z < 1. z = 1 is the point where a phase transition occurs and a giant
component emerges.

1.2.2 Small world networks

Pál Erdős was one of the most influential mathematicians of the twentieth
century with hundreds of mathematical papers and 511 direct collaborators
[47]. In honour of his contributions to mathematics, Goffman [47] introduced
the notion of Erdős number, a measure for the “collaboration distance” be-
tween an arbitrary scientist and Erdős. Erdős himself had an Erdős number
0, and all his collaborators were assigned an Erdős number 1. In order to
obtain a finite Erdős number, one has to co-author a paper with someone
who has a finite Erdős number. The Erdős number of an author is k+1 if the
lowest Erdős number of his co-authors is k. It is easy to prove that the Erdős
number of an author is the length of the shortest path from himself to Erdős
in the co-authorship network of science, where two scientists are connected
by an edge if they have collaborated in at least one published scientific paper.

A peculiar property of the distribution of Erdős numbers is that amongst
all working mathematicians up to the turn of the millenium having finite
Erdős numbers (roughly 268 000 people), the largest one (the diameter of the
network) was only 13 and the mean was 4.65 [50]. Even scientists apparently
completely unrelated to mathematics occasionally have surprisingly small
Erdős numbers. For instance, Steven Brams (a political scientist) has an
Erdős number 2. A large fraction of the genetics community also has a
low average Erdős number due to a joint paper between the geneticist Eric
Lander and the mathematician Daniel Kleitman [101]. These authors can be
considered as bridges between distinct scientific fields, shrinking the diameter
of the graph effectively. I will return to bridge vertices later in Chapter 3.

This so-called small world phenomenon, characterized by low average
path length and small diameter compared to the number of vertices, is abun-
dant in many real-world networks. One may argue that the scientific co-
authorship network is an artificial network constructed by mathematicians
who had too much spare time, therefore I cite a more realistic example: the
Internet. According to recent Internet maps constructed by traceroute-style
path probes [18], the diameter of the Internet on its router level was only 43
in June 2006, despite the fact that this network contained 222 935 routers
and 279 511 undirected connections. The phenomenon is even more pro-

5

nounced in the case of the World Wide Web: although there are millions of
web pages in the World Wide Web, two randomly chosen web pages are only
19 clicks away from each other on average [4].

The first written appearance of the small world phenomenon is probably
in the 1929 short story of the Hungarian writer Frigyes Karinthy, entitled
Chains (Láncszemek in Hungarian) [60]. Karinthy believed that due to ad-
vances in communication and travel in the early 20th century, the density
of the acquaintance network among human beings is increasing, making the
social distance between people smaller and smaller. He writes:

A fascinating game grew out of this discussion. One of us sug-
gested performing the following experiment to prove that the pop-
ulation of the Earth is closer together now than they have ever
been before. We should select any person from the 1.5 billion
inhabitants of the Earth – anyone, anywhere at all. He bet us
that, using no more than five individuals, one of whom is a per-
sonal acquaintance, he could contact the selected individual using
nothing except the network of personal acquaintances.2

One of the first scientific descriptions of the small world phenomenon is
in the famous paper of Milgram [80]. He experimented with sending a packet
from one individual in the United States to another one by forwarding the
packet only to close acquaintances step by step. Using the results of these
experiments, he estimated the expected number of “handshakes” needed to
get from an arbitrary person to another one. This number was six, which is
very small compared to the whole population of the United States. On the
other hand, it is a well-known fact in sociology that given three individuals
A, B and C, the connections A ↔ B and B ↔ C are precursors of a con-
nection between A and C. Pure random Erdős-Rényi networks do not show
the latter property at all (since edges were placed independently), so a new
model had to be introduced which maintains the short average path length
of Erdős-Rényi networks while possessing the above mentioned clustering of
connections. The model of Watts and Strogatz [130] provided a possible
explanatory mechanism as follows:

1. Let the vertices of the network be placed on a regular lattice.

2. For each edge, disconnect one of its endpoints with probability p and
connect it to a uniformly chosen vertex, disallowing loop and multiple
edges.

2Translated by Ádám Makkai and Enikő Jankó.

6

(a) p=0 (b) p=0.2 (c) p=1

Figure 1.2: A comparison of regular lattices (a), Watts-Strogatz small world
networks (b) and Erdős-Rényi random graphs (c)

In the context of social networks, the connections of the original, regular
lattice represent our social circle (people who we meet regularly), and the
random connections model the fact that new social ties are formed randomly
with people who are not parts of our social circle. As p increases, the average
path length decreases rapidly, and in the limit of an infinite network, the
average path length scales only logarithmically with the size of the network.
Informally speaking, we can say that p controls the amount of randomness
in the model: p = 0 results in a highly structured, regular network while
p = 1 rewires every edge, making it practically equivalent to an Erdős-Rényi
random graph. This is illustrated on Fig. 1.2.

1.2.3 Scale-free networks and the principle of prefer-
ential attachment

Real networks usually differ in at least one more property from Erdős-Rényi
networks: the degree distribution. It is straightforward that the degrees
in an Erdős-Rényi network generated by the Gn,p model follow a binomial
distribution B(n, p) (or Pois(np) in the infinite limit), since every vertex has
n independent chance to form connections with other vertices, and each trial
succeeds with probability p. Informally, this means that most vertices have
a degree around np; there might be small deviations, but it is extremely
unlikely to find a vertex whose degree is, say, a hundred times as much as
the average.

Now, take the citation network of scientific papers as an example. In
this network, papers are represented by vertices and a directed edge points
from paper A to paper B if A cites B. Everyone who has ever done research
work and has written scientific papers knows from experience that most of

7

the papers are never cited (their in-degree is zero), or maybe only a couple
of times, while a small fraction of papers are cited all the time, even decades
after their publication [81, 106]. Therefore, the degree distribution of such
a network cannot follow a Poisson distribution. A more appropriate model
is a power-law or Yule–Simon distribution [115]: the probability of a vertex
having degree k is proportional to k−γ, where γ is usually between 2 and 3
(see Figure 1.3 for the comparison of Poisson and power-law distributions).
A possible explanation of the phenomenon was given by Price [107], based
on two simple assumptions:

1. The network is growing : vertices are added one by one and each vertex
connects to m already added vertices right after its birth. No new
connections are initiated by the vertex afterwards.

2. The probability of a vertex receiving a new connection from newcomers
is proportional to the degree of the vertex. This is the “rich gets richer”
principle: the more incoming edges a vertex has, the more likely it is to
get another incoming edge. Newly added vertices prefer those vertices
that already have a lot of connections.

The principle was popularised years later by Barabási and Albert [7] under
the name of preferential attachment. It was shown by Dorogovtsev et al.
[32] that the model generates networks with power-law degree distributions
(γ = 3). Since then, several other alternative models have been proposed
that similarly give rise to power-law degree distributions (e.g., [67, 71, 103]).

Networks having a power-law degree distribution are often called scale-
free networks, since f(ck) ∝ f(k) for any c > 0, where f(k) is the probability
density function of the degree distribution. In other words, scaling k does
not change the shape of the probability density function.

A key difference between Erdős-Rényi and scale-free networks is that ver-
tices of an Erdős-Rényi random graph have a “typical” mean degree and we
cannot expect large deviations from that. In contrast, the degree distribution
of scale-free networks implies the existence of vertices that have significantly
larger degree than the mean degree of the network. These vertices are called
the hubs of the network, and they are responsible for the low diameter, since
any vertex chosen arbitrarily will almost surely have a hub in its proximity.
At the same time, hubs are the Achilles heels of the network, since an attacker
who is able to systematically delete the hubs can quickly break the network
into small, isolated components. This disadvantage is counterbalanced by the
fact that random vertex deletions (random failures in the network) hardly
affect the overall connectivity of a network, since a randomly selected vertex
is likely to have a low degree. That is a possible explanation to why the

8

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
fr

eq
ue

nc
y

Degree

(a) Erdős-Rényi networks

10-6
10-5
10-4
10-3
10-2
10-1
100

100 101 102 103 104

R
el

at
iv

e
fr

eq
ue

nc
y

Degree

(b) Preferential attachment

Figure 1.3: The comparison of the degree distribution of Erdős-Rényi Gn,p graphs
(n = 106, p = 2 × 10−5) and networks generated by the preferential attachment
model of Barabási and Albert (n = 107, m = 1) [7]. The plot on panel (b) has a
log-log scale.

Internet works well in spite of the fact that at any given moment there are
several routers turned off due to failure, and why it is vulnerable to attacks
targeted at the Internet backbone or the root DNS servers.

Finally, I note that scale-free degree distributions and small world proper-
ties are usually meaningful only in the context of large networks; one can not
say that a network with only a few hundred or thousand vertices possesses
such properties. The number of vertices in networks studied in this disserta-
tion is not in the order of magnitude where it is possible to meaningfully talk
about scale-free or small world properties; however, the overview of network
science given in this introductory chapter would not have been complete
without mentioning these concepts. Results presented in this dissertation
presume neither small world properties nor scale-free degree distributions.

1.2.4 Community structure

The last peculiar feature of real-world networks I will discuss here is the exis-
tence of densely connected subgraphs (communities or clusters) in otherwise
sparse networks [46]. This is a feature that is reproduced by the model of
Leskovec et al. [71], along with the now well-known power-law degree distri-
bution and a small diameter that shrinks as the network grows. A typical
network with strong community structure is shown on Figure 1.4.

Community detection was one of the most studied problems in network
theory during the last few years. Many algorithms have been proposed based

9

Figure 1.4: The social network of the academic staff of a faculty at a UK uni-
versity [92]. Vertex shapes denote the school affiliations of the staff, vertex colors
represent the communities detected by the algorithm of Latapy and Pons [69].

on simple graph-theoretic concepts like edge betweenness [46] and cliques
[102], physical analogies [108], eigenvectors of different matrices [17, 96],
random walks [69, 124] and the heuristic optimisation of a measure called
modularity [27, 94, 127]. The problem of community detection is too complex
to be treated properly in such a short overview as this section, so I will only
discuss the concept of modularity, which will be needed later in Chapter 3.

Most community detection algorithms calculate a partition of the vertices
in the network. Intuitively, a good partition is one that maximises intra-
community edge density and minimises the number of edges going between
communities. This intuitive definition should be treated carefully, though: a
trivial partition that puts all vertices in the same community would attain
the smallest possible inter-cluster edge density, but we still do not consider
it a good partition. The reason why we think that the trivial partition is
not meaningful is that we would be able to attain the same intra-cluster
and inter-cluster edge densities with this partition even in the case when
the edges are placed completely randomly among the same vertices. A more
precise statement would be that a good partition puts more edges inside the
clusters than what we would expect from the same partition if the edges were
randomly rewired while keeping the degree distribution, and likewise, it puts

10

less edges between the clusters than the expectation under the assumption
of complete randomness.

A random graph model (called the configuration model) that is able to
generate uncorrelated networks conditioned on a predefined degree distri-
bution was depicted by Molloy and Reed [82]. It can be shown that given
a degree sequence s0, s1, s2, . . . (where si represents the number of vertices
with degree i), the probability of an edge between vertices of degree i and j
is ij/

∑∞
k=0 ksk if the network is uncorrelated. The denominator is exactly

twice the number of edges m. The modularity score of a given partition is
then the sum of difference between the observed (zero or one in the case of
simple graphs) and the expected number of edges (as calculated from the
configuration model) for all intra-cluster vertex pairs, divided by 2m to nor-
malise the measure:

Q =
1

2m

n∑
i=1

n∑
j=1

(
Aij −

didj

2m

)
δij (1.1)

where Aij is 1 if there is an edge between vertices i and j; zero otherwise. di

and dj are the degrees of vertex i and j, respectively. δij is 1 if vertices i and
j are in the same community according to the partition being assessed; zero
otherwise. Several community detection algorithms strive to maximise the
modularity of the obtained partition [27, 94, 98, 127]. According to Newman
[94], a modularity score larger than 0.3 indicates the presence of a strong
community structure in the network.

Note that the modularity score is not the property of the network, it
corresponds to a given partition of the network, and in general it is hard to
compute the exact partition that maximises modularity.3 E.g., the network
on Figure 1.4 with the partition defined by the colors of the vertices has
modularity 0.4317, while the partition defined by the shapes has modularity
0.4259.

A relatively new result is that many complex networks show an over-
lapping community structure [102]. Therefore, it is presumed that a more
accurate description can be obtained by allowing vertices to belong to mul-
tiple groups at the same time. The development of algorithms that are able
to handle this situation is an open problem in the field of network research
at present (see [17, 92, 102, 108, 135] for possible solutions). The problem of
overlapping communities will be treated in detail in Chapter 3.

3A different modularity measure was introduced in [138] that is independent from a
given partition and assesses the network as a whole.

11

1.3 Further reading

Additional introductory material to network theory is to be found in the
popular books of Buchanan [15], Barabási [6] and Watts [129]. The reviews
of Albert and Barabási [3], Dorogovtsev and Mendes [31], Newman [93] and
Boccaletti et al. [11] dive more into the technical details. The textbook of
Bollobás [12] is a comprehensive overview of the theory of random graphs.
An excellent collection of related papers is published in [98].

12

2
Link prediction in complex
networks

D
epending on the way a network model of a real-world dataset is
devised, the network may be complete or incomplete. For instance,
a scientific co-authorship network generated automatically from the

database of a preprint archive (e.g., Cornell University Library’s arXiv ser-
vice at http://arxiv.org) is usually complete (see [95, 97] for analyses on
scientific co-authorship networks), since the underlying dataset is clear-cut
and it is easy to tell whether two vertices are connected or not. On the other
hand, network models arising from the field of biology (such as metabolic net-
works of organisms [57], protein interaction networks [58] or cortical networks
[86]) can be incomplete. For example, the existence of a neural connection
between two brain areas in a cortical network can only be decided by check-
ing it experimentally, but such experiments are usually expensive, and some
connections are extremely hard to examine due to methodological difficul-
ties. Complications like this arise not only in biological datasets: the map of
the Internet reconstructed from traceroute-style path probes [18] is also sub-

Related publications:
Nepusz T., Négyessy L., Tusnády G., Bazsó F.: Reconstructing cortical networks: case of
directed graphs with high level of reciprocity. In Béla Bollobás, Róbert Kozma, and Dezső
Miklós, editors, Handbook of Large-Scale Random Graph Methods, volume 18 of Bolyai
Society Mathematical Studies. Springer, 2008. ISBN 978-3-540-69394-9.
Nepusz T., Bazsó F.: Maximum likelihood methods for data mining in datasets repre-
sented by graphs. In: IEEE Proceedings of the 5th International Symposium on Intelligent
Systems and Informatics, Subotica, Serbia, 24-25 August 2007, pp. 161-165.
Nepusz T., Bazsó F.: Likelihood-based clustering of directed graphs. In: IEEE Proceed-
ings of the 3rd International Symposium on Computational Intelligence and Intelligent
Informatics, Agadir, Morocco, 28-30 March 2007, pp. 189-194.

13

http://arxiv.org

ject to missing data. Existing wired links might never appear on the map if
the traceroute probe packets are never routed through them, and even com-
plete subnetworks can conceal themselves by (accidentally or deliberately)
discarding ICMP echo packets.

In this chapter, I discuss the problem of predicting previously unknown
links in complex networks. The motivation of this research direction was a
study on cortical networks [91] for which I needed an algorithm that is able to
draw inferences about missing links in a network from known link patterns.
The results of this specific study will be briefly discussed later in Section 4.1,
this chapter deals only with the methodological issues.

From now on, I will assume that we study a network with the following
properties:

1. All vertices of the network are known, or if they are not, unknown
vertices and their connections are not relevant.

2. The connections of the network can be classified as follows:

Known existing connections. These connections have been explic-
itly checked and confirmed.

Known nonexisting connections. These connections have been ex-
plicitly checked and found to be nonexistent.

Unknown connections. These connections have never been checked,
they might exist or they might be missing. Sometimes we have
some a priori information or assumption about the probability of
their existence. For instance, in cortical networks, it is accepted
that connections are sparse between the visual and the sensorimo-
tor cortex, therefore even if we know nothing about the specific
connections between visual and sensorimotor areas, we can assume
that roughly 10% of those connections exist, therefore the prob-
ability of existence for any individual connection between these
two cortices is approximately 0.1.

My primary aim was to construct a method that is able to give meaning-
ful predictions regarding the unknown connections. The validity of such a
method can be tested by checking its predictions on the known connections.
A secondary aim was to assign a confidence index to the predictions. I also
wanted to keep the method as general and as widely applicable as possible,
therefore I refrained from incorporating assumptions into the model if they
were likely to hold only for a small subclass of the broad family of complex
networks.

14

This chapter is organised as follows: first, a brief overview of generic
prediction approaches is given. After that, a stochastic graph model is in-
troduced and algorithms are given to fit the parameters of the model to the
specific network whose unknown edges we are trying to predict. Benchmark
results will be presented to illustrate the validity of the fitting algorithm.
Finally, I will discuss how can one utilise the model in order to obtain mean-
ingful predictions.

2.1 Overview

Link prediction is a relatively new field of research in network science. Some
early experiments in cortical networks date back to the late 90’s (e.g., [59]).
The work of Liben-Nowell and Kleinberg [74] was one of the first papers that
tried to evaluate a set of different similarity measures between vertices of
a network in order to find the ones that predict unknown edges with high
confidence. These measures can roughly be classified as (1) local similar-
ity indices and (2) complex measures based on path ensembles and random
walks. The key idea of link prediction based on these measures is very simple:
two vertices tend to connect if they are similar according to a measure or a
combination of some measures, and the task is to find which measure(s) give
good results.

One can also derive similarity measures based on additional domain-
specific knowledge. A good example of this strategy is presented in the paper
of da Fontoura Costa et al. [25], where predictions on the cortical network
made use of information like the spatial position of the different brain areas.

There is also a third approach one can take: by choosing an appropriate
probabilistic network model and appropriately fitting the model parameters
to the network instance being studied, one can evaluate the probabilities of
the existence of unknown edges according to the model. These basic ideas
will be discussed in the upcoming three subsections.

2.1.1 Prediction by local similarity indices

These indices try to capture the essence of vertex similarity by considering
some local, easily computable properties of the vertices. The most widely
used property is the set of neighbours Γ(x) of a given vertex x; in fact, all
the indices described in this section make use of this property. In the case of
directed networks, one can also use the set of predecessors Γ+(x) and the set
of successors Γ−(x). For a given pair of vertices x and y, the most common
local similarity indices are as follows:

15

Number of common neighbors. This is simply defined as |Γ(x) ∩ Γ(y)|.

Cocitation index [116]. A variant of the previous measure for directed
networks, defined as |Γ+(x) ∩ Γ+(y)|. Intuitively, if the vertices are
books or scientific papers and an edge goes from A to B if A cites B,
the cocitation index of x and y is the number of other papers citing
both of them.

Bibliographic coupling [63]. The opposite of the cocitation index, de-
fined as |Γ−(x) ∩ Γ−(y)|. In other words, the bibliographic coupling
of two papers is the number of papers they both cite.

Jaccard coefficient [54]. This is defined as |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|, the
number of common neighbors divided by the number of vertices that
are adjacent to at least one of the vertices considered.

Cosine similarity. A common similarity used in text mining. Cosine simi-
larity works with binary vectors, the i-th element of x is 1 if i ∈ Γ(x),
0 otherwise. The definition is as follows: θ(x, y) = xy

||x||·||y|| . Us-
ing the standard Euclidean vector norm, this can be reformulated as
θ(x, y) = |Γ(x) ∩ Γ(y)|/

√
dxdy where dx and dy are the degrees of the

respective vertices. The measure can also be defined for only successors
or predecessors in directed networks.

Adamic–Adar similarity measure [1]. Defined as
∑

z∈Γ(x)∩Γ(y) 1/ log |Γ(z)|,
this measure evaluates the degrees of the common neighbours of x and y
and penalises high degree neighbours, as a vertex with high degree has
a higher chance to be in the common neighbourhood of other vertices
anyway. In other words, the fact that me and someone else both know
who Albert Einstein is does not tell an independent observer anything
meaningful about the similarity of me and that other person. On the
other hand, the fact that we both know the lead guitarist of the local
rock band implies a higher degree of similarity between us (e.g., that
we both live in the same area and we are both keen on rock music).

These measures are easy to calculate and are still powerful enough to
be used in predicting unknown connections. However, one should take into
account that these methods treat all unknown connections as nonexistent.
This approach is valid in cases when the network is dynamic and one would
like to extrapolate to the future of the network based on the past and present
(e.g., answering such questions like “which scientists are likely to publish a
joint paper in the near future, given their existing publication records”),
but may fail in the static case, as it will be illustrated in Section 4.1. A

16

recent data mining survey on telephone call networks utilising this approach
is presented in [68], which also contains a more detailed discussion of local
similarity measures.

2.1.2 Prediction by path ensembles and random walks

These measures derive vertex similarity from paths and random walks be-
tween two given vertices x and y. They are often computationally expensive,
and surprisingly enough, the additional complexity does not always pay off,
since similar predictive power can be achieved with simpler methods as well
(see [74] for a comparison on scientific co-authorship networks).

Katz similarity score [62]. This score simply takes all possible paths be-
tween vertices x and y. Since the number of paths between any two
vertices can theoretically be infinite (edge and vertex repetitions are
allowed), the weight of a path is exponentially damped by its length.
The sum of the path weights consitutes the Katz similarity score:∑∞

k=1 βk|P 〈k〉
x,y |, where 0 < β < 1 is an arbitrary parameter and P

〈k〉
x,y

is the set of all paths of length k between x and y. It can be shown
that the equation above can be reformulated as (I− βA)−1 − I, where
A is the adjacency matrix of the graph and I is the identity matrix.

Hitting time, commute time. Consider a random walk starting from x
which follows the outgoing edges of the current vertex with equal prob-
ability. The hitting time Hx,y is then defined as the expected number
of steps required for a random walk to reach y from x. Since the hit-
ting time is not symmetric for directed graphs, one can also consider
the return time Hx,y + Hy,x, which is the expected number of steps
required to start from x, visit y at least once and then return to x.
Both the hitting time and the return time are large when the vertices
are dissimilar, so one should use their inverse as a similarity measure.

Personalised PageRank [14, 41, 56]. A variant of the PageRank mea-
sure used in the Google search engine. The personalised PageRank
considers a random walk starting from x which follows one of the out-
going edges with probability λ or returns to x with probability 1 − λ.
The personalised PageRank measure of x and y is then the probability
of y in the stationary distribution of this random walk.

SimRank [55]. This measure is defined recursively: two vertices are similar
if they are referenced by similar predecessors. Formally, the similarity

17

of two vertices is the average similarity of all possible predecessor pairs,
multiplied by a damping factor γ ∈ [0, 1]:

SimRank(x, y) = γ

∑
a∈Γ+(x)

∑
b∈Γ+(y) SimRank(a, b)

d+
x d+

y

(2.1)

This recursive definition is then solved by a fixed point iteration in
order to obtain the SimRank values, under the trivial constraint that
SimRank(x, x) = 1. An alternative definition of SimRank is that it is
the expected value of γL, where L is a random variable giving the time
when two random walks started from x and y meet for the first time.

2.1.3 Prediction based on stochastic network models

All the methods described so far treat unknown connections as nonexistent,
therefore it is complicated to incorporate our a priori beliefs about the prob-
ability of a given unknown connection into these measures; e.g., how should
we consider a path of length 2 between x and y in the Katz similarity score
when one of the edges in this path has a probability of only 0.3? A better ap-
proach in this case is to consider an appropriate random stochastic network
model and let the probability of an edge between x and y in this model be the
similarity of x and y. This approach assumes nothing more and nothing less
than the previous methods, the only assumption is that an existence of an
edge implies similarity of the endpoints and vice versa. The interesting part
is then to find a model that describes the network appropriately and in case
of a parameterised model, estimate the parameters in a way that maximises
the likelihood of the model, given the network observed.

A typical example of this method is given in the paper of Clauset et al.
[22]. Their model builds the network in a bottom-up hierarchical fashion. Ini-
tially, every vertex belongs to a single isolated group. In step i, two groups
are selected randomly with equal probability and edges between groups are
generated independently with probability pi. Note that at this point, the
edges inside the groups being joined are already generated in earlier steps.
The process stops when there are no more groups to join. The model is
parametrized by the number of vertices n, the probabilities p1, p2, . . . , pn−1

and the order of groups in which they are joined. Markov chain Monte Carlo
methods are then utilised to find the best fit of this model to a given net-
work. Finally, edges are classified according to their presence in the original
network and their respective probabilities in the fitted model. Edges of pri-
mary interest are those that are present in the original network but have low
probability in the fitted model (since the presence of these edges cannot be

18

explained by the model) or the opposite (since these edges are presumed to
be existent if the model is a good description of the network).

In the following sections, I will introduce a model similar to that of
Clauset et al. [22]. The difference is that the model presented here is not
hierarchical; vertices are assigned to groups instead and the connection prob-
ability of the vertices are governed by their group affiliations and a predefined
preference matrix.

2.2 The model framework

2.2.1 Formal description

I consider a generic non-growing network model where n vertices are initially
assigned to one of k possible vertex types, denoted by integers from the
interval [1, k] [88, 89]. Let us assume that the vertices are indexed by integers
from [1, n]. Let ui denote the type of vertex i. Vertices are connected to each
other randomly, but the connectional probability of vertices i and j is a
function of ui and uj, determined by a preference matrix P which has k rows
and k columns. More precisely, let there be a discrete random variable with
probability distribution such that:

P(T = i) =

{
ti i = 1, 2, . . . , k
0 otherwise

(2.2)

The ti values are usually arranged in a column vector T = [t1, t2, . . . , tk]
T .

Moreover, let there be a matrix P = [pij] called the preference matrix, having
k rows and k columns. The matrix must be symmetric if we are generating
an undirected graph. A graph according to this preference model can be
constructed as follows:

1. Consider an empty graph with n vertices.

2. Assign a vertex type to each vertex drawn from the discrete probability
distribution defined by T.

3. For each (directed or undirected) pair of vertices i and j, add an edge
between them with probability pui,uj

Graphs generated by this model will be denoted by GPref(n, k, t,P) from
now on. See Algorithm 2 for the formal description in pseudo-code.

One may note the similarity of Algorithms 1 and 2; in fact, the two algo-
rithms are completely equivalent for k = 1, and the model simply generates

19

Algorithm 2 Generating graphs according to the preference model

Require: T , n ≥ 0, k ≥ 1 and 0 ≤ pij ≤ 1 for all 1 ≤ i, j ≤ k
1: G := empty graph with n vertices
2: for i = 1 to n do
3: ui := random integer drawn from T
4: end for
5: for all {v1, v2} ∈ V (G)× V (G) do
6: q := random number between 0 and 1, inclusive
7: if q ≤ pui,uj

then
8: E(G) := E(G) ∪ {vi, vj}
9: end if

10: end for
11: return G

an Erdős-Rényi graph according to the Gn,p model in this case. However,
things get more complicated when k is larger than 1, and as we will see, a
wide variety of networks can be approximated after appropriate parameter-
isation of this model. Some example networks generated by the model are
shown on Figure 2.1.

Relationship with Szemerédi’s Regularity Lemma

Readers who are familiar with extremal graph theory may have noted the
vague similarity of the preference model with the idea of ε-regular partitions
and the famous regularity lemma of Endre Szemerédi [64, 120, 121]. Loosely
speaking, the lemma states that the vertex set of every graph which is large
enough can be partitioned into a given number of classes such that almost
every pair of classes are ε-regular. A pair of classes Vi and Vj are said to be
ε-regular if for all subsets X ⊆ Vi, |X| ≥ ε|Vi| and Y ⊆ Vj, |Y | ≥ ε|Vj|, it
holds that |d(Vi, Vj) − d(X, Y)| < ε, where d(X, Y) is the number of edges
connecting X and Y , divided by |X||Y |. For a more rigorous description of
the lemma, see [120] or [64].

An intuitive explanation of the lemma can be given as follows: a graph
that is large enough can be partitioned into subsets of vertices such that every
vertex belongs to exactly one of the subsets and the edges between any two
subsets can be described adequately with a single number: the edge density
between the subsets. This holds due to the ε-regularity of the partition:
given any sufficiently large subsets X and Y of vertex sets Vi and Vj, the
actual edge density between X and Y does not differ too much from the
edge density between Vi and Vj. The analogy with the preference model

20

(a) p11 = p22 = 0.2, p12 = p21 = 0.02 (b) p11 = p22 = 0, p12 = p21 = 0.1

Figure 2.1: A clustered (left) and a bipartite network (right) generated by the
preference model. Colors correspond to vertex types, n = 50, k = 2, t1 = t2 = 0.5
in both cases.

is then straightforward: vertex types of the preference model correspond
to the subsets defined by the partition whose existence is guaranteed by
the regularity lemma, while the probability matrix (apart from its diagonal)
describes the edge densities. The preference model can be thought of as an
approximation of an ε-regular partition in finite and relatively small graphs,
although this likeness should be handled with care. In particular, the term
“generalised random graph” appearing in [64] denotes a graph model that is
practically identical to the preference model described in Section 2.2.1.

Unfortunately, the lemma is an asymptotical and existential statement:
it holds only for very large graphs, and it does not provide us with an al-
gorithm that finds an ε-regular partition in an arbitrary graph.1 However,
me and my colleagues had the general idea of the regularity lemma (i.e. the
probabilistic description of edges between vertex groups) in our minds when
we first started considering the preference model as a tool for missing link
prediction in complex networks.

2.2.2 Extended preference model

To allow for greater generality among the networks generated by this model,
one can consider the following generalization of the preference model which
always generates directed graphs and allows vertices to behave differently
depending on their role in a hypothesized edge (source or target vertex):

1A constructive regularity lemma was given later in [5].

21

1. Consider an empty graph with n vertices.

2. Assign outgoing vertex types (or out-types in short) to each vertex
drawn from the discrete probability distribution defined by T− = [t−,1,
t−,2, . . . , t−,k].

3. Assign incoming vertex types (or in-types in short) to each vertex drawn
from the discrete probability distribution defined by T+ = [t+,1, t+,2,
. . . , t+,k].

4. For each directed pair of vertices i and j, draw an edge between them
with probability pout-type(i),in-type(j).

The rationale behind this extension is that in directed networks, we usu-
ally can not neglect the assumption that the directionality of the edges does
matter (see for example [70] where an excellent example is given to explain
why the directionality of edges may matter in community detection). By as-
signing different in- and out-types to a vertex, the extended preference model
is able to grasp substantial differences between the incoming and outgoing
connectional preferences of that vertex. As I show later in Section 4.1, this
can improve the overall fit of the model in case of directed networks while
also providing important insights regarding the role of specific vertices.

2.3 Basic statistical properties

One of the first questions a network scientist may ask upon encountering a
new network model is probably the following: what is the degree distribution
of the network in the limit of infinite network size? This dissertation follows
the same trail: first, I will analytically derive the limiting degree distribu-
tion, then I will present the results of numerical simulation and discuss the
corollaries of the limit distribution.

2.3.1 Analytical results

Degree distribution

I start by studying the degree distribution of the extended preference model.
First I note that line 7 in Algorithm 2 is a Bernoulli trial with success prob-
ability pui,uj

. Therefore, the number of outgoing edges from a vertex of type
i towards vertices of type j follows a binomial distribution B(ntj, pij) [49].
Let this random variable be denoted by Dij. The total number of edges

22

originating from a vertex of type i (that is, the out-degree, denoted by D−,i)
can then simply be expressed as follows:

D−,i ∼
k∑

j=1

Dij =
k∑

j=1

B(ntj, pij) (2.3)

where k is the number of vertex types. Therefore, the out-degree of a vertex
with type i is a random variable distributed according to a sum of binomially
distributed random variables. The in-degree D+,i is completely identical,
except for the order of i and j in the indices:

D+,i ∼
k∑

j=1

Dji =
k∑

j=1

B(nti, pji) (2.4)

According to the law of total probability, d−,i (the probability of the event
that a random vertex has out-degree i) can be calculated as follows:

d−,i = P(a randomly chosen vertex has out-degree i)

=
k∑

j=1

P(a random vertex of type j has out-degree i)tj

=
k∑

j=1

P(D−,j = i)tj

(2.5)

Let n → ∞ while keeping every npij = zij constant. In the infinite limit,
B(ntj, pij) becomes a Poisson distribution with mean ntjpij. Substituting it
back to (2.3) yields:

D−,i ∼
k∑

j=1

Pois(ntjpij) = Pois

(
k∑

j=1

tjzij

)
= Pois(λ−,i) (2.6)

since Dij’s were independent. Therefore (2.5) can be rewritten as:

d−,i =
k∑

j=1

P(Pois(λ−,j) = i)tj =
k∑

j=1

(λ−,j)
i

i!
e−λ−,j tj (2.7)

Following a similar train of thought, (2.4) becomes:

d+,i =
k∑

j=1

P(Pois(λ+,j) = i)tj =
k∑

j=1

(λ+,j)
i

i!
e−λ+,j tj (2.8)

23

where λ+,i =
∑k

j=1 tjzji.
Note that this approximation is valid only in the infinite limit when the

sum of the binomials tend to a Poisson distribution. In practice, the Poisson
distribution can safely be used in place of a binomial when the probability of
an individual success in the binomial is less than 0.05. Since I assumed that
npij = zij is constant, it follows that as n tends to infinity, pij tends to zero,
therefore it will always attain the point at some n where the approximation
becomes valid.

The degree distribution of the undirected case is derived exactly as I
did above for the directed case, the only difference is that I do not have to
consider incoming and outgoing edges separately. The degree distribution in
the infinite limit is the following:

di =
k∑

j=1

P(Pois(λj) = i)tj =
k∑

j=1

λi
j

i!
e−λj tj (2.9)

where λi =
∑k

j=1 zjpij.
This leads to the following theorem:

Theorem 2.1. Let G0, G1, . . . be an infinite sequence of directed graphs
where Gi is generated according to GPref(ni, k, t,Pi), assuming that ni →∞
while niPi = Zi is constant. The out- and in-degree distributions of G∞ are
then described by Eqs. (2.7) and (2.8), respectively. If the graph is undirected,
the degree distribution is according to Eq. (2.9).

To simplify the formulae, let λ = [λ1, λ2, . . . , λk]
T , λ− = [λ−,1, λ−,2, . . . ,

λ−,k]
T and λ+ = [λ+,1, λ+,2, . . . , λ+,k]

T . This enables us to express the λ
values in a simple and concise vector equation, since λ+ = ZT t and λ− = Zt.
λ can be expressed both ways, for Z is symmetric for undirected graphs.

The next step is to calculate the average number of edges adjacent to a
randomly chosen vertex in G∞.

Theorem 2.2. The average number of edges adjacent to a randomly chosen
vertex in G∞ is tTZt. In the directed case, this is the average number of both
the incoming and outgoing edges.

Proof. The average number of adjacent edges is simply the expected value
of D, the random variable denoting the degree of an individual vertex:

E(D) =
∞∑
i=0

idi =
∞∑
i=0

i

(
k∑

j=1

λi
j

i!
e−λj tj

)
=

k∑
j=1

tj

∞∑
i=0

i
λi

j

i!
e−λj =

k∑
j=1

tjE(Pois(λj)) =
k∑

j=1

tjλj = tT λ = tTZt

(2.10)

24

The procedure is the same for the expected value of D+ or D− and it
immediately follows that E(D+) = E(D−): the expected number of incoming
and outgoing edges of a vertex is equal, even though their distribution is
different.

Naturally, all the results presented here apply only for the average be-
haviour of large networks. The reason is twofold: first, it is not really mean-
ingful to talk about the degree distribution of a network with only a few
thousand vertices (especially if we only have a single instance of the network),
second, the approximation of binomial distributions with Poisson distribu-
tions hold only if n →∞.

A simple corollary: the giant component

In this subsection, I only examine the undirected preference model.
This model, like many others, exhibits an interesting phenomenon as we

gradually increase the connection probabilities in the preference matrix. In
an Erdős-Rényi random graph, the average component size in the case of np <
1 is finite, while a so-called giant component emerges when np > 1. The size
of this component is in the order of the number of vertices in the whole graph,
meaning that as the number of vertices in the network approach infinity, so
does the size of the giant component (but not the others). np = 1 is called the
critical point where this phase transition occurs and the initially disconnected
small components join to form the giant component. The corollary is that
this type of phase transition will also occur in the preference model, since
the subgraph spanned by vertices of type i is always an Erdős-Rényi graph
with nti vertices and connection probability pii. I will show that a similar
threshold exists for subgraphs consisting of edges between vertices of type i
and j as well and derive a sufficient (but by no means necessary) condition
for the existence of a giant component.

Theorem 2.3. G∞ contains a giant component if maxi,j npij
√

titj > 1.

Proof. I distinguish two cases:

1. There exists i such that ntipii > 1. Consider the subgraph consisting of
the vertices of type i and the edges that originate from and terminate
in those vertices. This subgraph is an Erdős-Rényi graph with nti ver-
tices. ntipii > 1 implies that the subgraph contains a giant component,
therefore G∞ also contains a giant component.

2. There exists i and j such that i 6= j and n
√

titjpij > 1. Consider the
subgraph that consists of vertices of type i and j and the edges that

25

go between these vertices and their endpoints correspond to different
vertex types. This is a random bipartite graph where pairs of vertices
are connected with probability pij. Let us introduce a branching pro-
cess on the vertices of the subgraph, starting from a randomly chosen
vertex (generation 0). The first generation of the branching process
contains the first-order neighbours of the root vertex, the second gen-
eration contains the second-order neighbours and so on. Assume that
the root vertex is of type i and let mx denote the number of vertices
up to and including generation x. Note that all children of a vertex
of type i will be of type j and vice versa. The expected number of
children of a vertex in generation x follows a binomial distribution
B(ntj −mx, pij) if x is odd and B(nti −mx, pij) if x is even, since we
are not interested in edges that link back to earlier generations. When
n is large compared to mx, these distributions can be approximated
with B(ntj, pij) and B(nti, pij), respectively. The expected number of
children is therefore ntjpij in odd generations and ntipij in even gen-
erations. To obtain a branching process whose branching distribution
is equal for all generations, generation 2k can be merged with gener-
ation 2k + 1 for all k ≥ 0. The expected number of children in each
generation in the merged process is n2p2

ijtitj. The branching process
terminates in ultimate extinction with probability 1 when n2p2

ijtitj < 1,
resulting in a finite component that does not scale as n while n tends
to infinity. On the other hand, npij

√
titj > 1 implies the existence of a

giant component in this specific subgraph, therefore G∞ also contains
a giant component.

It can not be stressed enough that the conditions presented above are
sufficient but not necessary for the existence of a giant component. As an
example, one can consider a preference matrix where the elements in the
main diagonal are only slightly below the critical threshold and all other
elements of the preference matrix are zeros. This graph does not contain a
giant component. However, only a slight increase in the off-diagonal entries is
usually sufficient to connect the otherwise disconnected subgraphs and form
a component whose size is comparable to the size of the whole network.

2.3.2 Numerical simulations

To test the validity of the theoretical degree distribution presented above, I
conducted numerical simulations using the igraph library [24]. Instances of
the preference model were generated with n = 2× 104 vertices. k was drawn
from U(2, 20), the uniform distribution. Vertex type probabilities were cho-

26

-50
 0

 50
 100
 150
 200
 250
 300
 350

 0 50 100 150 200 250

Fr
eq

ue
nc

y

Degree

Observed
Expected

(a) Degree distribution

P =


2 2 2 2
2 2 6 6
2 6 4 12
2 6 12 12

×10−3

n = 2× 104, k = 4

ti = 0.25

λ = [40, 80, 120, 160]
(b) Parameters

Figure 2.2: Expected and observed degree distribution of a random graph ac-
cording to the undirected preference model

sen from a k-dimensional Dirichlet distribution with parameters (1, 1, . . . , 1),
Elements of the preference matrix were drawn from U(0, m), m ≤ 1. m was
chosen appropriately to obtain a graph that fits entirely in RAM (typically,
m had to be lowered for n � 104). The in- and out-degree distributions of
the generated graphs were averaged over 100 instantiations using the same
parameter set and then compared to the expected distributions as derived
in Section 2.3.1 using the χ2 goodness of fit statistic.2 P-values were larger
than 0.98 in all cases.

Results of a single test run are shown on Figure 2.2. For this specific
example, the value of the χ2 statistic was 7.9148 with 170 degrees of freedom,
resulting in p = 1.000. Although the χ2 test in general is only used to rule out
a specific null hypothesis, the almost perfect match between the observed and
expected distributions (see Figure 2.2) and the high p-value together confirm
the analytical calculations.

2.4 Fitting the model to data

We invent models not only for their own beauty. Good models are simpli-
fied descriptions of real-world phenomena; simple enough to be studied, yet
complex enough to help us gain new insights into the driving forces behind
a specific phenomenon. The first step in this trail is to fit the model to
some dataset we obtained while studying the phenomenon. Since I exam-
ine a graph model, I assume that this data can readily be converted into a

2When applying the χ2 test, neighboring bins with less than 10 observations were joined
together to justify the χ2-approximation used in this test.

27

directed or undirected graph.
In this section, the real-world dataset is denoted by G0(V0, E0), while

G(V, E) denotes the graph of the fitted extended preference model. The
dataset can be imprecise in the sense that the existence of some edges may
be unknown (but the number of vertices is always known in advance). The
elements of the belief matrix B = [bij] contain our degree of belief in the
existence of the edges: bij = 0 if we are absolutely certain that the edge from
vertex i to j is nonexistent and bij = 1 if we know for sure that the edge
exists. Intermittent bij values describe uncertainties, so from a probabilistic
point of view, bij values are the a priori probabilities of the edges. It is also
possible that there are some unknown edges for which we cannot come up
with a reasonable a priori probability due to lack of information. In this
case it is safe to set bij to 1/2, for it will have the same effect on the goal
function (see Section 2.4.1) as the complete exclusion of that edge, apart
from a constant offset in the value of the goal function. Note that a binary
B matrix consisting entirely of zeros and ones, which occurs when there are
no uncertain parts in the data, coincides with the adjacency matrix of the
graph we are studying.

Parameters of the fitted model will be denoted by n (the number of ver-
tices), k (the number of in- and out-groups) and P (the preference matrix).
To allow for reasoning about the properties of the individual vertices, we will
be interested not only in the type distribution of the model, but in the actual
type assignments of the vertices as well. Therefore, the type assignments ui

and vi (or simply u and v in vector form) will be parameters in the fitting
process instead of the type distribution T− and T+, respectively. n does not
have to be estimated, for the fitted model must contain exactly the same
number of vertices as the dataset. The set of parameters to be estimated will
be denoted by θ = (k,u,v,P).

The fitting methods described here work perfectly with the simple prefer-
ence model as well with some minor modifications. The methods are iterative,
and the value of the parameters or the graph itself in the i-th iteration is
denoted by an upper index (i) (e.g., G(i), P(i) and so on).

2.4.1 The goal function for model fitting

No matter what specific algorithm we choose for fitting the preference model,
we need a measure that quantifies the fitness of a particular model parame-
terisation θ with respect to the data being fitted. The measure I will use from
now on as a goal function is the likelihood of the model parameterisation,
given the known data. Informally, the likelihood of the parameterisation
is the probability of the event that the parameterised model generates the

28

dataset. In case of the extended preference model, the likelihood is given by:

L(θ|G0) =
n∏

i=1

n∏
j=1
j 6=i

(
bijpui,vj

+ (1− bij)(1− pui,vj
)
)

(2.11)

It is straightforward that bij = 1/2 implies that the particular term in the
likelihood corresponding to bij will remain constant, irrespective of ui and
vj, since pui,vj

/2 + (1− pui,vj
)/2 = 1/2.

There exists an equivalent but less intuitive form of the goal function.
Let B denote the set of all bij’s used in the current network: B = ∪n,n

i=1,j=1bij.
Let Eu,v,b be the number of vertex pairs (i, j) where vertex i belongs to out-
group u, vertex j belongs to in-group v and bij = b. The likelihood is then
as follows:

L(θ|G0) =
k∏

u=1

k∏
v=1

∏
b∈B

(bpuv + (1− b)(1− puv))
|Eu,v,b| (2.12)

The equivalence of Eqs. (2.11) and (2.12) follows from the proper rearrange-
ment of terms in Eq. (2.11): since the number of different pui,vj

’s is only k2

(which is significantly less than n2), the product can be calculated by iterat-
ing over the possible bij and pui,vj

combinations instead of iterating over all
vertex pairs. This form will be of use to us in the efficient implementation of
the fitting algorithms. For theoretical calculations, I will use the first form,
as it is easier to understand and to work with.

In practice, the logarithm of the likelihood function is used instead of
the likelihood. Maximising the likelihood is the same as maximising the log-
likelihood (since the logarithm function is strictly increasing), but numeric
calculations involving the log-likelihood do not suffer from accumulated float-
ing point errors as much as direct likelihood calculations. The log-likelihood
is given by:

logL(θ|G0) =
n∑

i=1

n∑
j=1
j 6=i

log
(
bijpui,vj

+ (1− bij)(1− pui,vj
)
)

(2.13)

or equivalently in the alternative form:

logL(θ|G0) =
k∑

u=1

k∑
v=1

∑
b∈B

|Eu,v,b| log
(
bijpui,vj

+ (1− bij)(1− pui,vj
)
)

(2.14)

The idea of the likelihood function as a tool for statistical reasoning dates
back to the paper of Fisher [40], where the method of maximum likelihood is

29

also devised. I also strive for maximising the likelihood, assuming that the
parameterisation that produces the maximum likelihood is a good description
of the known dataset in terms of the extended preference model. However,
the process is more complicated here: the number of parameters in θ depends
on k, and the maximisation of the likelihood can only be done properly by
choosing k first. I will briefly assume that k is known and describe two
methods that can be used to maximise the likelihood. Finally, I return to
the problem of choosing the proper k in Section 2.4.5.

2.4.2 Fitting by expectation-maximisation

The algorithm presented here is a variant of the expectation-maximisation
(EM) algorithm scheme [28]. EM algorithms alternate between two steps
(the expectation (E) and the maximisation (M) step) in order to maximise
the likelihood function. However, there is no guarantee of converging to the
maximum likelihood estimator. In some cases, the EM algorithm gets stuck
in a local maximum, depending on the starting values. Local maxima can
be ruled out by either restarting the algorithm from different starting points
or randomly mutating the parameter set in the local maximum in order to
proceed further.

Starting the algorithm

The algorithm starts in a state where n and k are given in advance, u and
v are chosen randomly (every vertex is assigned to one of k possible in-
and out-types) and P is unspecified yet. The iteration counter t is set to
zero. Theoretically it is possible to assign the vertex types based on some
a priori analysis (e.g., according to the community structure of the network
as detected by some fast heuristic algorithm [21, 69]), but in practice, the
convergence speed of the algorithm is not influenced by the starting state
significantly, so the time spent on calculating a suitable starting state may
as well be spent on the actual optimisation of the likelihood function.

30

The E step

The E step involves calculating the conditional expectation of the log-likelihood
function by considering u and v fixed, given the observed graph:

E(logL(θ(t)|G0)) =
n∑

i=1

n∑
j=1
i6=j

E
(
log
(
bijp

(t)
ui,vj

+ (1− bij)
(
1− p(t)

ui,vj

))
|G0

)

=
n∑

i=1

n∑
j=1
i6=j

log
(
bijE(p(t)

ui,vj
|G0) + (1− bij)

(
1− E(p(t)

ui,vj
|G0)

))
(2.15)

E(pkl|G0) above is the expected probability of the presence of an edge be-
tween vertices of out-type k and vertices of in-type l, given the observed
graph. Since the number of edges between any two groups is binomially dis-
tributed (the existence of each edge is decided by an independent Bernoulli
trial with probability pkl), the expected value of pkl is simply the number of
actual edges going from out-type k to in-type l, divided by the number of
all possible edges. Uncertain edges are taken into account according to their
degrees of belief, resulting in the following estimation of pkl:

p
(t)
kl = E(pkl|G0,u

(t)
+ ,v

(t)
−) =

n,n∑
i=1,j=1

(1− δ(i, j))δ(u
(t)
i , k)δ(v

(t)
j , l)bij

n,n∑
i=1,j=1

(1− δ(i, j))δ(u
(t)
i , k)δ(v

(t)
j , l)

(2.16)

where δ(i, j) is the Kronecker delta function: δ(i, j) = 1 if and only if i = j,
0 otherwise). After the E step, the iteration counter t is increased by one.

The M step

The M step involves the maximisation of the log-likelihood function using the
preference matrix P(t−1) obtained in the previous E step. The new u(t) and
v(t) vectors should be chosen from the space of all possible type assignments
in a way that maximises the likelihood. The space contains k2n possible
assignments, which is exponential in n, rendering the exhaustive search of
the state space practically impossible when n is large. However, Neal and
Hinton [85] showed that it is not necessary to maximise the log-likelihood
in the M step, even some improvement over the previous log-likelihood is
sufficient for the algorithm to converge.

31

The improvement of the log-likelihood in this step is achieved by a dis-
tributed decision mechanism performed by each vertex. Every vertex ob-
serves the current type assignments of other vertices and chooses its own
type assignment in a way that maximises its own contribution to the to-
tal log-likelihood under the assumption that all other vertices retain their
type assignments. This assumption does not hold of course, since all ver-
tices decide about their own type assignment simultaneously. The new type
assignment is stored in u(t) and v(t). To decide whether the log-likelihood
really improved, an E step has to be performed again. The algorithm stops
when it is not possible to improve the log-likelihood any more, which can be
detected by the fact that u

(t)
− = u

(t−1)
− and v

(t)
+ = v

(t−1)
+ .

Termination and evaluation

After several iterations of the E and M steps, the algorithm reaches a con-
sensus situation. This consensus is characterised by the fact that it is not
possible to improve the log-likelihood by changing the type assignment of any
single vertex. (Remember: all vertices base their decision in the M step on
the assumption that no other vertex will change its type assignment!). The-
oretically, it is possible to improve the value of the goal function by changing
several type assignments simultaneously, but evaluating all such possibilities
is computationally expensive. It is therefore suggested to mutate some small
portion of the type assignments and restart the algorithm from the E step a
couple of times in order to climb out from possible local maxima while keep-
ing track of the best parameterisation encountered so far. The algorithm
can safely be terminated when it ends up at the same or worse configura-
tions even after m mutations (m is given in advance). See Algorithm 3 for a
possible pseudo-code description of the procedure.

Finally I note that since the actual type indices assigned to the vertices
have no specific meaning, they can be rearranged as one wishes by swapping
appropriate rows or columns of the preference matrix and reassigning the
out- and in-types of the vertices appropriately. For example, one can swap
row 2 and row 4 in the preference matrix if all vertices of out-type 2 are
reassigned to out-type 4 and vertices of out-type 4 are reassigned to out-type
2 simultaneously. The rearrangement does not contribute anything to the
result in a strict mathematical sense, but some configurations may be easier
to interpret for humans than others. I found two conventions particularly
useful:

C1. Let φ(i) denote the smallest vertex index among vertices having out-
type i. It is desirable to reassign the out-types appropriately to ensure
that 1 = φ(1) < φ(2) < · · · < φ(k).

32

Algorithm 3 Fitting the preference model by expectation-maximisation

Require: G(V, E), |V | = n, k > 0, m0 > 0
1: t := 0, best := null
2: Choose the elements of u(0) and v(0) randomly from the range (1; k)
3: m := m0

4: while m > 0 do
5: while t = 0 ∨ u(t) 6= u(t−1) ∨ v(t) 6= v(t−1) do
6: Calculate P(t) according to the E step, Eq. (2.16)
7: if best = null ∨ logL(θ(t)) > logL(θ(best)) then
8: best := t, m := m0

9: end if
10: t := t + 1
11: Calculate u(t) and v(t) according to the M step
12: end while
13: m := m− 1
14: Mutate u(t) and v(t) randomly
15: end while
16: return θ(best)

C2. It is helpful to rearrange the matrix in a way that maximises the number
of vertices that have the same in- and out-type indices. This is espe-
cially useful when visualising the results, since vertices can be coloured
according to their in- and out-types, and this way usually only a small
fraction of the vertices has to be coloured by two different colours.
These multi-coloured vertices are usually of particular interest due to
their unusual connection patterns.

A type assignment is said to be canonical when it satisfies these con-
ventions: φ(i) is in ascending order and the number of vertices with the
same type indices is maximal. The rearrangement can be done according to
Algorithm 4.

2.4.3 Fitting by Markov chain Monte Carlo methods

The EM method described in Section 2.4.2 has some drawbacks. The most
important disadvantage is that the solution obtained is a local optimum
which might be far from the global one at times. Another flaw is the problem
of overfitting. Consider a situation where the log-likelihood is almost the
same for two given parameterisations θ1 and θ2 that differ only in the type
assignment of a single vertex. Without loss of generality, let us assume

33

Algorithm 4 Canonical rearrangement of vertex type assignments

1: Let f := zero vector of length k
2: for i := 1 to n do {Calculating φ(i)}
3: if f [ui] = 0 then
4: f [ui] := i
5: end if
6: end for
7: Rearrange out-types according to f (out-type i becomes f [i])
8: Permute the rows of P according to f {Now C1. is satisfied}
9: Let M := zero matrix of size k × k

10: for i := 1 to n do {Count the number of different type configurations}
11: M [ui, vi] := M [ui, vi] + 1
12: end for
13: while max M > 0 do
14: i, j := argmaxij M
15: Swap in-types i and j
16: Swap column i and j in P and M
17: Fill row i and column i with -1 in M
18: end while{Now C2. is also satisfied}
19: return u,v,P

34

that logL(θ1|G0) = logL(θ2|G0) + ε, where ε is small. In this case, the
EM algorithm will return θ1 if that is the optimal parameterisation, without
ever mentioning that θ2 is almost as successful in describing the data as θ1,
suggesting that the type assignment of that single vertex is not relevant. The
Markov chain Monte Carlo (MCMC) method described in this section aims
to overcome these disadvantages at the expense of increased computational
complexity.

Generally, MCMC methods are a class of algorithms to draw samples
from a probability distribution that is hard to be sampled from directly.
These methods generate a Markov chain whose equilibrium distribution is
equivalent to the distribution we are trying to sample from. In the case
of the extended preference model, the samples are parameterisations of the
model, and the distribution we are sampling from is the following:

P(Θ = θ0) =
L(θ0|G0)∫

Sn,k

L(θ|G0)dθ

(2.17)

where Sn,k is the space of all possible parameterisations of the probability
model for given n and k. Informally, the probability of drawing θ as a sample
should be proportional to its likelihood of generating G0. For instance, if θ1

generates the studied network with a probability of 0.5 and θ2 generates it
with a probability of 0.25, θ1 should be drawn twice as frequently as θ2.

The generic framework of the MCMC method I use is laid down in the
Metropolis–Hastings algorithm [52]. The only requirement of the algorithm
is that a function proportional to the density function (that is, P(Θ = θ0)
in (2.17)) can be calculated. Note that P(Θ = θ0) ∝ L(θ0|G0), since the
denominator in (2.17) is constant, therefore the likelihood function satisfies
the criteria of the Metropolis–Hastings algorithm. Starting from an arbitrary
random parameterisation θ(0), MCMC methods propose a new parameteri-
sation θ′ based on the previous parameterisation θ(t) using some proposal
density function Q(θ′|θ(t)). If the proposal density function is symmetric
(Q(θ′|θ(t)) = Q(θ(t)|θ′)), the probability of accepting the proposed parame-
terisation is given by:

P(θ(t+1) = θ′|θ(t)) = min

(
1,
L(θ′|G0)

L(θ(t)|G0)

)
= min

(
1, elogL(θ′|G0)−logL(θ(t)|G0)

)
(2.18)

When the proposal is accepted, it becomes the next state in the Markov
chain (θ(t+1) = θ′); otherwise the current state is retained (θ(t+1) = θ(t)).

MCMC sampling can only approximate the target distribution, since
there is a residual effect depending on the starting position of the Markov

35

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

A
cc

ep
ta

nc
e

ra
te

Number of steps

-600

-550

-500

-450

-400

-350

100 101 102 103 104 105

Lo
g-

lik
el

ih
oo

d

Number of steps

Figure 2.3: Acceptance rates (left) and log-likelihoods (right) during a typical
run of the MCMC algorithm in the function of time.

chain. Therefore, the sampling consists of two phases. In the first phase
(called burn-in), the algorithm is run for many iterations until the residual
effect diminishes. The second phase is the actual sampling. The burn-in
phase must be run long enough so that the residual effects of the starting
position become negligible. A particular MCMC sampling implementation
is said to mix rapidly if its required burn-in phase is short and it converges
quickly to the equilibrium distribution. This will be discussed in detail later.

It is hard to decide when to finish the burn-in phase and start the actual
sampling. The most common approach involves calculating the acceptance
rate α, which is the fraction of proposals accepted during the last m steps
in the burn-in phase. Sampling is started when the acceptance rate drops
below a given threshold α̂. Local maxima are avoided by accepting parame-
terisation proposals with a certain probability even when they have a lower
likelihood than the last one, but being biased at the same time towards pa-
rameterisations with high likelihood. In the case of multiple local maxima
with approximately same likelihoods, MCMC sampling tends to oscillate be-
tween those local maxima. These concepts are illustrated on Figure 2.3. By
taking a large sample from the equilibrium distribution, one can approximate
the probability of vertex i being in out-group k and in-group l and extract
the common features of all local maxima (vertices that tend to stay in the
same groups despite randomly walking around in the parameter space).

The only thing left up to us before employing MCMC sampling on fitting
the preference model is to define an appropriate symmetric proposal density
function. I note that the number of groups k is constant and the preference
matrix P can be approximated by the edge densities for a given out- and

36

in-group assignment, leaving us with only 2n parameters that have to be
determined by the proposal density function: practically, the proposal density
function should propose new group assignment vectors u and v based on the
actual ones.

The simplest proposal density function one can conceive is a uniform
distribution over all possible group assignments. This function yields weak
performance, since it completely ignores the current group assignment in
the Markov chain, which might already contain subsets of vertices that are
assigned consistently to each other. Taking this into account, it is straightfor-
ward that the newly proposed group assignment should not differ too much
from the current group assignment in order to keep the satisfactory parts
of the group assignment vectors with high probability. Therefore, a simple
but powerful proposal density function should change the group affiliation of
only a few vertices. Simulations showed that even a single point mutation in
every step is usually satisfactory in practical applications.

A sophisticated proposal density function that can be useful in several
cases is based on Gibbs sampling [45], which depends on the conditional
distributions of the parameters (that is, the components of the group mem-
bership vectors). Here I take advantage of the fact that the conditional
distribution of each parameter (assuming the others are known) can be cal-
culated exactly as follows:

P(ui = j) =
L(θ′ui=j|G)∑k
l=1 L(θ′ui=l|G)

P(vi = j) =
L(θ′vi=j|G)∑k
l=1 L(θ′vi=l|G)

(2.19)

where θ′ui=j is a parameterisation that equals the current parameterisation

θ(t) with the exception of ui which equals j. Similarly, θ′vi=j is the parame-

terisation derived from θ(t) by letting vi = j. In practice, the fractions can
be simplified by the terms that do not involve vertex i at all (since they are
present both in the numerator and the denominator), therefore it is enough
to calculate the local contribution of the vertex to the log-likelihood for all
in-types and out-types in order to determine the marginal distributions.

Since the marginal distribution of each parameter is known, Gibbs sam-
pling [45] can be used. Gibbs sampling alters a single variable of the param-
eter vector in each step according to its marginal distribution, given all other
parameters. It can be shown that the proposal distribution defined this way
is symmetric if the variable being modified is picked randomly according to
a uniform distribution [44]. In practice, it is sufficient to cycle through the

37

variables in a predefined order as long as the Markov chain can access all
states under this ordering.

The pseudo-code description of the MCMC algorithm used for fitting
the preference model is shown in Algorithm 5. m is the window size used to
calculate the acceptance rate, α̂ is the acceptance rate threshold under which
I start the actual sampling, N is the number of samples to be taken. This
particular implementation simply returns the best sample from the Markov
chain, but of course all the samples could have been stored and used later in
more rigorous analyses.

Algorithm 5 Fitting the preference model by the Metropolis–Hastings al-
gorithm

Require: G(V, E), |V | = n, k > 0, N > 0, m ≥ 1, 0 < α̂ ≤ 1
1: t := 0, best := null, sampling := false
2: accepts := [1, 1, . . . , 1], indexed from zero
3: Choose the elements of u(0) and v(0) randomly from the range (1; k)
4: while N > 0 do
5: Calculate P (t) according to Eq. (2.16)
6: Draw θ′ from the proposal density function Q(θ′|θ(t))
7: p := random number drawn from [0; 1)
8: if p < exp

(
logL(θ′|G)− logL(θ(t)|G)

)
then

9: θ(t+1) = θ′

10: accepts [t mod m] := 1
11: else
12: θ(t+1) = θ(t)

13: accepts [t mod m] := 0
14: end if
15: t := t + 1
16: if sampling then
17: N := N − 1
18: if logL(θ(t)|G) > logL(best|G) then
19: best := t
20: end if
21: else if

∑
accepts < α̂m then

22: sampling := true
23: end if
24: end while
25: return θ(best)

38

Does the chain mix rapidly?

A desirable property of a Markov chain in a MCMC method is rapid mixing.
A Markov chain is said to mix rapidly if its mixing time grows at most
polynomially fast in the logarithm of the number of possible states in the
chain. Mixing time refers to a given formalisation of the following idea:
how many steps do we have to take in the Markov chain to be sure that
the distribution of states after these steps is close enough to the stationary
distribution of the chain? Given a guaranteed short mixing time, one can
safely decide to stop the burn-in phase and start the actual sampling after the
number of steps taken exceeded the mixing time of the chain. The number
of possible states in the Markov chain of the preference model equals k2n,
the number of different group configurations. If the chain possesses the rapid
mixing property, the mixing time must therefore be polynomial in 2n log k.

Several definitions exist for the mixing time of a Markov chain (for an
overview, see [83]). To illustrate the concept, I refer to a particular variant
called total variation distance mixing time, which is defined as follows:

Definition 2.1 (Total variation distance mixing time). Let S denote the set
of states of a Markov chain M, let A ⊆ S be an arbitrary nonempty subset of
the state set, let π(A) be the probability of A in the stationary distribution of
M, and πt(A) be the probability of A in the distribution observed after step
t. The total variation distance mixing time of M is the smallest t such that
|πt(A)− π(A)| ≤ 1/4 for all A ⊆ S and all initial states.

However, many practical problems have resisted rigorous theoretical anal-
ysis. This applies also to the method presented here, mostly due to the fact
that the state transition matrix of the Markov chain (and therefore its sta-
tionary distribution) is a complicated function of the adjacency matrix of
the network and the number of vertex groups, and no closed form descrip-
tion exists for either. Therefore, the rapid mixing property of the Markov
chain will be examined by simulations later in Section 2.6.3.

2.4.4 Combining EM and MCMC methods

So far I presented two algorithms for fitting the preference model to a given
network. Both of them are able to give a solution, but they have drawbacks
as well. The EM method is prone to overfitting (see the introduction in Sec-
tion 2.4.3) and to get stuck in local minima. The MCMC method requires
a relatively long burn-in process before one can actually start sampling. It
is natural to ask in such a situation whether the two methods can be com-
bined to complement each other. In the present case, the answer is yes: one

39

can apply the EM method described in Section 2.4.2 to speed up the burn-
in process and revert to the Metropolis–Hastings algorithm when the EM
algorithm reached the first local maximum. According to tests on random
graphs generated by the preference model, the likelihood observed when the
MCMC algorithm starts sampling with an acceptance rate α = 0.15 is in
the same order as the first local maximum obtained by the EM algorithm;
in many cases, the likelihood obtained by the EM algorithm is better. I av-
eraged the likelihoods over 100 instances of a randomly generated network
with 256 vertices, and 4 vertex types. Vertices were connected to each other
with probability 0.3 if they belonged to the same group and with probability
0.1 otherwise. The average of the observed log-likelihoods at the first min-
imum of the EM algorithm was −26003.46 ± 250.58, while the first sample
of the MCMC algorithm had log-likelihood −27181.07± 168.9. The two log-
likelihoods are approximately of the same magnitude, but the EM algorithm
achieves this much faster than the MCMC sampling.

2.4.5 Choosing the number of vertex types

The algorithms discussed so far rely on the fact that k (the number of types)
is given in advance. Of course this is not true in most practical applications,
the number of types is unknown and has to be determined in order to achieve
meaningful results.

A peculiar feature of the preference model is that one can always achieve
a perfect fit of the model by letting the number of vertex types equal to the
number of vertices. In this case, the obtained preference matrix is identical to
the original belief matrix B and we learned nothing new about the underlying
structure of the graph: the type assignments have no specific meaning, and
moreover, we can not predict any missing edges in the network in case of
initial uncertainty in the belief matrix. Therefore, a delicate balance has to be
maintained between the accuracy of reconstruction and the predictive power
of the fitted model. The optimal number of groups should be high enough
to allow accurate reconstruction but still low enough to prevent overfitting.
In this section, I outline some basic ideas that can be useful for tackling
the problem, namely the spectrum of the Laplacian matrix of the graph, the
singular value decomposition (SVD) [48] of the adjacency matrix and the
Akaike information criterion [2].

Estimation from the Laplacian matrix

Given an undirected graph G(V, E) without loops and multiple edges, its
Laplacian matrix is defined as L = D−A, where A is the adjacency matrix

40

and D is a diagonal matrix composed of the degrees of the vertices. A
peculiar property of the Laplacian matrix is that its smallest eigenvalue is
always zero, and its multiplicity equals the number of connected components
of the graph. The number of eigenvalues close to zero are frequently used for
determining the number of dense subgraphs (communities, clusters) in the
graph [20, 114], and based on similar reasoning, this could be a good estimate
of the number of groups that has to be used in the preference model. In fact,
I show later in Section 2.6.2 that the applicability of the Laplacian is severely
limited if the graph does not have a strong clustered structure.

We cannot use D −A directly, since this form of the Laplacian applies
only for undirected graphs. An extension of the Laplacian to directed graphs
was introduced in [19]. This involves calculating the Perron vector φ of
the transition probability matrix P of the graph. The transition probability
matrix P is derived from the adjacency matrix by normalizing row sums to
be 1. The Perron vector φ is a unique (up to scaling) left eigenvector of P
corresponding to the largest eigenvalue and satisfying φP = φ. The existence
of this vector is guaranteed by the Perron-Frobenius theorem [53]. There is
no closed-form solution for φ, but it is easy to calculate in polynomial time
numerically. The directed Laplacian is then defined as:

L = I− Φ1/2PΦ−1/2 + Φ−1/2P∗Φ1/2

2
(2.20)

where P∗ is the conjugate transpose of P and Φ is a diagonal matrix com-
posed of the elements of φ, assuming that

∑n
i=1 φi = 1. The properties em-

phasized above for the undirected Laplacian hold for the directed Laplacian
as well.

Besides its limited applicability to graphs without a strong clustered
structure, there is another drawback: the method requires some human in-
tervention, since one must either specify a threshold manually under which
we consider an eigenvalue close enough to zero or come up with a more
sophisticated algorithm that decides the threshold automatically.

Estimation from the SVD of the adjacency matrix

The singular value decomposition (SVD) of an m × n matrix M is a fac-
torisation process that produces an m×m and an n× n unitary matrix (U
and V, respectively) and an m × n matrix Σ with non-negative numbers
on the diagonal and zeros off the diagonal such that M = UΣV∗ (where
V∗ denotes the conjugate transpose of V). The diagonal of Σ contains the
singular values, while the columns of U and V are the left and right singular
vectors, respectively. It is a common convention to order the values in the

41

(a) Original image (b) Reconstruction using the
16 largest singular values

(c) Reconstruction using the
4 largest singular values

Figure 2.4: Illustration of the SVD-based approximation of a matrix on a
grayscale image

diagonal of Σ in non-increasing fashion. Plotting the sorted singular values
on a scree plot (from large to small) is a good visual cue to determining the
number of groups in the model: the number of groups can simply be assigned
according to the number of large singular values. This can be explained as
follows: one can approximate the original matrix M by setting all singular
values but the l largest to zero and disregarding the appropriate rows of U
and V that correspond to the zeroed singular values. Formally:

mij =

min(n,m)∑
k=1

uilσlvjl ≈
l∑

k=1

uilσlvjl (2.21)

This approximation is illustrated on Figure 2.4. A grayscale image3 consisting
of 440 × 440 pixels (shown on the left side) was converted to a 440 × 440
matrix whose elements varied between 0 and 1, with 0 corresponding to black
and 1 corresponding to white. The matrix was decomposed into its singular
vectors and values, and all but the 16 largest singular values were set to zero.
The image was then reconstructed as M16 = UΣ16V

∗. An even coarser
reconsruction can be achieved by keeping only the 4 largest singular values
(M4 = UΣ4V

∗).
The precision of the approximation depends on the number and magni-

tude of the omitted singular values. The kept parts of U and V can serve
as an input for a k-means clustering algorithm in an l-dimensional space,
and the results of the clustering yield a good candidate of an initial position

3Image courtesy of flickr.com user Pikaluk, licensed under the Creative Com-
mons Attribution–Noncommercial 2.0 Generic license (http://creativecommons.org/
licenses/by-nc/2.0/)

42

http://creativecommons.org/licenses/by-nc/2.0/
http://creativecommons.org/licenses/by-nc/2.0/

of the expectation-maximisation based algorithm for fitting the preference
matrix.

Drineas et al [33] suggested a randomised SVD approximation algorithm
that can also be used in this context. In practice, however, performing an
SVD is less efficient than optimizing from a random initial position due to
the additional complexity of the SVD algorithm itself, and moreover, the
threshold value over which we consider a singular value large still has to be
chosen. A possible approach for choosing the threshold automatically will be
described in Section 2.6.2.

Estimation from Akaike’s information criterion

The third approach I studied is Akaike’s information criterion (AIC), pro-
posed by Akaike in [2]. AIC is a measure of the goodness of fit of a statistical
model (the preference model in our case). It is an unbiased estimator of the
Kullback-Leibler divergence [66] of the model from reality, and it is an oper-
ational way of determining the appropriate trade-off between the complexity
of a model and its predictive power. AIC is calculated as 2(K− logL), where
K is the number of parameters in the model and logL is the log-likelihood.
In the preference model, K = k2 + 2n + 1, since there are 2n parameters for
the group affiliations of the vertices, k2 parameters represent the elements
of the preference matrix and the last parameter is k itself. The suggested
number of groups can be determined by fitting the model with various num-
bers of groups and choosing the one that minimises the Akaike information
criterion. Since it is not the actual value of the AIC that matters but only
the difference between AIC scores of various models for the same network,
2n + 1 can be omitted in practical calculations.

Fitting the model to an unstructured network

Suppose we are given a large network to be fitted by the preference model.
The network has no structure in it, the edges of the network are placed
randomly as in the Erdős–Rényi model. A key question is then whether
these algorithms are able to detect that the network is best characterised by
a single vertex type due to the absence of structure or not.

Given a fixed k > 2, the EM and MCMC-based algorithms are likely to
overfit the model, especially on relatively small networks (see Section 2.6.1 for
a benchmark). This is a disadvantage of several other data-driven network
analysis methods as well. For instance, the fast greedy community detection
algorithm of Clauset et al. [21] finds 46.39 ± 4.7 communities in an Erdős–
Rényi random network with 104 vertices and 3× 104 edges (results averaged

43

over 100 instances). Although there are no communities in the network, even
pure randomness may create structures that look like communities, resulting
in a surprisingly high modularity (0.378± 0.001).

When there is no real structure in the network, almost all type configu-
rations yield similar likelihood values; in other words, the landscape defined
by the likelihood function is almost completely flat. The EM algorithm will
get stuck very early in a local maximum, and it will converge to completely
unrelated local maxima when restarted several times. The behaviour of the
MCMC algorithm will be similar to a random walk over the landscape due
to high acceptance probabilities and it may take many steps before the ac-
ceptance rate drops low enough to start the actual sampling.

To avoid fitting the model to networks without any real structure, I pro-
pose the following approach: before trying to fit the model with any number
of groups, let us calculate the log-likelihood of the network assuming a stan-
dard Erdős–Rényi random model. Given n vertices and m directed edges,
the edge density can be used to estimate the parameter p of the Erdős–Rényi
model (simply let p = m

n(n−1)
), resulting in a log-likelihood of m log p + (n2−

n−m) log(1− p). Since the Erdős–Rényi model has a single free parameter,
the corresponding baseline AIC is 2 − 2m log p − 2(n2 − n −m) log(1 − p).
If the AIC corresponding to 2 groups is larger than the baseline AIC, the
network can be considered an Erdős–Rényi network devoid of any structure
that can be described by the preference model. Out of 100 Erdős–Rényi
networks with 1000 vertices and 2000-8000 edges (selected uniformly from
this interval), this simple test was able to detect the absence of structure 97
times, while the three remaining cases were fitted with 2 groups.

2.5 Running time considerations

This section deals with the implementation details of both the generation and
the fitting process of the preference model. I will discuss ideas for the efficient
implementation of these algorithms and estimate their running times.

2.5.1 Network generation

The basic outline of the generation process is described in Algorithm 2 on
page 20. The algorithm runs in at least O(n2) at first sight, since generating
vertex types is done in O(n log k), and one has to loop over all possible
vertex pairs once, which means approximately n2 loop iterations. This can
be reduced to O(n log k + m) where m is the number of edges in the final

44

network. When the network is sparse (m is O(n)), the optimised algorithm
yields a huge performance gain over the näıve implementation.

First I show why generating the types of the vertices is O(n log k). Every
vertex has to be considered once, so the iteration in line 3 of Algorithm 2
is performed n times. Drawing a random element from a discrete uniform
distribution can be done in O(log k) time if we proceed as follows:

1. Let pi be the probability of the ith element. Calculate the cumulative
probability distribution by letting qi =

∑i
j=1 pi for i ∈ [1, k]. By defi-

nition, qk+1 equals 1 if there are k distinct possibilities (i.e., k groups)
and q0 is zero.

2. Generate a random number x from the interval [0, 1].

3. Find i such that qi−1 ≤ x < qi.

The first step is O(k), but it has to be done only once if the probabil-
ity distribution does not change. The second step can be considered O(1).
Finally, the third step can be done by a binary search, since q is sorted, there-
fore it is O(log k) [109]. This leads to a total running time of O(k + n log k)
when n elements are drawn, which is essentially O(n log k) if n � k.

Second, I show why it is possible to generate the actual edges of the
network in O(m). In Algorithm 2, independent Bernoulli trials are performed
in line 7 with various probabilities n2 times. An edge has to be added when
a trial succeeds. An equivalent loop would be to loop over the possible
group combinations and generate edges between out-group i and in-group
j with probability pij. The two descriptions are completely the same, only
the order of vertex pairs being considered is different. However, we are
conducting Bernoulli trials with the same probabilities in the latter case
(apart from the time instances when we move to a different group pair).
Since the geometric distribution with parameter p is the number of Bernoulli
trials with probability p needed to get one success, we can proceed as follows:

1. Consider the set of vertices in out-group i and in-group j. Sort the
possible vertex pairs in lexicographic order.

2. Draw a number x from a geometric distribution with probability pa-
rameter pij.

3. Drop the first x− 1 elements from the sorted vertex pair list.

4. If there are no more elements in the list, move on to the next group
pair and go back to step 1.

45

5. Otherwise, add the first element of the vertex pair list as an edge to
the network and go back to step 2.

The sorted list does not have to be generated at all. One can simply
use an integer index in the range

[
0, n−

i n+
j − 1

]
where n−

i is the number of
vertices in out-group i and n+

j is the number of vertices in in-group j. This
integer index will be advanced by x in step 3 and the resulting index will be
stored in a list. The list indices can then be translated to vertex index pairs
by an appropriate mapping. This way we will generate m indices during the
algorithm, each of them in O(1) time when assuming that drawing a number
from a geometric distribution is O(1). This holds as long as we can generate
a uniformly distributed random number in constant time by making use of
the fact that given x ∈ U(0, 1), the following expression is geometrically
distributed with probability p [29]:⌈

log x

log(1− p)

⌉
(2.22)

Therefore, I can finally conclude that generating a network according to the
preference model requires O(n log k + m) time which is essentially linear in
m.

2.5.2 Model fitting

Calculating the order of the running time of the fitting process is a compli-
cated problem, since the methods described above are stochastic, and the
number of steps needed is not known in advance (and heavily depends on
the starting position anyway). Therefore, I will derive equations on the
asymptotical behaviour of a single step in the EM process and in the MCMC
method instead.

For both methods, two time complexity estimations will be given. One
of them belongs to the case when one calculates the log-likelihood function
directly. The other one belongs to the alternative form of the log-likelihood
function (see Eq. (2.14)) which is feasible only if there are just a few distinct
bij values in the network and we can afford the extra storage space needed
to store Eu,v,b in a three-dimensional array (which should not present an
obstacle with its magnitude of O(k2|B|) if |B| is small).

Asymptotic behaviour of the EM process

The E step involves the estimation of the preference matrix P. pij is esti-
mated by counting the number of edges going from out-group i to in-group

46

j (uncertain edges are taken into account by the amount described by their
belief values) and dividing it by the number of possible edges between these
two groups. The actual number of edges can be calculated in one single run
by iterating over the edges of the network and adding their belief values in
the respective cells of an appropriately sized array (the number of rows and
columns equal the number of groups). This requires O(m) time. Let V −

i

denote the size of out-group i and let V +
j denote the size of in-group j. In

this case, the number of possible edges between out-group i and in-group j
is |V −

i ||V +
j | − |V −

i ∩ V +
j | due to the exclusion of loop edges. This can be

calculated in O(n) for a single i − j pair, since the size of each set is in the
order of n, and taking the intersection of two sorted sets is linear. Therefore,
the whole E step requires O(m + nk2) time, but calculation of the group
sizes and the size of intersections between groups can be done in the M step
simultaneously with the log-likelihood calculation, and we can assume them
to be readily usable in the E step if there was at least a single M step before,
leaving us with a time complexity of O(m) for the E step.

The M step requires the calculation of the so-called local log-likelihoods:
the contribution of a single vertex to the total log-likelihood function. Each
vertex tries to maximise its own local log-likelihood based on the assumption
that all other vertices retain their group membership. In the initial phase
of the EM process, every vertex changes its group membership frequently
until the algorithm begins to converge. After a few steps, most of the group
structure freezes and only a few remaining vertices change their group mem-
bership until consensus is reached. Therefore the local log-likelihoods are
changing rapidly from step to step, excluding the final phase, so there is no
use of introducing local update rules to the log-likelihoods due to the over-
head they would cause. One has to calculate the local log-likelihood for every
vertex and for every possible group affiliation of that vertex. Calculating a
single local log-likelihood is O(n) (one has to consider the relationship of the
vertex to all n−1 other vertices), yielding a time complexity of O(n2k2). We
must also maintain the group sizes and the group intersection sizes which
will be used by the next E step, but this does not increase the complexity.

At this point, we can make use of the alternative form of the likelihood
function introduced in Eq. (2.12). The alternative form can be calculated
in O(k2|B|), but it requires that the number of vertex pairs with different
in-group, out-group and belief combinations be counted in advance. (Remem-
ber, B is the set of all possible belief values occurring in the specific network).
This would still yield a time complexity of O(n2k2|B|) if we counted the num-
ber of vertex pairs falling in each category in every step. As a matter of fact,
such counting should only be done once after choosing the initial state in
O(n2) time, and the edge counts should be updated after every single al-

47

teration to the group affiliations. Before moving vertex i from some group
affiliation ui,old, vi,old to a new one ui,new, vi,new, we must iterate over all belief
values b∗i and bi∗ concerning vertex i, decrease the appropriate edge counts
|Eui,old,vi,old,b∗i

| and |Eui,old,vi,old,bi∗| by one and increase |Eui,new,vi,new,b∗i
| and

|Eui,new,vi,new,bi∗| by one. This is an O(n) operation. With this trick, the time
complexity of the M step is successfully reduced to O(nk2|B|) at the expense
of the extra space needed to store the |E...| values. |B| can be omitted, since
it is assumed to be constant and independent of n and k. The total time
complexity of an EM iteration can then be reduced to O(nk2 + m) as well,
which is practically O(nk2) when the network is sparse.

Asymptotic behaviour of the MCMC process

The key parts of the MCMC process are the calculation of (1) the log-
likelihood of a given state and (2) the likelihood ratio of two given states
which differ only in the group affiliation of a single vertex (since the dif-
ference between the current and the proposed state involves only a single
vertex). I have shown in the previous analysis of the M step that calculating
the log-likelihood is practically O(n2) when one uses the original form of the
log-likelihood or O(k2) when using the alternate form. Calculating the ratio
of two likelihoods is constant if both are calculated in advance, but since one
of them corresponds to the proposed state, this has to be calculated again
in O(n2) or O(k2) time, not forgetting that the alternative form requires ex-
tra bookkeeping of |E...| that means an O(n2) initialisation step and O(n)
overhead with every change in the group affiliations of the vertices.

An MCMC step proceeds as follows: first, a proposed state is drawn from
the proposal density function. This can be done in O(1) time when we use the
simple proposal density function (that is, a single vertex is selected uniformly
and every group affiliation is proposed uniformly for this single vertex). Next,
the likelihood of the proposed state is compared to the likelihood of the
current state, which involves the calculation of the new likelihood in O(n2)
or O(nk2) (due to the fact that the |E...| values also have to be updated). The
proposed state is either accepted or rejected, which is an O(1) operation. The
time complexity of the whole MCMC iteration is therefore O(n2) or O(nk2),
depending on the form of the likelihood function we use.

2.6 Performance measurements

The performance measurements conducted on the fitting process of the pref-
erence model are primarily aimed at demonstrating the validity of the fitting

48

algorithm. This section is organised as follows: first, I generated graphs ac-
cording to the preference model, ran the fitting algorithm on the graphs by
supplying the appropriate number of groups beforehand and then compared
the known and the estimated parameters of the model. These benchmarks
were performed in order to test the validity of the fitting algorithm and to
assess the quality of the results obtained. Next, I ran the fitting algorithms
without specifying the number of groups to prove that the Akaike information
criterion is suitable for determining the right value of k. Finally, I checked
the rapid mixing property of the Markov chain used in the MCMC method.

2.6.1 Fitting the model with given number of groups

This benchmark proceeded as follows: graphs with 128 vertices were gener-
ated according to the preference model using 4 in- and out-types. The type
distribution was uniform, so there were 32 vertices of each type on average.
The preference matrix was chosen as follows: each element pij was set to
one of two predefined values p1 and p2 with probability 0.5. p1 and p2 was
varied between 0 and 1 with a step size 0.05. For each (p1, p2) combination,
I generated 50 instances of the preference model. Values of the quality func-
tions (described below) were averaged over these instances and the results
were plotted as a function of p1 and p2. The reason why I used only two
probabilities is that this way the results can be visualised on a heat map or
a 2.5D plot.

To assess the fitness of the fitted model, I had to define some quality
functions that compare the fitted parameters to the original (expected) ones.
First I note that the number of groups and the probability matrix do not have
to be compared, since the former is fixed and the latter one is calculated from
the group assignments, so errors in the elements of the probability matrices
are simply due to errors in the group assigments. Therefore, only the group
assignments matter. The following quality functions were defined:

Success ratio. This simple measure counts the number of agreements in
the expected and fitted group assigments. Let u and v denote the
expected assignments and ũ and ṽ denote the ones calculated by the
fitting process. The success ratio is then defined as follows:

h(u,v, ũ, ṽ) =

∑n
i=1 δ(ui, ũi) + δ(vi, ṽi)

2n
(2.23)

where δ(i, j) is the Kronecker-delta again.

Note that the success ratio is highly dependent on the actual indices:
even a perfect fit does not guarantee that the groups are indexed in

49

exactly the same order, e.g., it may happen that group 1 of the original
model is group 2 in the fitted model. In the extreme case, we may
observe zero success ratio even in case of a perfect fit if the group
indices do not match each other. Therefore, the group assignments
have to be brought into a canonical form by running Algorithm 4.
It may still happen that there exists a rearrangement of groups that
achieves larger success ratio than the canonical rearrangement, but it is
easier to calculate and still yields success ratios close to the theoretical
maximum (provided the fitted model is close to the original).

Normalised mutual information of the confusion matrix. This mea-
sure was suggested by Fred and Jain [42] and later applied to commu-
nity detection in graphs by Danon et al. [26]. Its advantage is that
it does not require appropriate rearrangement of the groups prior to
calculation. One must calculate the confusion matrix C = [cij] of the
expected and observed group assignments. cij is the number of vertices
that are in group i in the original and group j in the fitted model. The
confusion matrix can be calculated separately for in- and out-groups,
but they can safely be added together to obtain a single confusion ma-
trix and then a single quality measure, which is the normalised mutual
information of the confusion matrix:

I(C) = −2

∑k
i=1

∑k
j=1 cij log

cijc∗∗
ci∗c∗j∑k

i=1

(
ci∗ log ci∗

c∗∗
+ c∗i log c∗i

c∗∗

) (2.24)

where ci∗ is the sum of the ith row, c∗j is the sum of the jth column of
the confusion matrix. c∗∗ is the sum of cij for all i, j. It is assumed that
0 log 0 = 0. When the fitted group assignment is completely identical
to the expected one (apart from rearrangement of group indices), I(C)
attains its maximum at 1. I(C) = 0 if the two group assignments are
independent. Danon et al. [26] argue that this measure is in general
stricter than most other quality measures proposed so far. For instance,
a completely random assignment of groups still has an expected success
ratio of 0.25 for 4 groups (since each pair is consistent with probability
1/4). In this case, the normalised mutual information is close to zero,
which is a more intuitive description of what happened than a success
ratio of 0.25. See [26] for a list of other measures they considered.

Likelihood ratio. This measure is simply the ratio of the likelihoods of the
original and the fitted parametrizations, given the generated graph.
Since the actual implementation is working with log-likelihoods, an
easier way to calculate it is to take the difference of the log-likelihoods.

50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

M
ea

n
m

ut
ua

l i
nf

or
m

at
io

n

 0 0.2 0.4 0.6 0.8 1

p1

 0

 0.2

 0.4

 0.6

 0.8

 1

p 2

(a) Mutual information index

 0.96
 0.98
 1
 1.02
 1.04
 1.06
 1.08
 1.1
 1.12

M
ea

n
lik

el
ih

oo
d

ra
tio

 0 0.2 0.4 0.6 0.8 1

p1

 0

 0.2

 0.4

 0.6

 0.8

 1

p 2
(b) Likelihood ratio

Figure 2.5: Mean likelihood ratios of the fitted parameterisations to the expected
ones (left) and mean normalised mutual information conveyed by the confusion
matrices (right) as a function of p1 and p2.

The likelihood ratios and the mutual information indices are plotted on
Figure 2.5. Success ratios were omitted due to their high correlation with
mutual information indices. As expected, the mutual information index is
low when p1 ≈ p2. This is no surprise, since p1 ≈ p2 implies that the actual
difference between different vertex types diminish: they all behave similarly,
and the random fluctuations at this network size render them practically in-
distinguishable. The overall performance of the algorithm is satisfactory in
the case of p1 � p2 and p1 � p2, with success ratios and mutual information
indices larger than 0.9 in all cases. In cases when p1 ≈ p2, the likelihood ratio
is greater than 1, which indicates that the fitted model parameterisation is
more likely than the original one. This phenomenon is an exemplar of over-
fitting: apparent structure is detected by the algorithm where no structure
exists at all if we use too many groups (see also Section 2.4.5).

2.6.2 Choosing the number of groups

In Section 2.4.5, I described three different methods for estimating the num-
ber of groups one should use for a given network when fitting the preference
model. Two of these methods required some human intervention, since one
had to choose a threshold manually for the eigenvalues of the Laplacian ma-
trix or for the singular values of the adjacency matrix.

I investigated the eigenvalues of the directed Laplacian matrix first. After
some experiments on graphs generated according to the preference model, it
became obvious that the number of eigenvalues of the Laplacian close to

51

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 0 2 4 6 8 10 12 14

(a) With clustered structure

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 0 2 4 6 8 10 12 14

(b) Without clustered structure

Figure 2.6: The 15 smallest nonzero eigenvalues of the Laplacian matrix for
graphs generated by the preference model with 8 groups, either with or without a
strong clustered structure (left and right panel, respectively)

zero correlate to the number of groups only if the vertex groups coincide
with densely connected subgraphs. In other words, pii must be large and pij

for i 6= j must be small. This is illustrated on Figure 2.6. The left panel
shows the case when pij = 0.2 + 0.6δ(i, j) (the graph is clustered) and the
right panel shows the case when pij is 0.2 or 0.8 with 1/2 probability. There
is indeed a relatively large jump after the eighth eigenvalue for the former
case, but the transition is smooth for the latter. Therefore, the eigenvalues
of the directed Laplacian matrix were excluded from further investigations.

In the case of SVD analysis, one has to count the large singular values.
“Large” is definitely a subjective term, therefore a scree plot of the singular
values is often used as a visual aid. The scree plot is simply a bar graph of
the singular values sorted in their decreasing order. The plot usually looks
like the side of a mountain with some debris at the bottom: the singular
values decrease rapidly at first, but there is an elbow where the steepness of
the slope decreases abruptly, and the plot is almost linear from there on (see
Figure 2.7 for an illustration). The number of singular values to the left of
the elbow is the number of groups we will choose. To allow for automated
testing, I implemented a simple method to decide on the place of the elbow.
The approach I used is practically equivalent to the method of Zhu and
Ghodsi [137]. It is based on the assumption that the values to the left and
right of the elbow behave as independent samples drawn from a distribution
family with different parameters. The algorithm first chooses a distribution
family (this will be the Gaussian distribution in our case), then considers all
possible elbow positions and calculates the maximum likelihood estimation
of the distribution parameters based on the samples to the left and right side
of the elbow. Finally, the algorithm chooses the position where the likelihood

52

 0
 20
 40
 60
 80

 100
 120

 5 10 15 20

Figure 2.7: The largest 20 singular values of the adjacency matrix of a graph
generated by the preference model with 8 groups

was maximal. Assuming Gaussian distributions on both sides, the estimates
of the mean and variance are as follows:

µ̃1 =

∑q
i=1 xi

q
µ̃2 =

∑n
i=q+1 xi

n− q

σ̃2 =

∑q
i=1 (xi − µ1)

2 +
∑n

i=q+1 (xi − µ2)
2

n− 2

(2.25)

where xi is the ith element in the scree plot (sorted in decreasing order),
n is the number of elements (which coincides with the number of vertices)
and q is the number of elements standing to the left of the elbow. Note
that the means of the Gaussian distributions are estimated separately, but
the variance is common. Zhu and Ghodsi [137] argue that allowing different
variances makes the model too flexible. The common variance is calculated
by taking into account that the first q elements are compared to µ1 and the
remaining ones are compared to µ2. See [137] for a more detailed description
of the method.

In this benchmark, 100 networks were generated with 128 vertices each.
Elements of the preference matrix were chosen to be p1 or p2 with equal
probability, as in Section 2.6.1 before, but the case of p1 ≈ p2 was avoided
by constraining p1 to be above 0.6 and p2 to be below 0.4. The number
of groups was varied between 2 and 8 according to a uniform distribution.
The number of groups in the fitted model was estimated by the SVD and
the AIC methods, the best AIC was chosen by trying all possible group
counts between 2 and 10. The AIC method proved to be superior to the
SVD method: the estimation was perfect in 79% of the cases. The number
of groups was underestimated by 1 group in 14, 2 groups in 3 and 3 groups
in 2 cases. There were 2 overestimations by 1 group as well, resulting in a

53

mean squared error of 0.46 groups. On the other hand, the SVD method
made severe mistakes at times; in fact, only 7% of its estimations matched
the prior expectations, all other cases were overestimations, sometimes by 7
or 8 groups. This is due to the unsupervised choice of the elbow in the scree
plot. It is assumed that better results can be achieved by making the choice
manually, therefore the conclusion is that the SVD-based estimation should
be handled with care and the AIC method is preferred when one would like
to choose the number of groups automatically.

2.6.3 Rapid mixing of the Markov chain

In this benchmark, I studied whether it holds that the Markov chain possesses
the rapid mixing property. (As discussed in Section 2.4.3, an exact theoretical
analysis was infeasible). I generated networks with n = 50(i+1) vertices, with
i increasing from 1 to 20. For each i, 100 different networks were generated
with 4 groups. In order to restrict benchmarking for sparse networks (which
is a common property of all networks arising in practical situations), the
elements of the preference matrix were chosen from p1 = 64/n and p2 = 16/n
with equal probability. In each case, I counted the number of steps needed
for the acceptance rate to drop below 10%. It was expected that the number
of steps is polynomial in the number of vertices (or equivalently, it is log-
polynomial in the number of possible states in the Markov chain). Although
there was a significant variance in the number of steps, averaging over 100
instances for each i led to the plot on Figure 2.8, clearly indicating the
polynomial trend, which serves as an empirical evidence of the rapid mixing
property.

2.7 Using the preference model for predict-

ing unknown links

In this final section, I demonstrate how the preference model can be used for
predicting connections in a network. Recall that the fitting process produces
a probability matrix P and two group assignment vectors u and v. Consider
pui,vj

as the predicted probability of edge i → j: if the graph was generated
by the preference model, this would be the actual probability of that edge.
To obtain a binary prediction for each edge, a threshold level τ has to be
determined that reconstructs the known part of the network most accurately,
and the same τ can be used for thresholding the predicted probabilities of
the unknown connections. Determining the accuracy of reconstruction on
the known parts is then practically the assessment of a binary classification.

54

 0

 5000

 10000

 15000

 20000

 25000

 30000

 200 400 600 800 1000

N
um

be
r o

f b
ur

n-
in

 st
ep

s

Number of vertices

Figure 2.8: Number of steps needed for the Markov chain of the preference model
to achieve an acceptance rate smaller than 10%. The fitted curve is polynomial in
n (the number of vertices): f(n) = 3.07×10−4×n2.602+2005.91, RMS of residuals
= 727.443

Let tp, tn, fp, fn denote the number of true positive, true negative, false pos-
itive and false negative outcomes (e.g., tn is the number of edges that were
predicted as missing while actually being nonexistent, fp is the number of
missing edges predicted as existent and so on). Let rp = tp/(tp + fp) and
rn = tn/(tn+fn), the ratio of correctly predicted positive and negative edges.
Of course these measures are highly dependent on the threshold level τ of
the classifier, and we wish to select a τ that maximises a quality measure
derived from tp, tn, fp and fn. rn alone is not suitable: given a high ratio of
confirmed missing edges, it is easy to achieve high rn by predicting all edges
as nonexistent. Similar reasoning shows that rp alone should also be avoided.
The geometric mean of rp and rn is a good candidate, since it ensures that
rp and rn is high at the same time. An even more sophisticated approach is
the Matthews correlation coefficient [78], defined as follows:

MCC =
tptn − fpfn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(2.26)

In case the denominator is zero, let MCC be zero by definition (to avoid
the division by zero). A Matthews coefficient of +1 represents a perfect
prediction and -1 the worst possible prediction. The steps to take are then
as follows:

1. Prepare the dataset. This means the construction of the belief matrix
B: bij = 1 if edge i → j exists, bij = 0 if i → j is confirmed to be

55

missing, otherwise bij is our a priori belief about the probability of
the existence of an edge from i to j. In cases where no reasonable
prior assumption can be made, bij should be set to 0.5, thus practically
making the term belonging to i → j in the goal function constant. The
maximum of the goal function will then not be influenced by i → j.

2. Fit the parameters of the preference model to the network being studied
using one of the methods described in this chapter.

3. Determine an appropriate probability threshold τ based on
√

rprn or
the Matthews correlation coefficient.

4. Unknown edges can be considered as existent when their predicted
probability is higher than τ .

Of course it is not necessary to use a strict binary threshold. For example,
Section 4.1 will show a case study where there were a large set of unknown
edges going between two distinct parts of a network. Based on domain-
specific assumptions, their a priori belief values were set to 0.1, since it was
asserted that roughly 10% of them exists in reality. None of their predicted
probability exceeded the threshold applied globally to the whole network,
but there were a few edges whose predicted probability was significantly
higher than 0.1: they can be considered as possibly existent due to the sharp
difference between their prior and predicted probabilities.

Another tool to assess the overall quality of the prediction method (irre-
spective of the threshold level) is the ROC curve. For every possible threshold
level, one must calculate the true positive rate (TPR, alternatively called as
sensitivity) and the false positive rate (FPR) and plot TPR versus FPR in
a Descartes coordinate system4. They are defined as follows:

TPR =
tp

tp + fn

FPR =
fp

fp + tn
(2.27)

The area under the ROC curve (AUC) is often used as a summary statistic
for the overall quality of the prediction. Section 4.1.3 will demonstrate the
usage of ROC curves in the comparison of several prediction methods applied
to the same dataset.

4An alternative definition for the ROC curve is to plot TPR against 1-SPC (the speci-
ficity of the test). Since SPC = tn

fp+tn
, the two definitions are equivalent.

56

2.8 Conclusion

In this section, a generic stochastic network model was presented, which can
be thought of as a generalisation of the Erdős-Rényi model by introducing
vertex types and type-dependent connection probabilities. The structure
of the generated network is highly dependent on the types of the individual
vertices. I presented algorithms to fit the preference model to a given network
in a way that maximises the likelihood of the obtained parameterisation and
I discussed how the model can be used to predict previously unknown links in
a network. Comparisons with existing prediction methods and a case study
will be presented in Section 4.1.

57

3
Fuzzy community structure in
complex networks

R
ecent studies revealed that graph models of many real world phe-
nomena exhibit an overlapping community structure, which is hard
to be described with the classical graph clustering methods where

every vertex of the graph belongs to exactly one community [102]. This is
especially true for social networks, where it is not uncommon that individuals
in the network belong to more than one community at the same time. Indi-
viduals who connect groups in the network function as “bridges”, hence the
concept of bridge is defined as a vertex that cross structural holes between
discrete groups of people [16]. It is therefore important to define a quantity
that measures the commitment of a node to several communities in order to
obtain a more realistic view of these networks.

The intuitive meaning of a bridge vertex may differ in different kinds
of networks that exist beyond sociometrics. In protein interaction networks
[58], bridges can be proteins with multiple roles. In cortical networks con-
taining brain areas responsible for different modalities (for instance, visual
and tactile input processing [86]), the bridges are presumably the areas that
take part in the integration and higher level processing of sensory signals
[92]. In word association networks [87, 119], words with multiple meanings
are likely to be bridges [102]. The state-of-the-art overlapping community

Related publications:
Nepusz T., Petróczi A., Négyessy L., Bazsó F.: Fuzzy communities and the concept of
bridgeness in complex networks. Phys Rev E 77(1):016107, 2008.
Nepusz T., Bazsó F., Strausz Gy.: Algorithmic identification of bridge vertices in complex
networks. In: Proceedings of the 15th PhD Mini-symposium, Budapest University of
Technology and Economics, pp. 78–81, 2008.

58

detection algorithms [17, 102, 108, 135] are not able to quantify the notion
of bridgeness, while other attempts at quantifying it (e.g., the participation
index [51]) are only applicable to nonoverlapping communities. Note that
bridges described in this thesis are not to be confused with the concept of
cut edges which are sometimes also referred as bridges in classical graph the-
ory. Articulation points (vertices whose removal disconnects the remaining
subgraph) bear more similarity to the concept of bridges described in this
thesis, but not all bridge vertices are articulation points.

To illustrate the concept of bridge vertices and overlapping communities,
I created a simple graph shown on Fig. 3.1. A visual inspection of this
graph most likely suggests two communities (see panel (b)), with vertex 5
standing somewhere in between, belonging to both of them at the same
time. One may argue that vertex 5 itself forms a separate community, but
a community with only a single node is usually not meaningful (and we
can simply add more edges connecting the two communities to vertex 5 to
emphasize its sharedness). This property of vertex 5 is not revealed by any
classical community detection algorithm without accounting for overlaps or
outliers.

One of the most commonly used method (the Clauset-Newman-Moore
algorithm [21]) was applied on this graph to show how such an algorithm
behaves in this case. This algorithm iteratively joins already found commu-
nities in order to form larger ones while striving to maximise a measure called
modularity (see Section 1.2.4 for the definition). At this point, it is enough
to understand that modularity is a measure assigned to a given partition
of vertices, and higher modularity values represent partitions that put more
edges inside clusters and leave only a few outside. The Clauset-Newman-
Moore algorithm greedily joins those communities in every step that would
yield a maximal increase in the modularity locally. (Several heuristics have
been proposed that perform better than greedy maximisation [27, 127], but
the results are the same for this example graph). The output of the process
is a dendrogram (panel (c) of Fig. 3.1), which should be cut at the level
where the modularity was maximal. However, there is always a point where
the algorithm must decide whether it joins vertex 5 with one or the other
large community. In fact, this decision is made surprisingly early during the
process, right in the first step, as illustrated by the dendrogram.

A better solution can be achieved by applying the clique percolation
method (CPM) of Palla et al. [102], which is also able to discover overlapping
communities (see Section 3.1 for a short discussion of the method). In the
case on Fig. 3.1, vertex 5 was classified as an outlier (a vertex not belonging
to any community). This result stands closer to our visual inspection and
clearly underlines the fact that in many cases, we should not assume that

59

(a) (b) (c)

Figure 3.1: Panel (a): a simple graph that can not be partitioned into two
communities in a meaningful way without allowing overlaps or outliers. Vertices
are colored according to the best hard partition obtained by greedy modularity
optimisation [21]. Panel (b): The intuitive fuzzy partition of the graph into two
groups. Panel (c): the dendrogram of the graph as calculated by greedy modularity
optimiation algorithm. The dashed line denotes the level where the dendrogram
should be cut in order to obtain the maximal modularity (denoted by q).

a vertex belongs to one and only one community in the graph. However,
vertex 5 is not an outlier in the sense that removing it from the network
would result in two disconnected components. Vertex 5 is an integral part of
the network, serving as the only connection between two densely connected
subgroups.

In this chapter, I will describe a method that is able to discover mean-
ingful fuzzy communities in moderate size undirected networks [89, 92]. The
chapter is organised as follows: after a generic overview of recent methods
trying to tackle the problem of overlapping communities, the basic concepts
behind the fuzzy clustering approach are discussed. It is followed by the de-
scription of a gradient-based method that allows us to find fuzzy communities
in a given network. Several measures are introduced that classify the ver-
tices of the network as bridges and regular vertices. Finally, benchmarks are
presented to assess the performance of the method. Real-world applications
will be shown later in Sections 4.2 and 4.3.

60

3.1 Overview

Since the groundbreaking work of Dunn [34] and Bezdek [9] on the fuzzy
c-means clustering algorithm, many methods have been developed to search
for fuzzy clusters in multidimensional datasets. For an overview of these
methods, see Bezdek and Pal [10]. However, these methods usually require
a distance function defined in the space the data belong to, therefore it is
impossible to apply them to graph partitioning directly, except in cases where
the vertices of the graph are embedded in an n-dimensional space. A recent
paper of Zhang et al [135] discusses a possible embedding of the vertices
of an arbitrary graph into an n-dimensional space using spectral mapping
in order to utilize the fuzzy c-means algorithm on graphs. The first few
eigenvectors of the Lagrangian matrix were appropriately mapped into an
n-dimensional space, and fuzzy clusters were sought by the classical fuzzy c-
means algorithm. They were able to identify meaningful fuzzy communities
in several well-known test graphs (e.g., the Zachary karate club network [134]
and the network of American college football teams [46]), but the eigenvector
calculations involved in the algorithm render it computationally expensive to
use on large networks.

Eigenvector calculations were also involved in the method of Capocci et al.
[17]. They define a function z(x) based on a vector x containing values as-
signed to the individual vertices under the constraint that

∑n
i=1

∑n
j=1 xixj =

1 as follows:

z(x) =
1

2

n∑
i=1

n∑
j=1

(xi − xj)
2wij (3.1)

where wij is the positive weight of edge i ↔ j (or zero if such an edge does
not exist). Directed networks were symmetrized by taking WWT instead of
W. The stationary points of z over all x are then obtained by solving

(D−W)x = λx (3.2)

where D is a diagonal matrix with dii =
∑n

j=1 wij (the sum of the weights of
all adjacent edges of vertex i) and λ is a Lagrange multiplier accounting for
the constraints imposed on x. Therefore, solving this eigenproblem is equiv-
alent to the constrained minimisation of z. The first eigenvector is the trivial
solution x = 1, the remaining eigenvectors represent less and less appropriate
partitions of the vertices, with eigenvector components close to each other
for vertices belonging to the same community. A similarity measure is then
introduced between vertices by correlating the corresponding components of
the first k eigenvectors. They successfully tested their method on a word
association network of 10616 nodes [119], but the nature of the algorithm

61

implies that not the actual communities are returned but similarity mea-
sures between vertices. This may be either an advantage or a disadvantage,
depending on context.

The clique percolation method (CPM) of Palla et al. [102] is based on
a simple yet powerful assumption. The method considers cliques of size k
(where k is a free parameter) as basic building blocks for communities. Two
cliques, Ci and Cj stand in a relation Ci ∼ Cj if they share at least k − 1
vertices. The equivalence classes of the transitive closure of ∼ define the
communities: each community consists of the set of vertices that occur in a
particular equivalence class. Note that the classes are defined over the set of
cliques, so no clique is shared between two classes, but vertices can be shared,
forming overlaps between the communities. It can also happen that a vertex
is not a part of any k-clique and is therefore left out from all communities.

Finally, I would like to mention the information bottleneck method of
Tishby et al. [122], grounded in information theory and applied to graph
clustering by Ziv et al. [138]. According to Tishby et al. [122], there are
three random variables involved in the information bottleneck method: the
input data X, the relevance variable Y and the cluster assignment Z. The
task is the extraction of a compressed description Z of the input data X
that accurately represents the relevance variable Y (the part of information
stored in X that we are interested in). Ziv et al. [138] illustrate this on an
example of protein sequences. In this case, the individual protein sequences
are represented by X, while Y describes the fold of the proteins1. A useful
Z is a random variable that maximises the mutual information between Y
and Z (preserving relevant information) while minimising the mutual infor-
mation between X and Z (omitting irrelevant information and compressing
the dataset). Formally, we are looking for

min
p(z|x)

I(X, Z)− βI(Y, Z) (3.3)

where β represents the desired tradeoff between accuracy and simplicity.
Tishby et al. [122] devised an iterative process for obtaining Z, given the
joint probability of X and Y .

Since there is no Y in the problem of community detection, Ziv et al.
[138] had to find a method to derive it from the structure of the graph in
order to employ the information bottleneck method. Their relevance variable
Y is defined by the node at which a random walker stands at a given time

1Protein folding is a physical process by which a polypeptide folds into a three-
dimensional structure. Proteins have a characteristic fold that relates to the function
of the protein, and some diseases are believed to relate to the accumulation of incorrectly
folded proteins in the patient.

62

instance t, while X is the node where the random walker started at time
0. X is either a uniform distribution or the stationary distribution of the
Markov chain assigned to the graph (where every outgoing edge of the current
vertex is followed with equal probability). They only studied the case when
p(z|x) ∈ {0, 1}, but this constraint could theoretically be relaxed to arrive
at fuzzy partitions.

3.2 Basic concepts

From now on, I will describe the fuzzy community detection method I sug-
gested in [92].

3.2.1 Fuzzy partition matrices

The objective of classical community detection in networks is to partition
the vertex set of the graph G(V, E) into c distinct subsets in a way that puts
densely connected groups of vertices in the same community. c can either be
given in advance or determined by the community detection algorithm itself.
For the time being, let us assume that c is known. In this case, a convenient
representation of a given partition is the partition matrix U = [uik] [9]. U
has N = |V | columns and c rows, and uik = 1 if and only if vertex k belongs
to the ith subset in the partition; otherwise it is zero. From the definition of
the partition, it clearly follows that

∑c
i=1 uik = 1 for all 1 ≤ k ≤ N . The size

of community i can then be calculated as
∑N

k=1 uik, and for any meaningful

partition, we can assume that 0 <
∑N

k=1 uik < N . These partitions are
traditionally called hard or crisp partitions, because a vertex can belong to
one and only one of the detected communities [9]. For instance, the hard
partition of the example graph on Fig. 3.1 is described by the following
partition matrix:

U =

[
1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1

]
(3.4)

The generalization of the hard partition follows by allowing uik to attain any
real value from the interval [0, 1]. The constraints imposed on the partition

63

matrix remain the same [111]:

uik ∈ [0, 1] for all 1 ≤ i ≤ c, 1 ≤ k ≤ N (3.5a)
c∑

i=1

uik = 1 for all 1 ≤ k ≤ N (3.5b)

0 <

N∑
k=1

uik < N for all 1 ≤ i ≤ c. (3.5c)

Eq. (3.5b) simply states that the total membership degree for each vertex
must be equal to 1. Informally, this means that vertices have a total member-
ship degree of 1, which will be distributed among the communities. Eq. (3.5c)
is the formal description of a simple requirement: we are not interested in
empty communities (to which no vertex belongs to any extent), and we do
not want all vertices to be grouped into a single community. Partitions of this
type are called fuzzy partitions. The fuzzy membership degrees for a given
vertex can be thought about as a trait vector that describes some (possi-
bly nonobservable) properties of the entity which the vertex represents in a
compact manner. A possible fuzzy partition of the graph that is shown on
Fig. 3.1 corresponds to the following partition matrix:

U =

[
1 1 1 1 0.5 0 0 0 0
0 0 0 0 0.5 1 1 1 1

]
(3.6)

In the upcoming sections, I will sometimes refer to the ith column of U
as ui, the membership vector of vertex i.

3.2.2 Similarity and the goal function

A meaningful partition (let it be hard or fuzzy) should group vertices that
are somehow similar to each other in the same community. It is reasonable
to assume that an edge between vertex v1 and v2 implies the similarity of
v1 and v2, and likewise, the absence of an edge implies dissimilarity. Let us
assume that we have a function s(U, i, j) that satisfies the following criteria:

1. s(U, i, j) ∈ [0, 1]

2. s(U, i, j) is continuous and differentiable for all uij.

3. s(U, i, j) = 1 if the membership values of vi and vj suggest that they
are as similar as possible.

64

4. s(U, i, j) = 0 if the membership values of vi and vj suggest that they
are completely dissimilar (there is no chance that they belong to the
same community).

Let us call such s(U, i, j) a similarity function, and for the sake of sim-
plicity, it will be denoted by sij from now on (not emphasizing its dependence
on U). Now suppose we have a prior assumption about the actual similar-
ity of the vertices, denoted by s̃ij for vi and vj. This leads to the following
equation, which measures the fitness of a given partition U of graph G(V, E)
by quantifying how precisely it approximates the prescribed similarity values
with sij:

DG(U) =
n∑

i=1

n∑
j=1

wij (s̃ij − sij)
2 , (3.7)

where wij’s are optional weights and n = |V | is the number of vertices in
the graph. Better partitions yield smaller DG(U) values. For the sake of
notational simplicity, the matrices W = [wij], S(U) = [sij] and S̃ = [s̃ij]

are also introduced. From now on, I assume that S̃ = A + I, the adjacency
matrix of the graph with ones along the main diagonal, in concordance with
the assumption that the similarity of connected vertex pairs should be close
to 1 and the similarity of disconnected vertex pairs should be close to zero.
The ones in the main diagonal account for the fact that a vertex should be as
self-similar as possible. The only thing left is to precisely define a similarity
function sij that satisfies the conditions prescribed above. The definition
used in [92] was the following:

sij =
c∑

k=1

ukiukj = uT
i uj (3.8)

Eq. (3.8) simply states that the similarity of vertices i and j is the dot
product of the respective membership vectors, which makes it particularly
convenient to calculate the similarity matrix, since S(U) = [sij] = UTU.
Note that any other similarity function is conceivable as long as it satisfies
the criteria described above.

The matrix form of this problem with equal and positive weights bears
some similarity with the Cholesky decomposition. In this case, DG(U) is
zero if and only if S̃ = UTU. This would be easy to solve if U was an n× n
matrix (meaning that the number of communities c is equal to the number of
vertices n), and S̃ was symmetric and positive-definite. Since none of these
conditions hold, all that one can do is to minimize the difference between S̃
and UTU by finding an appropriate U.

65

3.3 Finding fuzzy communities in undirected

networks

3.3.1 Outline of the algorithm

Given an expected similarity matrix S̃ (which coincides with the adjacency
matrix in this case except the main diagonal, which contains only ones), and
the number of communities c, the goal is to find a partition matrix U that
minimises Eq. (3.7), or in other words, to perform a weighted least squares fit
of the similarity matrix S = UTU to S̃. The Levenberg-Marquardt algorithm
[72, 76] would be an efficient solution for the problem had there not been the
constraints imposed on U (see Eq. (3.5): all column sums in U must be 1
and all uij must be between zero and one). This poses a challenge to most
numeric optimisation algorithms, since they usually cannot take constraints
into account, or even if they can (like the L-BFGS-B method [136]), the
constraints they can enforce are not satisfactory for this problem. Therefore,
we must take another approach.

There exist a set of necessary conditions that restrict the set of possible
U’s worth evaluating [61, 65]. The Karush–Kuhn–Tucker conditions are
a generalisation of the method of Lagrange multipliers, as they can take
both equality and inequality constraints into account. The formal necessary
conditions are as follows:

Theorem 3.1 (Karush–Kuhn–Tucker conditions). Let the objective function
f : Rn → R be convex and let there be constraint functions gi : Rn → R and
hj : Rn → R. Suppose they are continuously differentiable at a point x∗. If
x∗ is a local minimum, then there exist constants µi and νj such that

∇f(x∗) +
∑

i

µi∇gi(x
∗) +

∑
j

νj∇hj(x
∗) = 0

µi ≥ 0 gi(x
∗) ≤ 0 hj(x

∗) = 0 µigi(x
∗) = 0

(3.9)

However, due to the computational complexity of minimising such a func-
tion for networks larger than only a few vertices, this solution is only of the-
oretial interest. The solution I proposed in [92] is based on a simple steepest
descent method with adaptive step size, for which I used Lagrange multipliers
to incorporate the equality constraints into the goal function. The remaining
inequality constraints were enforced by adjusting the step size appropriately
during the search in order not to step out from the allowed range.

Let there be λ = [λ1, λ2, . . . , λn] Lagrange multipliers. λi will be respon-
sible for the equality constraint

∑c
k=1 uki = 1. The modified goal function is

66

defined as follows:

D̃G(U, λ) =
n∑

i=1

n∑
j=1

wij (s̃ij − sij)
2 +

n∑
i=1

λi

(
c∑

k=1

uki − 1

)
(3.10)

The modified goal function compactly encodes the original goal function and
the equality constraints, since ∂

∂uij
D̃G(U, λ) = 0 (for all 1 ≤ i ≤ c and

1 ≤ j ≤ n) ensures that we are at a stationary point of the goal function,
and ∂

∂λ
D̃G(U, λ) = 0 ensures that the conditions of Eq. (3.5b) are satisfied.

Therefore, stationary points of Eq. (3.10) will also be stationary points of
Eq. (3.7) and they do not violate Eq. (3.5b).

To employ a gradient-based iterative optimization method, the derivatives
of the goal function with respect to ukl are needed. First note that

∂sij

∂ukl

=
∂

∂ukl

(ukiukj) (3.11)

which is zero, except when i = l or j = l:

∂sij

∂ukl

=


2ukl if i = l ∧ j = l
uki if i 6= l ∧ j = l
ukj if i = l ∧ j 6= l
0 if i 6= l ∧ j 6= l

(3.12)

The partial derivative of D̃G(U, λ) with respect to ukl is therefore

∂D̃G

∂ukl

= −
n∑

i=1

n∑
j=1

2wij(s̃ij − sij)
∂sij

∂ukl

+ λl

= −2
n∑

i=1

wil(s̃il − sil)uki − 2
n∑

j=1

wlj(s̃lj − slj)ukj + λl

(3.13)

Let eij = wij (s̃ij − sij) denote the residual corresponding to the vertex
pair (i, j) to shorten the formulae. Summing the partial derivatives for k =
1, 2, . . . c, making them equal to zero and substituting Eq. (3.5b) back where
appropriate leaves us with:

cλl = 2
c∑

k=1

n∑
i=1

(eil + eli)uki

λl =
2

c

n∑
i=1

[
(eil + eli)

c∑
k=1

uki

]

λl =
2

c

n∑
i=1

(eil + eli)

(3.14)

67

The substitution of Eq. (3.14) into Eq. (3.13) yields one component of
the modified goal function’s gradient vector:

∂D̃G

∂ukl

= 2
N∑

i=1

(eil + eli)

(
1

c
− uki

)
(3.15)

Simple steepest descent optimisation

The simplest gradient-based algorithm for finding a local minimum of D̃G is
the following:

1. Start from an arbitrary random partition U(0) and let t = 0.

2. Calculate the gradient vector of D̃G according to Eq. (3.15) and the
current U(t).

3. If maxk,l |∂D̃G

∂ukl
| < ε, stop the iteration and declare U(t) a solution.

4. Otherwise, calculate the next partition in the iteration with the follow-
ing equation:

u
(t+1)
ij = u

(t)
ij + α(t)∂D̃G

∂uij

(3.16)

where α(t) is a small step size constant chosen appropriately.

5. Increase t and continue from step 2.

α(t) can be determined by a line search towards the direction defined by
the gradient vector, it can be adjusted iteratively according to some simulated
annealing schedule (see [99] for a comparison of strategies), or it can be made
adaptive from iteration to iteration by checking the difference of the values
of the goal function in the last few steps: the step size can be increased if the
value of the goal function decreased, and it must be decreased if the value
of the goal function increased. We must also make sure that the procedure
does not end up accidentally in a saddle point or a local maximum of DG(U).
Local maxima are easy to avoid by choosing an α(t) that always decreases the
value of the goal function in the next step. Saddle points and not too deep
local minima can be avoided by randomly mutating the acquired solution
and see if the iteration converges back to the original, unmutated solution.

According to my simulations, the quality of the result is not affected by
the initial membership degrees, but the speed of convergence is. In the ex-
treme case, if one chooses all uij to be equal to 1/c, all the gradients will
be zero (see Eq. 3.15), therefore it is suggested to use a randomised initial

68

 0
 0.2

 0.4
 0.6

 0.8
 1

x1

 0 0.2 0.4 0.6 0.8 1

x2

 0

 0.007

 0.014

P

 0
 0.2

 0.4
 0.6

 0.8
 1

x1

 0 0.2 0.4 0.6 0.8 1

x2

 0

 0.007

 0.014

P

Figure 3.2: Left: joint probability density function of x1 and x2 when components
of x = [x1, x2, x3] are drawn from a uniform distribution and then their sum is
normalised to 1. Right: the same joint distribution when the components are
drawn from a gamma distribution with shape and scale parameters equal to 1,
resulting in a joint Dirichlet distribution with α = [1, 1, 1]. Note that the latter
one is uniform in the allowed range, while the former one is not.

partition matrix. I propose choosing the initial membership degrees from a
uniform distribution while still satisfying the sum constraints. Uniformity
with respect to the constraints is not straightforward to achieve. The näıve
approach is to choose a random number from the interval [0, 1] for every uij

and divide them with their respective column sums to satisfy Eq. (3.5b).
However, this method is biased towards membership vectors describing ver-
tices equally participating in every community. The proper way to sample
from all possible membership vectors is to draw every vector from a Dirich-
let distribution with order c and α = [1, 1, . . . , 1] where α has c coordinates,
since this ensures that all possible valid membership vectors occur with equal
probability. Such a distribution can be generated by drawing c independent
random samples from gamma distributions each with shape and scale pa-
rameters equal to 1, and dividing each variable with the sum of all of them
[29]. Figure 3.2 illustrates the difference between the two sampling methods.

For the sake of completeness, I show that U(t+1) remains a partition
matrix if U(t) was a partition matrix. Recall that a partition matrix satisfies
Eq. (3.5a) and Eq. (3.5b). In the first step, I choose U(0) that satisfies
Eq. (3.5c). The persistence of Eq. (3.5a) and Eq. (3.5c) is straightforward
if I always keep α(t) low enough, so I only have to prove the persistence of
Eq. (3.5b):

69

c∑
i=1

u
(t+1)
ik =

c∑
i=1

u
(t)
ik +

c∑
i=1

α(t)∂D̃G

∂u
(t)
ik

= 1 + 2α(t)

c∑
i=1

n∑
j=1

(ejk + ekj)

(
1

c
− u

(t)
ij

)

= 1 + 2α(t)

n∑
j=1

(ejk + ekj)

(
1−

c∑
i=1

u
(t)
ij

)
︸ ︷︷ ︸

0

= 1

(3.17)

Despite all the drawbacks usually associated with simple gradient descent
methods (e.g., the slow convergence in case of pathological goal functions
such as the Rosenbrock function [110]), the method described above gives
satisfactory results on real-world and artificial networks as well (see [92] or
Section 3.5). I used the following strategy to set the step size: initially, the
step size was set at 0.5. After every three consecutive successful step (when
the goal function decreased), I multiplied the step size by 1.5. After every
unsuccessful step (when the goal function decreased), the step size was halved
and the step retried with the smaller step size. The search was stopped when
the step size became smaller than a predefined threshold (e.g., 10−3).

Optimisation with the BFGS algorithm

Instead of the simple method presented above, one can also make use of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [113], a quasi-Newton
method that makes use of the fact that we are looking for roots of the deriva-
tive, therefore Newton’s method for root finding can be applied to the deriva-
tive. Since Newton’s method requires the derivative of the function whose
root is being sought, we would need the Hessian matrix of the modified goal
function. Given n vertices and c communities, the Hessian matrix is of size
nc× nc (since there are nc variables) and even though most elements in the
Hessian are zeros, it is still computationally expensive to keep track of. The
BFGS method overcomes this difficulty by approximating the Hessian at ev-
ery step based on previous successive gradient vectors. The details are given
in [113]. Due to the shape of the goal function, it is advised to decompose it
to parts corresponding to individual vertices and optimise the parts one by
one. The local modified goal function of vertex i is as follows (derived from

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

8
7

6

5

4

2.8
2.8

2.7
2.7

2.6

2.6
2.5

2.44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

8
7

6

5

4

2.8
2.8

2.7
2.7

2.6

2.6
2.5

2.44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

8
7

6

5

4

2.8
2.8

2.7
2.7

2.6

2.6
2.5

2.44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

8
7

6

5

4

2.8
2.8

2.7
2.7

2.6

2.6
2.5

2.44

(a) Optimum inside the valid region

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

5

4

3

2.7

2.6

2.5

2.5

2.4

2.4
2.4

2.31641

2.31641

2.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

5

4

3

2.7

2.6

2.5

2.5

2.4

2.4
2.4

2.31641

2.31641

2.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

5

4

3

2.7

2.6

2.5

2.5

2.4

2.4
2.4

2.31641

2.31641

2.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

5

4

3

2.7

2.6

2.5

2.5

2.4

2.4
2.4

2.31641

2.31641

2.25

(b) Optimum outside the valid region

Figure 3.3: Local goal function of vertex i in the fuzzy community detection
algorithm with n = 10 vertices and k = 3 without the Lagrangian term. u1,i is
plotted on the X axis, u2,i on the Y axis. The thin black diagonal line shows the
boundary of the valid region for ui. Black upright triangles represent the current
membership vectors of vertices connected to vertex i, gray triangles pointing down
represent vertices not connected to vertex i. The optimum is shown by a crosshair.
If it falls outside the valid region (right), it is replaced by the closest point of the
valid region (denoted by an arrow).

Eq. (3.10) by omitting terms not related to vertex i):

D̃G,i(U, λ) =
n∑

j=1

wij (s̃ij − sij)
2 + λi

(
c∑

k=1

uki − 1

)
(3.18)

The partial derivatives are:

∂D̃G,i

∂uki

= 2
N∑

l=1

(eil + eli)

(
1

c
− ukl

)
(3.19)

See Figure 3.3 for the typical shape of the local goal function in a simple
example.

Let u
(t)
i denote the membership vector of vertex i in time instance t.

Starting from an initial random partition matrix U(0), only one vertex will
be modified in every time step. Every time I modify the membership vector
of a vertex, I store the distance it travelled in ri (ri = ∞ if the membership
vector has not been modified so far). The BFGS method is then utilised
according to the following scheme:

71

1. If max ri < ε, terminate the algorithm. Otherwise, if there exists ver-
tices with ri = ∞, choose one from them randomly. If all ri’s are
finite, then choose a vertex randomly according to a distribution where
the probability of choosing vertex i is proportional to rγ

i (γ and ε are
parameters of the algorithm, I achieved good results with γ = 2 and
ε = 10−3).

2. Increase t by one.

3. Optimise the local goal function of the chosen vertex i according to the
BFGS method with all other membership vectors held constant at their
values in time step t − 1. The partial derivatives in Eq. (3.19) ensure

that
∑c

k=1 u
(t)
ki = 1 in the new optimum. Should there be any u

(t)
ki in the

new optimum that is less than zero, set it to zero and renormalise u
(t)
i to

adhere to Eq. (3.5b). This correction seems rather arbitrary, but due to
the typical shape of the local goal function, the corrected goal function
value is in practice sufficiently close to the local minimum inside the
allowed range (see the right panel of Figure 3.3 for an illustration).

Also note that we do not have to explicitly take care of u
(t)
ki ’s larger

than one; the existence of such a membership value implies that there
are negative membership values as well in the same membership vector,
since the sum of membership values in a membership vector is always
one.

4. Calculate the Euclidean distance between u
(t)
i and u

(t−1)
i and store it

in ri. Formally, let ri =
∑c

k=1

(
u

(t)
ki − u

(t−1)
ki

)2

.

5. Go back to step 1.

The implementation of this method can take advantage of the many open-
source BFGS minimisers available, e.g., the one in the GNU Scientific Library
[43]. On the other hand, the algorithm suffers from floating point rounding
errors in some cases (which is usually reported by the solver stating that it
was unable to achieve the desired precision), and the algorithm may spend
too much time on finding the exact minimum of a local goal function, which
is not necessary in the early stage of the minimisation process, since the place
of the local minimum is heavily influenced by the current membership vector
of other vertices that also change rapidly at the stage. Random mutations
of found local minima can be used similarly as in the simple steepest descent
case in order find a better local minima.

72

3.3.2 Connection weights

Up to now, I did not say anything about the weighing terms wij in Eq. (3.7).
The easiest approach is to consider all vertex pair weights as equal, lead-
ing to an algorithm that works best in small networks. The reason is that
the algorithm implicitly assumes that the absence of a connection between
vertices i and j implies the dissimilarity of those two vertices. This does
not necessarily hold in large networks: maybe the vast majority of vertex
pairs did not have a chance to interact and form a connection due to other
constraints (e.g., the spatial distribution of the vertices) not represented in
the network structure. Consider a real-world example from the field of social
networks. The assumption of the algorithm applies for the social network of
the employees of a small enterprise, where everyone had a chance to meet all
the others and form a connection; however, the same assumption may not
hold for a multi-national company with many divisions all over the world. In
the latter case, we must turn to a more precise approach that takes this phe-
nomena into account. This knowledge will be represented in the W weight
matrix.

There is always a possibility that a connection in the network is a byprod-
uct of some random process and does not imply the similarity of those ver-
tices. To cite an example from the field of social networks again: a connection
between two people whose social activity is well over the average (they are
both connected to a lot of other people) is less important or “surprising” than
a connection between two people who are otherwise well-separated from other
parts of the network. Similarly, given two hubs in the network, the absence
of a connection between them is a stronger precursor of dissimilarity than
the absence of a connection between two nodes situated on the opposite pe-
ripheries of the network. More formally, the connection between two vertices
with high degree is less interesting than a connection between vertices with
low degree, since the former one is formed frequently even in a random net-
work that follows the same degree distribution. A sophisticated weighing
should associate more weight to connections that are not likely to happen in
random networks [90].

Now we can turn to the configuration model of Molloy and Reed [82]:
a random network conditioned on the degree sequence s0, s1, s2, . . . , where
si is the number of vertices with degree i. The probability of an edge in
such a network depends solely on the degrees of the endpoints of the edge:
Pij = didj/2m, where di and dj are the degrees of the endpoints, respectively,
and m is the number of edges. In other words, Pij is the expected number
of edges between vertex i and j. Since we only have a single instance of the
network being analysed, there is no better choice than to let the observed

73

number of edges be equal to Aij. More weight is assigned to vertex pairs
where the expected and the observed number of edges differ significantly:

wij =

(
Aij −

didj

2m

)2

(3.20)

In practice, the vast majority of vertex pairs will have negligible wij values.
By considering these weights equal to zero, some elements of the similarity
matrix will not have to be calculated, since they will not influence the goal
function or its derivatives due to the corresponding zero weight.

The difference between the unweighted and weighted approaches will be
illustrated on real-world examples in Section 4.3. I also note that the Molloy–
Reed configuration model is not the only model that can be used for deriving
connection weights in the network, and the investigation of other possible
weighing schemes is one of the possible future research directions.

3.3.3 Choosing the number of communities

The most important parameter of the fuzzy community detection method
is c, defining the number of communities the algorithm tries to discover in
the network. This parameter is the keystone of most community detection
algorithms, and determining c in a self-consistent way without human inter-
vention is definitely a complicated problem. Spectral methods rely on the
largest eigenvalues of the adjacency matrix A or the smallest eigenvalues of
the Laplacian matrix L = D−A (where D is a diagonal matrix with diagonal
elements di, the degrees of the vertices) to define the number of communities,
but this is usually done by visual inspection, and since the eigenspectrum of
most networks found in real applications resemble a straight line instead of
a step function, choosing c is not free of subjective elements. For instance,
the number of eigenvalues of the Laplacian matrix of a graph that are close
to zero are often used as the value of c, but this only replaces the value of
c with another parameter: a threshold level that decides which eigenvalues
are considered to be close to zero. The threshold is then chosen manually.

In order to get rid of the human intervention needed to choose c based on
the eigenvalues, I proposed a different, divisive approach in [92] which also
spares some computation in the early stage of the algorithm. Initially, a fuzzy
bisection of the graph is computed by setting c = 2. After that, whenever
the optimisation gets stuck in a local minimum, another degree of freedom is
added to the system by increasing c and continue with the optimization from
the last local minimum until it converges again. This process is repeated until
the newly introduced community does not improve the overall community

74

structure of the network. The community structure is assessed by a fuzzified
variant of the modularity function, originally introduced by Newman [94] (see
Section 1.2.4 for a short explanation of the measure). Here I only recall that
the “crisp” modularity of a network with vertex i belonging to community
c(i) is then defined as:

Q =
1

2m

∑
i,j

(
Aij −

didj

2m

)
δc(i),c(j) (3.21)

where δc(i),c(j) is the Kronecker-delta. Since the community structure in fuzzy
applications is not clear-cut, the predicate that “vertices i and j belong to the
same community” also has a fuzzy truth value between 0 and 1. When the
membership degree uki is considered the probability of the event that vertex
i is in community k, the probability of the event that vertex i belongs to the
same community as vertex j becomes the dot product of their membership
vectors, resulting in the already introduced similarity measure sij, which can
be used in place of δc(i),c(j) to obtain a fuzzified variant of the modularity:

Qf =
1

2m

∑
i,j

(
Aij −

kikj

2m

)
sij (3.22)

Note that in the case of crisp communities (there exists only one k for every
vertex i such that uik = 1), the fuzzified modularity Qf is exactly the same as
the crisp modularity Q. In order to determine the optimal number of fuzzy
communities, the number of communities c should be increased iteratively
and the one resulting in the highest fuzzified modularity Qf should be chosen.

3.4 Identifying bridge vertices

One of the advantages of fuzzy community detection is that it enables us to
analyse to what extent a given vertex is shared among different communi-
ties. In this section, a couple of measures will be introduced to quantify the
sharedness of a vertex.

3.4.1 Bridgeness

Intuitively, the goal is to define a measure that is zero when the vertex
belongs to only one of the communities, and increases gradually as it be-
comes shared between more and more communities. By limiting this mea-
sure from above by 1, we achieve the measure called bridgeness, which is
the distance of a membership vector ui = [u1,i, u2,i, . . . , uci] from a reference

75

vector
[

1
c
, 1

c
, . . . , 1

c

]
in the Euclidean vector norm, inverted and normalised

to the interval [0, 1] as follows:

bi = 1−

√√√√ c

c− 1

c∑
j=1

(
uji −

1

c

)2

(3.23)

Other vector norms are also conceivable with different normalization factors
to make the result span over the interval [0, 1]. The Euclidean norm yields
the sample variance of ui under the square root, multiplied by c, hence the
bridgeness measure with Euclidean norm can be rewritten as:

bi = 1−
√

c Var(ui) (3.24)

3.4.2 Centrality-weighted bridgeness

Note that bi attains its theoretical maximum when vi belongs to all of the
communities exactly with the same membership degree, therefore it is possi-
ble that in this case, vi is more likely to be an outlier in the graph (a vertex
belonging to none of the communities) rather than a bridge. To distinguish
outliers and real bridges, one should also look at the centrality measures
of the vertex: high centrality supports the assumption that the vertex is
effectively a bridge, because despite its central role in the network, the algo-
rithm was not able to assign it to a single community. Low centrality may
mean that the algorithm strived to make the vertex dissimilar from almost
all other vertices, therefore it made it belong to all the communities. The
simplest measure that incorporates centrality and bridgeness score into a
single number is simply defined as the product of the degree and the brid-
geness of the node, and will be called degree-weighted bridgeness from now
on. Other centrality measures (e.g. betweenness centrality, closeness cen-
trality or eigenvector centrality [128]) can also be used. More sophisticated
centrality measures take into account that several networks contain vertices
that have a crucial role but a relatively low degree (e.g. metabolic networks,
as shown in [51]). It is also suggested to plot a chosen centrality measure
versus the bridgeness score for each vertex to visually aid the selection of
bridge vertices and outliers. An example of this kind of plot will be shown
in Section 4.2 on Fig. 4.6.

Note that the direct dependence of the bridgeness measure on the number
of communities implies a somewhat strange behaviour. Take the graph on
Figure 3.1 as an example. The fuzzy partition has two communities, and the
bridgeness of vertex 5 in the middle is 1, the maximal possible bridgeness
that can be achieved. Now consider a graph that contains k exact copies of

76

the original graph in k separate components! This graph would have 2k fuzzy
communities, and the bridgeness of vertex 5 would immediately drop to 1/k,
since theoretically there could be vertices that reside in all 2k communities to
some extent; but due to the topology of the graph, it is of course not really
meaningful. Therefore, care should be taken when evaluating bridgeness
measures: bridge-like vertices will have to be detected based on the fact that
they have a bridgeness value larger than the “typical” bridgeness, e.g., more
than one standard deviation higher than the mean bridgeness in the network.
The next subsection will present an alternative approach to bridgeness that
does not suffer from this drawback.

3.4.3 Exponentiated entropy

Another approach to a bridgeness-like measure can be derived by quantifying
how many “significant communities” a given vertex has. Consider ui as
a probability distribution function defined on a finite support set with c
elements: uki is the probability that vertex i belongs to community k. Take
a large sample from this distribution. The average information conveyed
by elements of this sequence is given by the Shannon entropy of the p.d.f.:
H(u) = −

∑c
k=1 uki log2 uki. The entropy will be high if the vertex belongs to

many communities significantly, while it will be low if the vertex is practically
a member of a single community. 2H(u) is therefore a good measure of the
number of significant communities χi of a single vertex i [123]:

χi = 2−
Pc

k=1 uki log2 uki =
c∏

k=1

u−uki
ki (3.25)

χi equals 1 if there is only a single uki that is not zero, i.e. the vertex belongs
only to one community. The maximal value of χi = c is attained when
all uki’s are equal to 1/c. In general, χi ≈ 2 and χi ≥ 2 is a property of
bridge-like vertices.

The exponentiated entropy can also be used for post-processing the ob-
tained fuzzy partitions. The post-processing phase would remove irrelevant
community memberships as described in Algorithm 6. Informally, the post-
processing phase keeps only the dχie most significant community member-
ships of every vertex i, the rest of them is set to zero and ui is renormalised
after pruning.

77

Algorithm 6 Post-processing fuzzy community detection results based on
the exponentiated entropy

Require: U = [uki], n > 0, k ≥ 2
1: for i = 1 to n do
2: Calculate χi according to Eq. (3.25)
3: Let x = [xi] a vector such that ux1,i, ux2,i, . . . , uxk,i is in descending

order
4: s := 0
5: for j = dχie+ 1 to k do
6: s := s + uxj ,i

7: uxj ,i := 0
8: end for
9: for j = 1 to dχie do

10: uxj ,i := uxj ,i/(1− s)
11: end for
12: end for

3.5 Benchmark results

This section presents the assessment of the method on computer-generated
graphs. I will use uniform edge weights in all cases. Comparison with other
overlapping community detection approaches will be given in Section 4.2.2
on a real dataset.

The graphs on which I tested the method can be grouped as follows:

Graphs with nonoverlapping community structure. These graphs con-
sisted of 1024 vertices grouped into four communities, each containing
256 vertices. Each vertex had an average of kin = 24 links to other
vertices in its own community and an additional kout = 8 links to ver-
tices in different communities. The generated graphs contained 16,384
edges and had a density of 0.031. kin and kout was then later varied
to study the robustness of the algorithm as the distinction between
intra- and inter-community edges diminish. This method was already
used earlier in the literature to assess the performance of community
detection algorithms (see [94, 108]).

Graphs with overlapping community structure. These graphs consisted
of 768 regular vertices and 256 bridge candidates. (I will shortly explain
why are these vertices only “candidates” and not always real bridges).
Vertices were grouped into two communities so that each community

78

contained 384 regular vertices and 128 bridge candidates. Regular ver-
tices had the same connectional patterns as in the nonoverlapping case:
24 links on average to other vertices in their community and 8 links to
the other community. Bridge candidates had 6 links to other vertices
in their community, 12 links to other bridge candidates in their com-
munity, 6 links to bridge candidates of the other community and 8
links to regular vertices of the other community. The edge count and
the density was equal to the nonoverlapping case. Some of the bridge
candidates thus became bridges between the two communities, but due
to the randomised nature of the algorithm, one cannot tell in advance
which bridge candidates will actually become bridges.

3.5.1 Nonoverlapping community structure

In order to compare a fuzzy partition with an expected hard partition, I in-
troduced the notion of dominant community. The dominant community of
a vertex is the community to which it belongs to the greatest extent. For-
mally, community i is the dominant community of vertex j if uij ≥ maxk ukj

for 1 ≤ k ≤ c. If multiple dominant communities exist according to this
definition, the one with the lowest index is chosen. Out of 1000 graphs with
nonoverlapping community structures, the algorithm classified all vertices
correctly in 97.4% of the test cases after converting the achieved fuzzy parti-
tion to its hard counterpart using the dominant communities. It was also able
to infer the actual number of communities automatically in all cases using the
fuzzified modularity. To further study the distribution of intra-community
and inter-community edges, I varied the number of inter-community edges
(kout) from 0 to 24 while keeping kin + kout constant. When kout reaches 24,
the graph practically becomes an Erdős-Rényi random graph devoid of any
community structure, since the connection probability between any two of
the pre-defined communities is then equal. Figure 3.4(a) shows the results
of the benchmark. The quality of the calculated community structure was
assessed by the normalised mutual information of the confusion matrix (de-
scribed earlier in Section 2.6.1). The performance of the algorithm degrades
suddenly when the number of inter-community links exceeds 16. This is the
point where on average there are more links between the communities than
inside them (which is, of course, not really reminiscent of real communities).

3.5.2 Overlapping community structure

Generated graphs with overlapping community structure were used to test
the sensitivity of the algorithm to vertices standing between communities.

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Q
ua

lit
y

kout

(a)

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Bridgeness

Regular nodes
Bridge candidates

(b)

Figure 3.4: Panel (a) shows the performance of the algorithm for a graph with
nonoverlapping community structure. Inter-cluster link count (kout) was varied
while keeping the average degree (kin +kout) constant. The quality of the obtained
result was measured using the normalised mutual information of the confusion
matrix [26]. Panel (b) shows the frequencies of bridgeness values in a graph with
overlapping community structure. Thin line shows frequencies for regular nodes,
thick line shows frequencies for bridge candidates. The bin width of the histogram
was set to 0.01 (100 bins).

As described above, the graph generation model declared 128 vertices out
of 512 in both communities as bridge candidates, and clearly distinguished
them by their different connectional patterns: bridge candidates tended to
connect to each other with a higher probability than to the regular vertices in
their communities, even if they originally belonged to different communities,
creating an overlap between the two communities. Because of the randomised
nature of this model, not all bridge candidates became real bridges between
the communities, but they had a significantly higher chance of becoming
one. I used the bridgeness value introduced in Section 3.4 to assess the
quality of the results. I expected that bridge candidate vertices exhibit a
different bridgeness score distribution than the regular vertices in the same
graph. I also required that vertices identified as bridges by the algorithm
should be among those that have been declared bridge candidates before test
graph generation. I generated 1000 random graphs using this graph model
and plotted the distribution of the bridgeness scores on Figure 3.4(b). The
different nature of the two distributions was supported by a Kolmogorov-
Smirnov test (p-value less than 2.2 × 10−16). Regular vertices usually had
lower bridgeness scores than the bridge candidates, and I found that 92.8%
of the identified bridges (based on their standardised bridgeness scores) were

80

among bridge candidates, confirming that the algorithm is sensitive to the
existence of overlaps between communities. Similar results were achieved
with the number of significant communities χi in place of the bridgeness
measure.

Real-world applications of the fuzzy community detection method will be
shown in Sections 4.2 and 4.3.

3.5.3 Running time

In this section, I will estimate the time complexity of the simple steepest de-
scent based community detection. This method consists of an initialisation
step (where the initial partition matrix is generated from random vectors
drawn from a Dirichlet distribution) and an iterative optimisation. The time
complexity of the method is dominated by the latter one. With n vertices
and c communities, the time complexity of calculating the initial partition
matrix is O(nc), assuming that drawing a random number from a gamma
distribution takes O(1). Calculation of the similarity matrix is O(n2c) if it
is carried out näıvely without weighing the vertex pairs according to Sec-
tion 3.3.2, but this can be reduced significantly if the network is sparse and
vertex pairs with insignificant weight are left out from the calculation. Cal-
culating the gradient vectors in each step takes O(n2c) time, since there are
nc gradient components and each of them requires a summation of n terms.
Choosing the maximum gradient component for each vertex is O(nc) and
calculating the next partition matrix is also O(nc), assuming that the step
size can be chosen in O(1) (which is true for simulated annealing strategies
or adaptive step sizes based on the decline of the goal function between sub-
sequent steps). This results in an overall time complexity of O(n2ch), where
h is the number of steps necessary for the algorithm to terminate. Therefore,
I expected that the calculation time scales approximately quadratically with
the number of vertices if n � c. This is confirmed by measurements (see
Figure 3.5). When calculating the time complexity, I did not take into ac-
count the possible dependence of h (the number of steps the algorithm takes
before it concludes that it converged) on n, the number of vertices. This is
due to the fact that h depends on many factors: the initial configuration,
the required precision of the solution and the inner structure of the network.
The measurements presented on Figure 3.5 suggest that h does not scale
with n: the number of steps taken by the algorithm is mostly independent of
the number of vertices involved. The phenomena can be explained by noting
that the networks analysed are sparse, and the optimal membership vector
of a vertex is mostly dependent only on the membership vectors of its close
neighbors and the hubs of the network when appropriate weighing is used; in

81

Figure 3.5: Running time of the algorithm as a function of the number of vertices
in a graph with 4 communities. Fitting f(x) = axb resulted in the parameters
a = 2.3 × 10−5 ± 1 × 10−6 and b = 1.968 ± 4.24 × 10−3 (standard deviation from
the fitted curve = 2.583), confirming the reasoning on the quadratic running time
of the algorithm when implemented with sparse matrices.

other words, vertex-vertex interactions are mostly local. The running time
of the algorithm on dense networks is approximately O(n3), suggesting that
h scales with n in this case (and weighing vertex pairs does not help, since
most vertex pairs will have significant weight that can not be neglected).
This case is not of much interest to us, since the existence of communities
(dense subnetworks inside a sparse network) is usually asked in the context
of sparse networks.

82

4
Applications

T
he purpose of this chapter is to show some practical applications
of the methods presented in Chapters 2 and 3. The studies will be
devoted to cortical and social networks. The review of Sporns et al.

[118] is a good introductory material to recent advances regarding cortical
networks, while the book of Wasserman and Faust [128] gives an in-depth
overview of methods and techniques pertaining to social networks. A short
description of these types of networks will be given in the respective sections.

4.1 Predicting missing neural connections in

cortical networks

The cerebral cortex is probably the most prominent example of natural in-
formation processing networks. At the lowest level, the cortical network is
composed by physically (i.e., via chemical and electrical synapses) connected
nerve cells. The cortex, in general, consists of approximately 1010 nerve cells,
each receiving numerous connections in the order of 103 (up to about 104)
[13]. However, the study of cortical networks in such detail is yet impossi-
ble: there is no accurate (or at least partly accurate) map of the connections
of individual nerve cells in such complex organisms as humans, although
it is noteworthy that detailed mappings exist for the nervous system of a
roundworm species, namely Caenorhabditis elegans [131] (but it has only
302 neurons).

At a higher organizational level, the cortex is composed of about a hun-
dred structurally and functionally specialised regions or areas with highly
variable shape and size [125]. This level of organisation is of great interest,
because the available anatomical and imaging (fMRI, PET, EEG, MEG)

83

techniques made the investigation of the network of cortical areas possible.
Most of our knowledge about this large-scale cortical network comes from
studies charting the neuronal, i.e. synaptic connections between cortical ar-
eas. Since the usage of sensitive and powerful tract tracing techniques is not
feasible in humans, the neuronal connections between the areas have been
being studied intensely in non-human primates, especially in the macaque,
which serves as a model of the human cortex [125]. The network of areas
is usually represented in binary form considering only knowledge of the ex-
istence of a connection between the areas. However, this representation is
not accurate: many connections treated as missing in the cortical network
may exist in reality if their existence has never been checked experimentally
due to methodological difficulties. A method that is able to give meaningful
predictions about where to look for additional connections would therefore
be of primary importance.

A practical way of approaching this problem is to check how exactly can
the network be reconstructed based on a given index or network measure
[25, 59], and then use this measure to predict the existence of unknown
connections. The two studies published up to now present data on such pre-
dictions of yet unknown connections in the cortex [25, 59]. The results of
these studies, especially those by da Fontoura Costa et al. [25], who investi-
gated a set of measures, suggest that connectional similarity of the areas is a
good predictor in reconstructing the original cortical network. However, they
also report a relatively large number of violations, where known existing con-
nections were predicted as non-existent and known non-existent connections
to be existing in the reconstructed graphs. This suggests that using other
approaches could result in better reconstruction of the cortical network. The
approach I used was discussed in Chapter 2 and in [91].

4.1.1 The dataset

The dataset I analyse in this section is the graph model of the visuo-tactile
cortex of the macaque monkey brain1, published in Négyessy et al. [86].
The whole network contains 45 vertices and 463 directed links among them.
The existence of connections included in the network were confirmed exper-
imentally, while connections missing from the network were either explicitly
checked for and found to be nonexistent, or never checked experimentally.
To illustrate the uncertainty in the dataset being analyzed, I emphasize that
1157 out of the 1980 possible connections were uncertain and only 360 were
known to be absent. Such uncertainty poses a challenge to traditional local

1The dataset is available at http://www.mit.bme.hu/∼nepusz

84

http://www.mit.bme.hu/~nepusz

Table 4.1: Basic properties of the cortical networks
Visual Sensorimotor Visuo-tactile

Vertices 30 15 45
Known connections (edges) 335 85 463

Known nonexistent connections 310 0 360
Unknown connections 225 125 1157

Density 0.385 0.404 0.233
Density (excluding unknowns) 0.519 1.000 0.548

Diameter 3 3 5
Average path length 1.6632 1.767 2.149

Reciprocity 0.850 0.888 0.815

similarity indices and path ensemble methods (see Section 4.1.3).
The network consists of two dense subnetworks corresponding to the vi-

sual and the sensorimotor cortex (30 and 15 vertices, respectively). The
visual cortex can also be subdivided into the so-called dorsal and ventral
parts using a community detection algorithm based on random walks [69].
Most of the uncertain connection candidates are heteromodal (originating
in the visual and terminating in the sensorimotor cluster, or the opposite),
and it is assumed that the vast majority of possible heteromodal connections
are indeed nonexistent. The basic properties of these networks are shown
in Table 4.1, while the adjacency matrix of the visuo-tactile network is de-
picted on Figure 4.1. Note that since the visual and sensorimotor cortices
are subnetworks of the visuo-tactile network, their adjacency matrices are the
upper-left 30× 30 and lower-right 15× 15 submatrices of the adjacency ma-
trix. In order to compare my results with previous reconstruction attempts
that were only concerned with the visual cortex [25, 59], I present results
based on the visual subnetwork as well as the whole visuo-tactile cortex.

4.1.2 Results

Visual cortex

Since the visual cortex is part of the visuo-tactile cortex, I utilised the fitting
method on the visual cortex simply by taking the spanning subgraph consist-
ing of the visual areas (see Figure 4.1 where the first 30 areas are visual). It is
noteworthy that most of the unknown connections are adjacent to the areas
VOT and V4t, and the subgraph consisting of the vertices PITd, PITv, CITd,
CITv, AITd, AITv, STPp and STPa (all belonging to the ventral stream of

85

V1
V2
V3

V3A
V4
V4t
VOT
VP
MT

MSTd/p
MSTl
PO
LIP
PIP
VIP
DP
7a

FST
PITd
PITv
CITd
CITv
AITd
AITv
STPp
STPa

TF
TH
FEF
46
3a
3b
1
2
5
Ri
SII
7b
4
6

SMA
Ig
Id
35
36

V
1

V
2

V
3

V
3A

V
4

V
4t

V
O
T

V
P

M
T

M
S
Td
/p

M
S
Tl

PO LI
P

PI
P

V
IP

D
P

7a FS
T

PI
Td

PI
Tv

C
IT
d

C
IT
v

A
IT
d

A
IT
v

S
TP
p

S
TP
a

TF TH FE
F

46 3a 3b 1 2 5 R
i

S
II

7b 4 6 S
M
A

Ig Id 35 36

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Figure 4.1: Adjacency matrix of the visuo-tactile cortex dataset. Black cells
denote known existing connections, white cells denote known nonexistent connec-
tions. Grey cells are connections not confirmed or confuted experimentally. The
upper left 30×30 submatrix is the adjacency matrix of the visual cortex, the lower
right 15× 15 submatrix describes the sensorimotor cortex.

86

k Log-likelihood AIC τ
√

rprn MCC

2 -481.608 1091.216 0.50 0.808 0.617
3 -440.280 1018.560 0.50 0.812 0.661
4 -413.027 978.055 0.50 0.835 0.683
5 -394.664 959.328 0.50 0.852 0.705
6 -378.271 948.543 0.50 0.871 0.751
7 -363.146 944.292 0.50 0.888 0.785
8 -353.071 954.143 0.50 0.888 0.785
9 -340.886 963.773 0.47 0.896 0.800

10 -331.626 983.253 0.43 0.909 0.820
11 -319.771 1001.543 0.49 0.906 0.814
12 -307.766 1023.532 0.48 0.907 0.815
13 -300.657 1059.315 0.48 0.919 0.839
14 -297.540 1107.081 0.46 0.918 0.838
15 -288.615 1147.231 0.49 0.922 0.844

Table 4.2: Log-likelihoods, AIC values, √rprn and MCC in the visual cortex

the visual cortex) is also mostly unknown. Based on the connection density
of the visual cortex (assuming unknown connections to be nonexistent), the
probability of the existence of a connection classified as unknown was set
to 0.385. The search for the optimal configuration started from a random
initial position, first improved by the EM method, then followed by MCMC
sampling after reaching the first local maximum. The sampling process was
terminated when its running time exceeded a predefined time limit. The final
solution was the one with the best likelihood among all samples.

Based on the benchmarks described in Section 2.6.2, the optimal number
of groups was determined by the Akaike information criterion of the obtained
partitions at various group numbers from 2 to 15. Partitions having more
than 15 groups do not seem feasible, since in these cases, at least one of
the groups will contain only one vertex. I note that the singular values of
the adjacency matrix suggested only two groups (which is congruent with
the anatomical fact that the visual cortex is composed of two major path-
ways, namely the dorsal and the ventral stream), but the minimal AIC value
was achieved using 7 groups (see Table 4.2). Thresholds were selected in a
way that maximises the geometric mean of correctly predicted existing and
nonexisting edges (

√
rprn) in the known part of the network. τ fluctuated

around 0.5 in all cases. As expected based on the reasoning outlined in Sec-
tion 2.4.5, the success rate increased steadily as I increased the number of
groups, but the divergence of τ from 0.5 after having more than 7 groups is

87

Preference model Costa et al. [25]
τ = 0.5 τ = 0.654

rp 0.940 0.926 0.701
rn 0.839 0.734 0.697√

rprn 0.888 0.825 0.699
MCC 0.785 0.669 0.397

Table 4.3: Comparison of the reconstruction of the known parts of the cortical
network based on the preference model and the results of Costa et al. [25]. The
main diagonal of the adjacency matrix was excluded from comparison. Note that
Costa et al. used a slightly different set of areas. The results of Jouve et al. [59] were
unsuitable for comparison, since they provided predictions only on the unknown
part of the network.

likely to be a precursor of overfitting.
The fitted model with 7 groups provided probabilities for the 225 unknown

connections, 137 of them were above the optimal threshold τ = 0.5. The
ratio of predicted edges approximately matched the density of the visual
cortex when I excluded the unknown connections from density calculation
(see Table 4.1). However, if I wanted the ratio of predicted connections
match the density of known connections in the visual cortex, I would have
had to increase τ to 0.654, predicting only 81 connections. This ratio matches
the one reported in [25]. The predicted adjacency matrix with τ=0.654 is
shown on Fig. 4.2. Results are summarised in Table 4.3.

I compared these results to earlier studies [25, 59]. Comparisons were
based on the percentage of matching predictions. Since both studies took a
slightly different set of areas into consideration, I did not take into account
those areas that were not present in any of the matrices. The results are
summarised in Table 4.4.

The predictions of Jouve et al. [59] are based solely on the connections
in the network model of the visual cortex, similarly to the method presented
here. The agreement between the two predicted matrices is moderate: 61.6%
of the predictions match for τ = 0.5 and only 47% for τ = 0.654. Most of the
disagreements involved areas V4t (28), VOT (22), FEF (17) and DP (16).
Area MSTd was joined together with MSTp in this study (resulting in the
vertex denoted by MSTd/p), therefore neither MSTd nor MSTd/p was taken
into account. I note that the matrix used in the present paper incorporated
the results of anatomical experiments that could not have been included in
the matrix in [59], therefore the moderate match between the two matrices
can be explained by the differences in the initial dataset. Since the prediction
method of Jouve et al. [59] did not attempt to reconstruct the entire network

88

V1

V2

V3

V3A

V4

V4t

VOT

VP

MT

MSTd/p

MSTl

PO

LIP

PIP

VIP

DP

7a

FST

PITd

PITv

CITd

CITv

AITd

AITv

STPp

STPa

TF

TH

FEF

46

V
1

V
2

V
3

V
3A

V
4

V
4t

V
O
T

V
P

M
T

M
S
Td
/p

M
S
Tl

PO LI
P

PI
P

V
IP

D
P

7a FS
T

PI
Td

PI
Tv

C
IT
d

C
IT
v

A
IT
d

A
IT
v

S
TP
p

S
TP
a

TF TH FE
F

46

0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1

1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1

0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1

1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1

1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0

Figure 4.2: The predicted adjacency matrix of the visual cortex with 7 vertex
groups. White cells denote confirmed existing and absent connections. Dark gray
cells denote mismatches between the known and the predicted connectivity. Light
gray cells denote predictions for unknown connections.

89

Preference model
τ = 0.5 τ = 0.654

Jouve et al. [59]
Matching 1’s 114 75
Matching 0’s 16 24
Mismatches 81 112

Match percentage 61.6% 46.9%

Costa et al. [25]
Matching 1’s 76 58
Matching 0’s 59 88
Mismatches 74 63

Match percentage 64.6% 69.8%

Table 4.4: Comparison of the predictions of Costa et al. and Jouve et al. with
the preference model regarding the unknown parts of the cortical network dataset.
Areas not present in all datasets considered were excluded from comparison.

(predictions were made only on unknown connections), no comparison could
be made based on the success rates of the two methods.

The predictions published by Costa et al. [25] are based on several topo-
logical (e.g., node degree, clustering coefficient) and spatial features (e.g.,
area sizes, local density of the areas in the 3D space, based on their known
positions in the cortex). In this sense, the reconstruction method based
on the preference model is simpler, since it depends solely on the connec-
tion matrix. I also note that Costa et al. inferred the topological features
from a symmetrised connectivity matrix, thus their predicted matrix is also
completely symmetric, while fitting the preference model produced a matrix
where only 67.4% of the predicted, previously unknown connections were
reciprocal. The ratios of correctly predicted 1’s and 0’s in the visual cor-
tex reported by Costa et al. were slightly worse (rn = 244/350 = 0.697,
rp = 207/295 = 0.701,

√
rnrp = 0.699, loop connections excluded). Note

that the comparison can not be fully accurate because of the slightly differ-
ent set of areas used in the analysis (MIP and MDP were present only in [25],
whereas MSTd/p and VP were present only in the matrix used in this study).
69.8% of the predictions presented here matched the predictions of [25], and
all predicted edges with a probability larger than 0.8 were predicted in [25]
as well. The possible biological implications of the predicted connections are
discussed in [91].

Visuo-tactile cortex

The network model of the visuo-tactile cortex is an extension of the visual
cortex, obtained by adding the 15 areas of the sensorimotor cortex and their

90

Table 4.5: Likelihoods, AIC values, √rprn and MCC in the visuo-tactile cortex
K Log-likelihood AIC τ

√
rprn MCC

5 -814.956 1859.913 0.42 0.810 0.636
6 -783.935 1819.871 0.43 0.840 0.715
7 -756.352 1790.705 0.46 0.848 0.694
8 -736.163 1780.327 0.37 0.859 0.721
9 -718.422 1778.844 0.43 0.870 0.747

10 -697.078 1774.156 0.49 0.887 0.761
11 -683.335 1788.671 0.46 0.888 0.765
12 -684.105 1836.210 0.46 0.890 0.776
13 -665.337 1848.674 0.47 0.896 0.791
14 -653.755 1879.510 0.48 0.903 0.803
15 -652.173 1934.347 0.40 0.906 0.825

respective connections. Connections going between a visual and a sensorimo-
tor area are called heteromodal connections. The density of the sensorimotor
cortex is slightly higher than the visual cortex. Based on the connection den-
sities, the probability of the existence of an unknown connection was assumed
to be 0.385 inside the visual cortex and 0.404 inside the sensorimotor cortex.
Unknown heteromodal connections were assumed to exist with probability
0.1 based on a prior anatomical consideration that roughly 10% of possible
heteromodal connections should exist.

Note that the vast majority of heteromodal connections is unknown. In
fact, there was no confirmed nonexisting sensorimotor connection indicated
in the data set (see Figure 4.1). The optimal configuration was found by the
combination of the EM and the MCMC method, similarly as above.

The number of groups in the preference model was determined again by
the Akaike information criterion. The eigenvalues of the Laplacian and the
singular values of the adjacency matrix suggested 5 groups, which is again in
concordance with anatomical considerations, but as shown above, 5 groups
was insufficient to reproduce even only the visual cortex. Log-likelihoods,
AIC values and success rates are shown on Table 4.5, from 5 to 15 groups.
The optimal number of groups with the lowest AIC was 10.

The fitted model with 10 groups predicted 225 connections with τ = 0.49
out of the 1157 unknown ones (rn = 0.883, rp = 0.892,

√
rprn = 0.887).

This is 19.4% of the unknown connections and it roughly matches the overall
density of the visuo-tactile cortex (23.3%). However, only 5 heteromodal
connections (all originating from LIP) were predicted apart from the known
existing ones. This is due to the fact that very little is known about the

91

heteromodal connections, and the algorithm cannot generalise beyond them
with higher confidence. I also note that the posterior probability of many
heteromodal connections in this case stayed at 0.1, the same as their prior
probability. Taking into account that even a significant difference between
the prior and the posterior probabilities of the heteromodal connections may
not reach the threshold of 0.49, I decided to use different thresholds for non-
heteromodal and heteromodal connections (τ1 and τ2, respectively). τ1 was
left at 0.49, while τ2 was lowered to 0.137, the average a posterori prob-
abilities of the unknown heteromodal connections. This new configuration
yielded R0 = 0.831, R1 = 0.927,

√
R0R1 = 0.877 and 132 predicted hetero-

modal connections, related mainly to areas LIP, VIP, DP, 7a, FST, TF, FEF
and 46 in the visual cortex. It is noteworthy that four of these areas (46, 7a,
LIP and VIP) were classified as structural overlaps between the two subnet-
works in the fuzzy community analysis of Nepusz et al. [92] (also presented
later in Section 4.2). Anatomical considerations also support the bridge-
like role of these areas between the cortices. It was previously suggested
in the literature that area VIP should be split into two areas (VIPm and
VIPp), establishing stronger connections with visual or sensorimotor areas,
respectively [73]. VIP and LIP are involved with hand and eye coordination,
requiring combined input of visual and tactile signals. Area 46 is a part of
the dorsolateral prefrontal cortex, and it does not have functions related to
low-level sensory information processing. Being a higher level (supramodal)
area, it integrates visual, tactile and other informations. Area 7a integrates
visual, tactile and proprioceptive signals. Finally, areas TF and FEF are also
high level structures integrating widespread cortical information (e.g., [39]).

The full predicted connectivity matrix can be found in [91]. However, in
order to demonstrate the subtle differences between predicted connections,
the exact probabilities are shown on Figure 4.3, encoded in the background
colour of the matrix cells (white belonging to zero probability and black
belonging to 1). This figure shows the prediction in its full detail, especially
in the sensorimotor cortex where the predicted clique-like subgraph reveals
its internal structure more precisely.

Out of the 225 unknown connections in the visual cortex, 46 were pre-
dicted differently when I took into account the sensorimotor cortex. The
most discrepancies involved the outgoing edges of VOT (10 mismatches),
PIP (6 mismatches) and TF (6 mismatches). These can be caused by the
additional information present in the system in the form of heteromodal con-
nections. At the same time, predictions errors related to the known visual
connections of visual areas having heteromodal connections decreased (e.g.,
area TF: 13 to 6, area 46: 15 to 4), due to the same additional information.
Other notable improvements were at V4 (21 to 13) and DP (12 to 7).

92

Figure 4.3: Probability of connections in the visuo-tactile cortex with 10 vertex
groups, τ1 = 0.49 and τ2 = 0.137. Probabilities are denoted by colours, with white
corresponding to 0 and black corresponding to 1. The predicted adjacency matrix
is shown in the matrix cells.

93

The reconstruction quality of the visual cortex was improved by adding
the information about the heteromodal connections and the sensorimotor
cortex. This was not a simple consequence of increasing the number of clus-
ters from 7 to 10, but the corollary of the additional information about the
connections that visual areas form with the sensorimotor cortex. It is an ex-
ample of a phenomenon how the inclusion of even some imprecise information
about connections a substructure forms with its surrounding may improve
our understanding of connectional structure within the substructure itself.
This contextual information may also give guidelines for understanding the
mechanisms of heteromodal interactions.

4.1.3 Other prediction approaches

Sections 2.1.1 and 2.1.2 presented a wide variety of approaches to link pre-
diction. These methods are useful to extrapolate into the future of the time
evolution of a given network from the present (and possibly the past) state,
but they assume that the present state is known and accurate. This as-
sumption does not hold for cortical networks. To justify my markedly differ-
ent approach to the problem, I tested several similarity and path ensemble
based methods on the visual and the visuo-tactile network. Unknown edges
were treated as nonexistent. The tested methods were: cocitation and bib-
liographic coupling [63, 116], Jaccard and Adamic–Adar similarity indices
[1, 54], SimRank [55] and the recent hierarchical random graph (HRG) model
of Clauset et al. [22]. The predictive power of these measures was assessed
visually by ROC curves and quantitatively via the area under the ROC curve.
As shown on Figure 4.4, the fitted preference model outperformed all alter-
native approaches in the case of the visuo-tactile cortex. Results were similar
for the visual part of the visuo-tactile cortex. The superior performance of
the present method can be explained by the fact that it readily made use
of the distinction between unknown and confirmed nonexistent connections,
while none of the other measures were able to do so. The HRG model has
the potential to improve its performance, since the present implementation2

is not yet able to take edge directions into account.

2Available at http://www.santafe.edu/∼aaronc/randomgraphs/.

94

http://www.santafe.edu/~aaronc/randomgraphs/

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Se
ns

iti
vi

ty

1 - specificity

Preference model, AUC=0.9429
HRG, AUC=0.9011

Jaccard, AUC=0.8324
SimRank, AUC=0.8153

Adamic/Adar, AUC=0.8122
Bibl. coupling, AUC=0.7933

Cocitation, AUC=0.7898
No discrimination line

Figure 4.4: Comparison of the present prediction method to alternative ap-
proaches by ROC curves obtained on the visuo-tactile cortex dataset. Data points
were calculated at all possible threshold levels, but only every tenth point is dis-
played for SimRank, the Adamic–Adar measure and the hierarchical random graph
model (HRG) to keep the figure comprehensible

4.2 Higher level brain areas in the visuo-tactile

cortex

Let us examine the visuo-tactile cortical network presented in the previous
section from a different viewpoint: I will demonstrate the presence of fuzzy
communities and bridge vertices in this network. Earlier analyses confirmed
that the network has a distinct community structure [86], which is no sur-
prise, since it consists of the union of visual and sensorimotor areas, and
only a few connections are heteromodal. It was more interesting that besides
this simple bisection of the network, community analysis was able to distin-
gush the dorsal and ventral stream of the visual cortex (both are known and
anatomically meaningful substructures), split the sensorimotor cortex into
two parts (unfortunately the biological implications are beyond the scope of
this dissertation) and isolated area 46 as an area that forms a single com-
munity alone. This is in concordance with the presumed role of area 46: it
sustains attention and working memory, integrating visual, tactile and other
information from various parts of the cortex that are necessary for the above
mentioned cognitive functions. Fuzzy community detection was then applied
to detect the presence of other bridge-like areas in the network. The approach

95

Figure 4.5: Bridge areas in the visuo-tactile cortex of the macaque monkey.
Vertices are coloured by their degree-weighted bridgeness values.

I used was discussed in Chapter 3 and in [92].

4.2.1 Results

Since the network is directed, it had to be symmetrised before applying the
method presented in Chapter 3. I removed all non-reciprocal connections and
kept only mutual connections between areas. Edges were assigned uniform
weights (W = [1]). The best fuzzy modularity (Qf = 0.2766) was obtained
with four clusters, but I also studied the fuzzy bisection of the network into
two groups.

The case of c = 2 classified the nodes correctly: all the somatosensory
areas were unambiguously associated with the sensorimotor cortex, and most

96

Figure 4.6: Bridgeness scores versus vertex degrees in the cortical network
dataset. Vertices with high bridgeness and high degree are considered bridges
– these are highlighted. Area V OT is considered an outlier due to its high bridge-
ness and low degree.

of the visual areas were associated with the visual cortex, except a few areas
with a surprisingly high bridgeness (over 0.85). The vertex with the highest
bridgeness (0.99) was area 46 as expected, confirming its bridge-like role and
presenting an explanation of it being in an isolated cluster in the earlier
crisp community analysis. Other relevant bridges found with c = 4 were
area VIP (where the literature has already suggested that it should be split
into two areas VIPm and VIPp, which establish stronger connections with
visual or sensorimotor areas, respectively [73]), LIP, V4 and 7a. VIP and
LIP are involved with hand and eye coordination, respectively, and both of
these functions require combined information from visual and tactile signals
as well. Area 7a integrates visual, tactile and proprioceptive signals. Area
V4 was defined originally as the human color center [75, 79], while it was
also suggested that a separated ensemble of V4 neurons successfully encode
complex shapes based on the curvature of the shape boundaries [104]. The
functional heterogenity is in accordance to the subdivision of V4 into different
regions as suggested by Bartels and Zeki [8]. I concluded that the bridges I
found are in concordance with the assumed higher level roles of these areas.
Fuzzy community detection for c = 4 was also able to separate the dorsal
and the ventral stream of the visual cortex, only area 7a and VIP were
misclassified, but they retained their bridge-like properties as well as area 46.
The degree-weighted bridgeness values for c = 4 are shown on Figure 4.5.

97

Palla et al. [102]
k = 5 V4, PITv, TF
k = 6 LIP, VIP
k = 7 VIP

Zhang et al. [135]
m = 2 40% of the vertices
m = 1.3 LIP, 7a, Ri

Capocci et al. [17] k = 4 V4, 46

Present method
c = 2 46
c = 4 46, VIP, LIP, V4, 7a

Table 4.6: Identified bridge vertices in the cortical network dataset by various
overlapping community detection algorithms. Note that every bridge vertex iden-
tified by the present method is also confirmed by at least one alternative approach.

Plotting the unweighted bridgeness values versus a chosen centrality measure
(in our case, the vertex degree), shown on Figure 4.6 was found to be a useful
visual cue for separating bridge vertices and outliers.

4.2.2 Comparison with other approaches

In order to compare the present method with earlier attempts on tackling
the problem of overlapping communities, I examined the CPM algorithm of
Palla et al. [102], the spectral method of Capocci et al. [17] and the fuzzy
method of Zhang et al. [135] on the cortical network dataset. For the CPM
algorithm, I used the original implementation published by the authors at
http://www.cfinder.org. The algorithm of Zhang et al. [135] had a weight
exponent m controlling the degree of fuzzification, but since the authors
provided no clue about the suggested value of the parameter, I used m = 2,
which is the most typical choice of this parameter in other known applications
of the fuzzy c-means algorithm [9].

The community structure of the cortical graph seemed to be a hard prob-
lem for the algorithms. The method of Palla et al. [102] failed to discover the
subdivision of the visual cortex into dorsal and ventral parts, only the visual
and the somatosensory cortex was discovered when I used a clique size of 5.
Larger clique sizes resulted in the discovery of the cores of the two communi-
ties, but I was still not able to recognise the subdivision of the dorsal and the
ventral stream in the visual cortex. However, the algorithm identified three
overlaps (V4, PITv and TF) for a clique size of 5 and two other overlaps (LIP
and VIP) for a clique size of 6. Three out of these five overlaps were iden-
tified by my algorithm as well. The community closeness matrix calculated
by the method of Capocci et al. [17] was harder to interpret, but vertices V4

98

http://www.cfinder.org

and 46 clearly turned out to be bridges with zero community closenesses to
many other vertices. The method of Zhang et al. [135] was highly sensitive
on the exact value of parameter m, classifying 40% of the vertices as bridges
for m = 2. (Since the method provides a membership matrix similar to the
present method, I used the standardised bridgeness measure with a z-score
threshold of 1). Lowering the weight exponent to m = 1.3 identified areas
LIP, 7a and Ri as bridges. These results are also shown in Table 4.6.

To summarise, I found that the results of the algorithm presented here
with respect to community structure discovery and bridge identification do
not contradict the results of existing methods, and all the bridges found by
my algorithm were classified as bridges by at least one other method. The
method of Capocci et al. [17] complements this algorithm especially well,
since it discovers local communities around a given vertex using the commu-
nity closeness degrees while the present fuzzy method provides useful insights
into the global structure of the network being analysed, also indicating the
presence of bridge vertices.

4.3 Detection of social bridges via fuzzy com-

munities

4.3.1 The UK university faculty dataset

In this study, I used the social network of the academic staff of a given
faculty of a UK university consisting of three separate schools [92]3. This
network was already shown on Figure 1.4 in Chapter 1.2.4. The network
structure was constructed from social tie strength measured with a ques-
tionnaire (derived from the one published in [105] by adapting it to the
academic field), where the items formed a reliable scale. Reliability was as-
sessed by Cronbach’s α [23]. Our questionnaire achieved a Cronbach’s α of
0.91, suggesting high internal consistency and reliability. The questionnaire
was completed by every member of the academic staff. This study used the
personal friendship network, ignoring the directionality and the weight of the
edges. An unweighted fuzzy community detection for three communities was
performed on the graph. To show the results in greyscale, I decided to draw
three individual figures (all shown on Figure 4.7), showing the values of the
membership functions for community 1, 2 and 3, respectively, using different
shades of grey as fill colors for the vertices.

This dataset also contained explicit information regarding the expected

3The dataset is available at http://www.mit.bme.hu/∼nepusz

99

http://www.mit.bme.hu/~nepusz

(a) Community 1 (b) Community 2 (c) Community 3

Figure 4.7: Fuzzy communities of the UK university faculty dataset. Vertices
are coloured according to the membership functions of community 1, 2 and 3,
respectively. Darker shades represent larger membership values.

community structure, since the school affiliations of staff members were at-
tached to the vertices as textual attributes. I defuzzified the results using the
dominant communities for every vertex. The defuzzification revealed that all
crisp communities consisted of almost exclusively the members of a single
school inside the Faculty. 75 out of 81 vertices were classified correctly, 4
were misclassified (and all of them had a bridgeness value greater than 0.7),
and there were 2 vertices for which no expectation was given because of lack
of information in the questionnaire. It is also noteworthy that the maximal
fuzzy modularity (Qf = 0.2826) was reached at c = 6, suggesting further
subdivisions of the schools, although the improvement of the modularity
compared to the case of c = 3 (Qf = 0.2541) was not significant.

Degree-corrected bridgeness scores for c = 3 (Figure 4.8(b)) are particu-
larly interesting. Highly scored individuals belong to all three communities
at the same time to some extent, maintaining connections to all of them.
On the other hand, vertices with low degree-corrected bridgeness scores can
be thought as the cores of the communities. I also notice that the periph-
eries of the communities also belong almost equally to all of the communities
(note the similar grey shades in Figure 4.7 for these vertices), but the degree-
corrected bridgeness scores suppress this effect because of their low degree.
The uncorrected and the degree-corrected scores are compared side-by-side
on Figure 4.8.

4.3.2 The network science co-authorship graph

This section discusses the fuzzy community analysis of the co-authorship net-
work of scientists involved in network science [96]. The network consists of

100

(a) (b)

Figure 4.8: Comparison of the unweighted (left) and degree-weighted bridgeness
scores (right) in the UK university dataset. Vertices are colored according to their
respective bridgeness scores. Darker shades represent higher bridgeness scores.
Note how the uncorrected bridgeness score correlates with the centrality of the
vertices in their respective community.

1589 scientists and 2742 weighted, undirected connections. Edge weights are
derived from the number of joint publications: a paper with n authors con-
tributes 1/n to the weight of all possible edges between the authors. Edges
with a weight less than 0.2 (equivalent to only a single joint publication with
at least 6 authors) were removed and the remaining weights were disregarded.
The largest component of the cutted network consisted of 342 scientists and
765 connections. Fuzzy community analysis was performed on this compo-
nent using the W matrix derived from the configuration model, as suggested
in Section 3.3.2.

By looking at Figure 4.10, it is evident that the network is sparse, with
a few hubs and many low degree vertices. Recall that the weight of vertex
pairs is determined by (Aij − didj/(2m))2, where di and dj are the degrees
of the vertices involved, Aij is zero if they are disconnected and one if they
are connected, m is the number of edges in the whole network. Therefore,
lower weight will be assigned to pairs of disconnected vertices if both have a
low degree, and similarly, lower weight will be assigned to connected hubs.
The important features of the network that will govern the resulting fuzzy
community structure will be pairs of connected low-degree vertices and pairs
of disconnected hubs. By analysing the distribution of wij values, it turns
out that only approximately 10% of vertex pairs have weight larger than 10−3

101

 0

 0.2

 0.4

 0.6

 0.8

 1

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

P(
w

ij
<

x)

Vertex pair weight

Netw. sci.
Cortex

UK univ.
Yeast

Figure 4.9: Cumulative vertex pair weight distribution in various datasets.
Dashed lines are smoothed for the sake of better visibility. Note the logarith-
mic x axis and the extreme positive skewness of the distributions which is directly
associated with the size of the network (cortex: 45 vertices, UK university dataset:
81 vertices, network science dataset: 342 vertices, yeast protein interaction net-
work: 2640 vertices). In case of the network science dataset, only approximately
10% of vertex pairs have weight larger than 10−3, the rest can simply be considered
zero.

(see Figure 4.9). The remaining 90% can simply be considered zero, allowing
efficient and fast computation of gradient vectors and the goal function. This
is typical not only in this particular network, similar right-skewed distribu-
tions can be observed in the cortical network and the UK university social
network dataset presented above, although the effect is less pronounced, since
these networks have less vertices (45 and 81, respectively). The direct re-
lation between the size of the network and the skewness of the distribution
is also reinforced by the protein interaction network of the yeast [58], which
has 2640 vertices.

The optimal number of communities was found to be 21, with a fuzzy
modularity of Qf = 0.7221. This shows a remarkable difference from prior
unweighted analysis [92] where slightly lower fuzzy modularity (0.7082) was
achieved with a higher number of communities. 245 out of the 342 vertices
had a bridgeness score less than 0.01, and only 40 vertices had a standardized
bridgeness score larger than or equal to 1. 34 vertices were classified as
bridges based on the number of their significant communities (χi values).
These vertices are marked on the visualisation of the network (see Fig. 4.10).
No vertex had more than two significant communities (χi ¡ 1.998 for all

102

Figure 4.10: Visualisation of the network science co-authorship dataset. Vertex
diameters are proportional to the number of significant communities χi. Bridge
vertices (χi > 1.5) are black, regular vertices are white.

103

vertices). Without mentioning names, I note that senior researchers and
group leaders of the field mostly participate in only one community, with a
few exceptions. This supports the community centrality measure of Newman
[96]: researchers with high community centrality are not likely to be bridges
between communities.

One may argue that the degree of vertices can be correlated with the
number of relevant communities, for vertices with less connections are less
likely to participate in multiple communities. However, the analysis of the
network presented here does not seem to confirm this assumption. Although
the average degree of bridge vertices is slightly higher (6.656 with standard
deviation 3.579) than the mean degree of the largest component (4.473 with
standard deviation 3.787), there is no trace of direct correlation between the
two measures. There is only a very moderate positive correlation between the
degree of a vertex and the number of its relevant communities according to a
variety of correlation coefficients (r2 = 0.089, Pearson’s ρ = 0.299, Kendall’s
τ = 0.267), showing that even vertices with a low degree can become bridges.

104

5
Conclusions

5.1 Link prediction in complex networks

T
he first part of the dissertation depicted a random graph model
called the preference model, which can be considered as a generalisa-
tion of the well-known Erdős–Rényi random networks. The model is

based on the assumption that the internal, latent traits of individual vertices
can efficiently be modelled by vertex types, i.e., every vertex belongs to one
of k distinct types (or two in the case of directed networks), and the connec-
tion probability of two vertices depends solely on their vertex types and a
preference matrix P that assigns probabilities to vertex type pairs [89, 91].

I implemented two stochastic algorithms to fit the parameters of the
model to a network instance being studied, one based on the expectation-
maximisation (EM) algorithm scheme and the other one based on the Me-
tropolis–Hastings algorithm. The fitted group assignments may provide in-
sights into the inner structure of the network [88]; e.g., group assignments
in a network with a distinct community structure are likely to correspond to
the communities of the network and the elements of the preference matrix
will contain higher values in the diagonal than outside. Similarly, a nearly
bipartite network will be fitted by group assignments corresponding to the
(almost) independent vertex sets, and elements of the preference matrix will
be close to zero in the diagonal.

Finally, I showed how can the preference model be used to predict poten-
tially missing links in networks whose edge set is known to be incomplete.
The advantage of the method is that it is able to take into account the uncer-
tainty of unknown connections, while other approaches (e.g., local similarity
measures, see Section 2.1.1) treat all unknown connections as nonexistent.

105

An application of the method was presented in Section 4.1 and in [91], where
missing neural connections of the visuo-tactile cortex of the macaque monkey
were predicted mostly in agreement with previous analyses [25, 59], but with
higher reconstruction accuracy in known parts of the network. The accu-
racy of the method presented here was proven to be the best so far among
reconstruction attempts of the cortical network.

This part of my dissertation can be summarised as follows:

T 1/1. I showed that vertex degrees in the networks generated by the pref-
erence model are described by the weighted sum of Poisson-distributed
random variables. I also proved a sufficient condition for the existence
of a giant component in these networks.

T 1/2. I devised and implemented algorithms to fit the parameters of the
model to a given network, taking into account the degrees of belief
associated to the possible connections in the network. I tested the
validity of these algorithms on computer-generated test graphs.

T 1/3. I showed that the Akaike information criterion [2] is able to choose
the most appropriate number of vertex groups of the model in an un-
supervised manner.

I applied the model to the problem of predicting yet uncharted connec-
tions in the visuo-tactile cortex of the macaque monkey [86] and I gave es-
timates on the probability of the existence of uncertain links. The fitted
model also produces the most accurate reconstruction of the known part of
the visuo-tactile cortex so far. These results were published in [88, 89, 91].

From the theoretical point of view, there are still a lot of open questions
to be investigated. E.g., it is interesting to ask how the size of the giant
community depends on the preference matrix; what is the distribution of
cluster sizes in such generated networks; how does the expected diameter of
the network scale with the number of vertices and so on. From the algorith-
mical point of view, the possibility of obtaining fuzzy group assignments by
appropriately sampling from the Markov chain of model parameterisations is
definitely interesting, as it may provide a remedy to the overfitting problem,
and it may also be useful in increasing the accuracy of reconstruction and
prediction.

5.2 Fuzzy communities in complex networks

In the second (and admittedly shorter) part of the dissertation, I presented a
data mining algorithm that detects fuzzy communities in complex networks

106

[92]. The algorithm determines a fuzzy partition matrix of the vertices of
the network into c predefined groups in a way that maximises a prescribed
goal function that is assumed to yield higher values for meaningful fuzzy
partitions. The goal function is grounded in the concept of vertex similarity:
two vertices are considered similar if they belong to similar groups according
to the fuzzy partition matrix being assessed, and the algorithm strives to
maximise the similarity of connected vertex pairs and minimise the similarity
of disconnected vertices.

I devised an optimisation method to maximise the goal function using
either a local hill climbing algorithm with adaptive step size and occasional
random mutations in order to climb out from local minima, or the iterative
reassignment of vertices to communities based on the BFGS algorithm [113].
The validity of the method was then tested on computer-generated random
graphs and real datasets as well.

I also introduced three new measures (bridgeness, weighted bridgeness
and exponentiated entropy, see Section 3.4) that are able to quantify the
sharedness of a given vertex between communities. These measures can be
used to select individual vertices from a complex network that serve as bridges
between separate communities. The importance of bridgeness vertices is
evident: in social networks, individuals represented by bridge vertices are
responsible for the flow of information between social groups; in cortical
networks, bridge areas are associated with higher level cognitive functions
(see Section 4.2); in protein interaction networks, bridges can be proteins
with multiple functions [102] and so on. Some applications of the algorithm
and the introduced bridgeness measures were presented in Sections 4.2 and
4.3. Finally, I also compared the present method to other approaches in
Section 4.2.2.

The summary of this part of my dissertation is as follows:

T 2/1. I devised and implemented an algorithm to find fuzzy communities
in undirected networks. The algorithm is based on the maximisation
of a global goal function derived from vertex similarities. I tested the
validity of the algorithm on computer-generated test graphs.

T 2/2. I extended the modularity measure of Newman [94] to account for
the fuzziness of the obtained partitions. I showed how can one employ
the fuzzified modularity to choose the optimal number of communities.

T 2/3. I quantified the sharedness of vertices between fuzzy communities
by introducing the bridgeness, the weighted bridgeness and the expo-
nentiated entropy measures of the membership vectors.

107

These results were published in [92].
The algorithm can be extended in various ways, which will serve as the

basis of future research. For instance, there are many alternative definitions
of vertex similarity, e.g., one can try using the cosine similarity of member-
ship vectors instead of the dot product. The relaxation of the sum constraint
imposed on membership vectors would allow outliers in the obtained fuzzy
partitions; outlier vertices would then be characterised by membership vec-
tors whose coordinates sum up to less than one. The algorithm can theo-
retically be extended to directed networks as well, based on an idea similar
to how the direction of edges was introduced into the preference model: ev-
ery vertex should have two membership vectors instead of one, the first one
corresponding to the incoming connections of the vertex and the second one
corresponding to the outgoing connections. The similarity of two vertices can
then be defined as the dot product of the out-membership vector of the first
one and the in-membership vector of the second one. Prior analyses showed
that this is a promising direction [90] which merits further investigation.

108

A
Technical background

The algorithms and computational results presented in this dissertation were
obtained using tools of the GNU Linux and Mac OS X operating systems.
Algorithms were implemented in a blend of GNU C and Python [126]. I
exploited the functionality of the igraph library [24] and its higher level
interface towards Python. Timing results were calculated on an 1.83 GHz
Intel Core Duo MacBook. Graphs were drawn by igraph, numerical plots
and curve fittings were performed by GNUplot [133]. GNUplot uses the
Levenberg-Marquardt algorithm [76] for least-squares curve fitting with stop-
ping parameter η = 10−5.

A.1 Generating random numbers

The algorithms presented in this dissertation make heavy use of random
numbers. One should not neglect the fact that computers are not able to
generate truly random sequences, unless equipped by a hardware random
number generator based on some unpredictable physical process (e.g., ther-
mal noise in Zener diodes, photoelectric effect or other quantum phenomena).
Most computers implement deterministic software routines instead that gen-
erate number sequences that behave plausibly random for most purposes,
although they fail rigorous tests like the Kolmogorov-Chaitin randomness
test [109]. The proof is straightforward: pseudo-random number generators
produce longer bit sequences than their own length in bits, hence the Kol-
mogorov complexity of the generated sequence does not tend to 1 as the
length of the sequence approaches infinity.

Since every pseudo-random number generator possesses some built-in de-
terministic property, it might happen that the generated sequence interferes

109

with the computational problem requiring random input, thus distorting the
obtained results. The algorithms presented in this dissertation are no excep-
tions, therefore I tested them with three different random number generators:

drand48. The preferred random number generator of systems complying to
the System V Interface Definition (SVID) [112], which includes Linux
and OS X as well. It uses an internal state of 48 bits which is updated
according to the following congruential equation:

xt+1 ≡ axt + c (mod 248) (A.1)

a and c are constants, a = 25214903917 and c = 11 by default, but
they can be changed by the user. It simply follows that the period of
the random number generator is at most 248.

Wichmann-Hill generator [132]. It uses four linear congruential gener-
ators similar to the one used by drand48. The sequence is formed
by the linear combination of the output of the individual generators.
There are 273 predefined sets of parameters to choose from, selected in
a way that ensures the independency of the generators and resulting
in a period of approximately 280. The Wichmann-Hill generator was
the standard random number generator of Python up to and including
version 2.3.

Mersenne Twister generator [77]. The standard random number gener-
ator of Python from version 2.4. This is a twisted generalised feedback
shift register generator, producing 53-bit precision floats. It has an
extremely long period of 219937 − 1 (a Mersenne prime), and has been
shown to be uniformly distributed in 623 dimensions.

I found that the results obtained by any of the random generators matched
the others.

A.2 The igraph library

The igraph library is a handy tool for the analysis of large networks, written
almost completely in C for speed and efficiency. It was developed because of
the lack of network analysis software which (1) can handle large graphs effi-
ciently, (2) can be embedded into a higher level programming language (e.g.,
Python, Ruby or GNU R) and (3) can be used both interactively and non-
interactively. Embedding igraph into Python or GNU R creates a productive

110

research environment, since one can make use of the rapid development and
prototyping features of the language in which igraph is embedded.

The key features of igraph are as follows:

Open source. igraph is free for non-commercial or commercial use accord-
ing to the terms of the GNU General Public License. The source code
of igraph is readily available, anyone can add new functionality and
correct deficiencies.

Efficient implementation. igraph uses an indexed edge list representa-
tion for graphs, tailored to networks that do not change rapidly. This
representation will be discussed later in detail.

Layered architecture. The internal graph representation is exposed to
most of the igraph routines via a well-defined interface, which en-
ables one to replace the graph representation with another one (e.g.,
adjacency lists), should the need arise. The new representation has to
implement a small set of well-defined functions – all other parts of the
source code can be left intact.

Open, embeddable system. The current igraph distribution contains in-
terfaces to R, Python and Ruby, and interfaces to other languages can
be added without too much effort.

igraph can be downloaded from http://cneurocvs.rmki.kfki.hu/igraph.

A.2.1 The basic graph representation in igraph

The key data structure in igraph is a C struct called igraph_t:

1: typedef struct {
2: igraph_integer_t n; /* The number of vertices */
3: igraph_bool_t directed; /* Is the graph directed? */
4: igraph_vector_t from; /* Edge list, 1st column */
5: igraph_vector_t to; /* Edge list, 2nd column */
6: igraph_vector_t oi; /* Index of the 1st column */
7: igraph_vector_t ii; /* Index of the 2nd column */
8: igraph_vector_t os; /* 2nd level index by vertex IDs */
9: igraph_vector_t is; /* 2nd level index by vertex IDs */

10: void *attr; /* Attribute data */
11: } igraph_t;

Edges and vertices in igraph are numbered continuously, starting from
zero. The edge list is stored in the vectors from and to (igraph_vector_t

111

http://cneurocvs.rmki.kfki.hu/igraph

is a dynamic vector type containing double-precision floats). The source
vertex of edge i is given by from[i] and the target is given by to[i].

Many igraph routines need to iterate over the edges in the order of their
source or target vertices. The ordering according to the first column of the
edge list is given by oi, so the first edge in the ordering defined by the source
vertex IDs is given by from[oi[0]]]. Similarly, the first edge in the ordering
defined by the target vertex IDs is from[ii[0]]. Therefore, the length of oi
and ii naturally matches the number of edges in the graph.

The vectors os and is serve as second-level indices by vertex IDs, so the
ID of the first edge originating from vertex i is given by from[oi[os[i]]],
the second one is given by from[oi[os[i]+1]] and so on, up to and not
including from[oi[os[i+1]]]. When a vertex does not have outgoing edges,
from[oi[os[i]]] equals from[oi[os[i+1]]]. The last elements of os and
is are sentinels, they are always equal to the number of edges, so the length
of os and is is always equal to the number of vertices. Finally, attr is a
pointer to a data structure holding graph, vertex and edge attributes. Its
type is unspecified, since attributes are handled by functions implementing
a separate attribute handler interface. The attribute handler used depends
on the environment in which igraph is embedded: there is a C attribute
handler which enables numeric and strings attributes, there is an R attribute
handler which can store arbitrary R objects in the attributes, there is a
Python attribute handler for storing Python objects and so on. In the latter
cases, the actual attribute handling is done by the host language and not
igraph itself. The storage requirements for a graph with n vertices and m
edges without attributes is O(n + m).

The above data structure is efficient when the graph is static at the ex-
pense of slower edge insertion and deletion: adding or removing an edge can
be done in O(n + m) time due to the additional bookkeeping associated to
the indices. However, note that adding or removing multiple edges can also
be done in O(n + m) time, where m is the number of edges after addition
or before deletion. When confronted with a task involving repeated addition
and deletion of many edges at once (e.g., graph rewiring while keeping the de-
gree distribution), the graph can be converted to a more efficient unindexed
adjacency list representation and converted back after completion. The con-
version itself also takes O(n + m) time, but this has to be done only once.
The adjacency list representation is also useful when a specific task involves
querying the neighbours of (almost) all vertices many times, since the neigh-
bour vectors are created only once. igraph also provides a lazy adjacency
list representation.

112

A.2.2 An example: calculating SimRank scores

In this section, I illustrate the basic syntax of the Python interface of igraph
by prototyping an implementation of the SimRank similarity score [55]. Note
that the core of the implementation does not take more than 20 lines.

1: from igraph import *
2:

3: def simrank(graph, gamma=0.8, epsilon=1e-3):
4: n = graph.vcount()
5: neis = [graph.predecessors(i) for i in range(n)]
6: sim = Matrix.Identity(n)
7: max_change = 1
8:

9: while max_change > epsilon:
10: max_change = 0
11: new_sim = Matrix.Identity(n)
12:

13: for v1 in range(n):
14: for v2 in range(v1+1, n):
15: s = sum([sim[a,b] for a in neis[v1] for b in neis[v2]])
16: if s > 0: s /= len(neis[v1]) * len(neis[v2])
17: new_sim[v1,v2] = new_sim[v2,v1] = gamma * s
18: max_change = max(max_change, abs(new_sim[v1,v2] - sim[v1,v2]))
19:

20: sim = new_sim
21:

22: return sim
23:

24: ##
25:

26: graph = load("cortical_network.graphml")
27: simrank_score = simrank(graph)

113

Bibliography

[1] L. A. Adamic and E. Adar. Friends and neighbors on the Web. Social
Networks, 25(3):211–230, 2003.

[2] H. Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716–723, 1974.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex net-
works. Reviews in Modern Physics, 74(1):47–94, Jan 2002. doi:
10.1103/RevModPhys.74.47.

[4] R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the World
Wide Web. Nature, 401:130–131, 1999.

[5] N. Alon, R. A. Duke, H. Lefmann, V. Rodl, and R. Yuster. The algo-
rithmic aspects of the Regularity Lemma. Journal of Algorithms, 16
(1):80–109, 1994.

[6] A.-L. Barabási. Linked: How Everything Is Connected to Everything
Else and What It Means. Plume, 2003. ISBN 978-0452284395.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random net-
works. Science, 286:509–512, 1999.

[8] A. Bartels and S. Zeki. The architecture of the colour centre in the
human visual brain: new results and a review. European Journal of
Neuroscience, 12(1):172–193, Jan 2000.

[9] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Al-
gorithms. Plenum, New York, USA, 1981. ISBN 978-0306406713.

[10] J. C. Bezdek and S. K. Pal. Fuzzy Models for Pattern Recognition:
Methods that Search for Structures in Data. IEEE Press, New York,
USA, 1992.

114

[11] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang.
Complex networks: Structure and dynamics. Physics Reports, 424:
175–308, 2006.

[12] B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition,
2001. ISBN 978-0521797221.

[13] V. Braitenberg and A. Schüz. Cortex: Statistics and Geometry of
Neuronal Connectivity. Springer, 1998. ISBN 978-3540638162.

[14] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107–
117, 1998.

[15] M. Buchanan. Nexus: Small Worlds and the Groundbreaking Theory
of Networks. W. W. Norton & Co., 2003. ISBN 0-393-04153-0.

[16] R. S. Burt. Structural Holes: the Social Structure of Competition.
Harvard University Press, Cambridge, MA, USA, 1992. ISBN 978-
0674843714.

[17] A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Colaiori. Detecting
communities in large networks. Physica A, 352:669–676, 2005.

[18] B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing the
Internet. In ATEC’00: Proceedings of the Annual Technical Conference
on 2000 USENIX Annual Technical Conference, 2000.

[19] F. R. K. Chung. Laplacians and the Cheeger inequality for directed
graphs. Annals of Combinatorics, 9:1–19, 2005.

[20] F. R. K. Chung. Spectral Graph Theory. American Mathematical So-
ciety, 1997. ISBN 978-0821803158.

[21] A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Physical Review E, 70:066111, 2004.

[22] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference
of hierarchies in networks. In Proceedings of the 23rd International
Conference on Machine Learning (ICML), June 2006.

[23] L. J. Cronbach. Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3):297–334, 1951.

115

[24] G. Csárdi and T. Nepusz. The igraph software package for complex
network research. InterJournal Complex Systems, page 1695, 2006.

[25] L. da Fontoura Costa, M. Kaiser, and C. C. Hilgetag. Predicting the
connectivity of primate cortical networks from topological and spatial
node properties. BMC Systems Biology, 1(16), 2007.

[26] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Comparing com-
munity structure identification. Journal of Statistical Mechanics, page
P09008, Oct 2005.

[27] L. Danon, A. Diaz-Guilera, and A. Arenas. The effect of size hetero-
geneity on community identification in complex networks. Journal of
Statistical Mechanics, page P11010, 2006.

[28] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[29] L. Devroye. Non-Uniform Random Variate Generation. Springer, New
York, USA, 1986.

[30] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemat-
ics. Springer-Verlag, Heidelberg, 2005. ISBN 3-540-26182-6.

[31] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford University Press,
Oxford, 2003. ISBN 0198515901.

[32] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure
of growing networks: Exact solution of the Barabási–Albert model.
Physical Review Letters, 85:4633, 2000.

[33] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering
large graphs via the singular value decomposition. Machine Learning,
56:9–33, 2004.

[34] J. C. Dunn. A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters. Journal of Cybernetics, 3:
32–57, 1973.

[35] P. Erdős and A. Rényi. On random graphs. Publicationes Mathemati-
cae, 6:290, 1959.

116

[36] P. Erdős and A. Rényi. On the evolution of random graphs. Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences, 5:17–61, 1960.

[37] P. Erdős and A. Rényi. On the strength of connectedness of a random
graph. Acta Mathematica Hungarica, 12:261–267, 1961.

[38] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the Internet topology. In Proceedings of ACM SIGCOMM’99,
pages 251–262, Cambridge, MA, USA, Sept. 1999.

[39] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

[40] R. A. Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London A, 222:309–
368, 1922.

[41] D. Fogaras. Where to start browsing the web? In Proceedings of the 3rd
International Workshop on Innovative Internet Community Systems
(IICS), volume 2877 of Lecture Notes in Computer Science, pages 65–
79, Leipzig, Germany, 2003. Springer-Verlag.

[42] A. L. N. Fred and A. K. Jain. Robust data clustering. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, pages 128–133. IEEE, 2003. doi: 10.
1109/CVPR.2003.1211462.

[43] M. Galassi, J. Theiler, and J. Davies. GNU Scientific Library Reference
Manual. Network Theory Limited, 2nd edition edition, 2006. ISBN
978-0954161736.

[44] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis, chapter 11. Texts in Statistical Science. Chapman and Hall,
London, 2nd edition, 2003. ISBN 978-1584883883.

[45] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:721–741, 1984.

[46] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences
of the United States of America, 99:7821–7826, 2002.

117

[47] C. Goffman. And what is your Erdős number? American Mathematical
Monthly, 76(7):791, 1969.

[48] G. H. Golub and K. William. Calculating the singular values and
pseudo-inverse of a matrix. Journal of the Society for Industrial and
Applied Mathematics B, 2(2):205–224, 1965.

[49] C. M. Grinstead and J. L. Snell. Introduction to Probability. American
Mathematical Society, 2nd revised edition edition, 1997. ISBN 978-
0821807491.

[50] J. Grossman. The Erdős Number Project. URL http://www.oakland.

edu/enp/. Accessed on March 2, 2008.

[51] R. Guimerà and L. A. N. Amaral. Functional cartography of complex
metabolic networks. Nature, 433:895–900, 2005.

[52] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97–109, 1970. doi: 10.2307/
2334940.

[53] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University
Press, 1990. ISBN 978-0521386326.

[54] P. Jaccard. Étude comparative de la distribution florale dans une por-
tion des Alpes et de Jura. Bulletin de la Société Vaudoise des Sciences
Naturelles, 37:547–579, 1901.

[55] G. Jeh and J. Widom. SimRank: A measure of structural-context
similarity. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 538–543,
New York, 2002. Association of Computing Machinery.

[56] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings
of the 12th World Wide Web Conference, pages 271–279. ACM Press,
2003. doi: 10.1145/775152.775191.

[57] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The
large-scale organization of metabolic networks. Nature, 407:651–654,
2000.

[58] H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and
centrality in protein networks. Nature, 411:41–42, 2001.

118

http://www.oakland.edu/enp/
http://www.oakland.edu/enp/

[59] B. Jouve, P. Rosenstiehl, and M. Imbert. A mathematical approach
to the connectivity between the cortical visual areas of the macaque
monkey. Cerebral Cortex, 8(1):28–39, 1998.

[60] F. Karinthy. Láncszemek. In Minden másképpen van. Atheneum, Bu-
dapest, Hungary, 1929.

[61] W. Karush. Minima of functions of several variables with inequalities
as side constraints. Master’s thesis, University of Chicago, Chicago,
IL, USA, 1939.

[62] L. Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, 1953.

[63] M. M. Kessler. Bibliographic coupling between scientific papers. Amer-
ican Documentation, 14:10–25, 1963.

[64] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi. Sze-
merédi’s regularity lemma and its applications in graph theory. In The-
oretical Aspects of Computer Science, volume 2 of Bolyai Society Math-
ematical Studies, pages 84–112. Springer, 2000. ISBN 3-540-43328-7.

[65] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman,
editor, Proceedings of the 2nd Berkeley Symposium on Mathematical
Statistics and Probability, pages 481–492, Berkeley, 1951. University of
California Press.

[66] S. Kullback and R. A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22:79–86, 1951.

[67] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal. Stochastic models for the web graph. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science
(FOCS), pages 57–65, Redondo Beach, CA, USA, 2000. IEEE Press.

[68] M. Kurucz, L. Lukács, D. Siklósi, A. A. Benczúr, K. Csalogány, and
A. Lukács. Telephone call network data mining: A survey with exper-
iments. In B. Bollobás, R. Kozma, and D. Miklós, editors, Handbook
of Large-Scale Random Networks, volume 18 of Bolyai Society Mathe-
matical Studies. Springer, 2008. ISBN 978-3-540-69394-9.

[69] M. Latapy and P. Pons. Computing communities in large networks
using random walks. Journal of Graph Algorithms and Applications,
10(2):191–218, 2006.

119

[70] E. A. Leicht and M. E. J. Newman. Community structure in directed
networks. Physical Review Letters, 100:118703, 2008.

[71] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densifi-
cation laws, shrinking diameters and possible explanations. In Proceed-
ings of the 11th ACM SIGKDD Conference on Knowledge Discovery
in Data Mining, pages 177–187, 2005.

[72] K. Levenberg. A method for the solution of certain non-linear problems
in least squares. The Quarterly of Applied Mathematics, 2:164–168,
1994.

[73] J. W. Lewis and D. C. Van Essen. Corticocortical connections of visual,
sensorimotor and multimodal processing areas in the parietal lobe of
the macaque monkey. Journal of Comparative Neurology, 428:112–137,
2000.

[74] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In Proc. 12th International Conference on Information
and Knowledge Management, 2003.

[75] C. J. Lueck, S. Zeki, K. J. Friston, M. P. Deiber, P. Cope, V. J. Cun-
ningham, A. A. Lammertsma, C. Kennard, and R. S. Frackowiak. The
colour centre in the cerebral cortex of man. Nature, 340(6232):386–389,
Aug 1989.

[76] D. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11:431–441, 1963.

[77] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number genera-
tor. ACM Transactions on Modelling and Computer Simulations, 1998.

[78] B. W. Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta, 405
(2):442–451, 1975.

[79] D. J. McKeefry and S. Zeki. The position and topography of the human
colour centre as revealed by functional magnetic resonance imaging.
Brain, 120(12):2229–2242, Dec 1997.

[80] S. Milgram. The small world problem. Psychology Today, 2(60), 1697.

[81] M. Mitzenmacher. A brief history of generative models for power law
lognormal distributions. Internet Mathematics, 1:226–251, 2004.

120

[82] M. Molloy and B. Reed. A critical point for random graphs with a
given degree sequence. Random Structures and Algorithms, 6:161–180,
1995.

[83] R. Montenegro and P. Tetali. Mathematical aspects of mixing times in
Markov chains. Foundations and Trends in Theoretical Computer Sci-
ence, 1(3):237–354, 2006. ISSN 1551-305X. doi: 10.1561/0400000003.

[84] C. R. Myers. Software systems as complex networks: structure, func-
tion, and evolvability of software collaboration graphs. Physical Review
E, 68(046116), 2003.

[85] R. Neal and G. Hinton. A view of the EM algorithm that justifies incre-
mental, sparse, and other variants. In M. I. Jordan, editor, Learning in
Graphical Models, pages 355–368. MIT Press, Cambridge, MA, 1999.
ISBN 978-0-262-60032-3.

[86] L. Négyessy, T. Nepusz, L. Kocsis, and F. Bazsó. Prediction of the
main cortical areas and connections involved in the tactile fuction of the
visual cortex by network analysis. European Journal of Neuroscience,
23(2):1919–1930, 2006.

[87] D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The University
of South Florida word association, rhyme and word fragment norms.
Behavior Research Methods, Instruments and Computers, 36(3):402–
407, 2004.

[88] T. Nepusz and F. Bazsó. Likelihood-based clustering of directed graphs.
In Proceedings of the IEEE 3rd International Symposium on Compu-
tational Intelligence and Intelligent Informatics. Institute of Electrical
and Electronics Engineers, 2007. ISBN 1-4244-1157-2.

[89] T. Nepusz and F. Bazsó. Maximum likelihood methods for data mining
in datasets represented by graphs. In Proceedings of the IEEE 5th
International Symposium on Intelligent Systems and Informatics, pages
161–165. Institute of Electrical and Electronics Engineers, 2007.

[90] T. Nepusz, F. Bazsó, and A. Petróczi. Bridge vertices in directed
networks. Unpublished, submitted to Advances in Complex Systems,
2008.

[91] T. Nepusz, L. Négyessy, G. Tusnády, and F. Bazsó. Reconstructing
cortical networks: case of directed graphs with high level of reciprocity.

121

In B. Bollobás, R. Kozma, and D. Miklós, editors, Handbook of Large-
Scale Random Networks, volume 18 of Bolyai Society Mathematical
Studies. Springer, 2008. ISBN 978-3-540-69394-9.

[92] T. Nepusz, A. Petróczi, L. Négyessy, and F. Bazsó. Fuzzy communities
and the concept of bridgeness in complex networks. Physical Review
E, 77:016107, 2008. doi: 10.1103/PhysRevE.77.016107.

[93] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45:167–256, 2003.

[94] M. E. J. Newman. Fast algorithm for detecting community structure
in networks. Physical Review E, 69:066133, 2004.

[95] M. E. J. Newman. Who is the best connected scientist? A study of
scientific coauthorship networks. In E. Ben-Naim and Z. Toroczkai, ed-
itors, Complex networks, pages 337–370. Springer, Berlin, 2004. ISBN
978-3540223542.

[96] M. E. J. Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical Review E, 74:036104, 2006.

[97] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Physical
Review E, 64:026118, 2001.

[98] M. E. J. Newman, A.-L. Barabási, and D. J. Watts. The Structure
and Dynamics of Networks. Princeton University Press, 2006. ISBN
978-0-691-11357-9.

[99] Y. Nourani and B. Andresen. A comparison of simulated annealing
cooling strategies. Journal of Physics A, 31:8373–8385, 1998.

[100] J.-P. Onnela, K. Kaski, and J. Kertész. Clustering and information in
correlation based financial networks. European Physical Journal B, 38:
353–362, 2004.

[101] L. Pachter, S. Batzoglou, V. I. Spitkovsky, E. Banks, E. S. Lander,
D. J. Kleitman, and B. Berger. A dictionary-based approach for gene
annotation. Journal of Computational Biology, 6(3-4):419–430, 1999.
ISSN 1066-5277 (Print). doi: 10.1089/106652799318364.

[102] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlap-
ping community structure of complex networks in nature and society.
Nature, 435(7043):814–818, 2005.

122

[103] R. Pastor-Satorras, E. Smith, and R. V. Solé. Evolving protein in-
teraction networks through gene duplication. Journal of Theoretical
Biology, 222:199–210, 2003.

[104] A. Pasupathy. Neural basis of shape representation in the primate
brain. Progress in Brain Research, 154:293–313, 2006.

[105] A. Petróczi, T. Nepusz, and F. Bazsó. Measuring tie-strength in virtual
social networks. Connections, 27(2):49–57, 2006.

[106] D. J. d. S. Price. Networks of scientific papers. Science, 149:510–515,
1965.

[107] D. J. d. S. Price. A general theory of bibliometric and other cumulative
advantage processes. Journal of the American Society of Information
Science and Technology, 27:292–306, 1976.

[108] J. Reichardt and S. Bornholdt. Detecting fuzzy community structures
in complex networks with a Potts model. Physical Review Letters, 93:
218701, 2004.

[109] L. Rónyai, G. Ivanyos, and R. Szabó. Algoritmusok. Typotex, 1999.
ISBN 978-963-9132-16-0. (In Hungarian).

[110] H. H. Rosenbrock. An automatic method for finding the greatest or
least value of a function. Computer Journal, 3:175–184, 1960.

[111] E. H. Ruspini. Numerical methods for fuzzy clustering. Information
Sciences, 2:319–350, 1970.

[112] System V Interface Definition. SCO, 4th edition, 1995.

[113] D. F. Shanno. Conditioning of quasi-Newton methods for function
minimization. Mathematics of Computation, 24:647–656, 1970.

[114] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[115] H. A. Simon. On a class of skew distribution functions. Biometrika, 42
(3/4):425–440, 1955.

[116] H. Small. Co-citation in the scientific literature: A new measurement of
the relation between two documents. Journal of the American Society
of Information Science and Technology, 24(4):265–269, 1973.

123

[117] R. Solomonoff and A. Rapoport. Connectivity of random nets. Bulletin
of Mathematical Biophysics, 13:107–117, 1951.

[118] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organiza-
tion, development and function of complex brain networks. Trends in
Cognitive Sciences, 8(9):418–425, 2004.

[119] M. Steyvers and J. Tenenbaum. The large scale structure of semantic
networks: Statistical analyses and a model of semantic growth. Cogni-
tive Science, 29(1):41–78, 2005.

[120] E. Szemerédi. Regular partitions of graphs. In Problémes combinatoires
et théorie des graphes, pages 399–401. Centre National de la Recherche
Scientifique, 1978.

[121] T. Tao. Szemerédi’s regularity lemma revisited. Contributions to Dis-
crete Mathematics, 1:8–28, 2006.

[122] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck
method. In The 37th Annual Allerton Conference on Communication,
Control and Computing, pages 368–377, 1999.

[123] G. Tusnády. Personal communication., 2006.

[124] S. van Dongen. A stochastic uncoupling process for graphs. Technical
Report INS-R0011, National Research Institute for Mathematics and
Computer Science in the Netherlands, 2000.

[125] D. C. Van Essen and D. L. Dierker. Surface-based and probabilistic
atlases of primate cerebral cortex. Neuron, 56:209–25, 2007.

[126] G. van Rossum. Python Library Reference, release 2.5.2. Python Soft-
ware Foundation, February 2008.

[127] K. Wakita and T. Tsurumi. Finding community structure in a mega-
scale social networking service. In Proceedings of the IADIS Interna-
tional Conference on WWW/Internet, pages 153–162, 2007.

[128] S. Wasserman and K. Faust. Social network analysis. Cambridge Uni-
versity Press, 1994. ISBN 978-0521387071.

[129] D. J. Watts. Six Degrees: The Science of a Connected Age. W. W.
Norton & Co., 2003. ISBN 0-393-04142-5.

124

[130] D. J. Watts and S. H. Strogatz. Collective dynamics of small world
networks. Nature, 393:440–442, 1998.

[131] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The struc-
ture of the nervous system of the nematode Caenorhabditis elegans.
Philosophical Transactions of the Royal Society of London B, 314:1–
340, 1986.

[132] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An efficient and
portable pseudo-random number generator. Applied Statistics, (31):
188–190, 1982.

[133] T. Williams and C. Kelley. The GNUplot Reference Manual. URL
http://www.gnuplot.info.

[134] W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33:452–473, 1977.

[135] S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping
community structure in complex networks using fuzzy c-means cluster-
ing. Physica A, 374(1):483–490, 2007.

[136] C. Zhu, R. H. Byrd, and J. Nocedal. Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization.
ACM Transactions on Mathematical Software, 23(4):550–560, 1997.

[137] M. Zhu and A. Ghodsi. Automatic dimensionality selection from the
scree plot via the use of profile likelihood. Computational Statistics and
Data Analysis, 51(2):918–930, 2006. doi: 10.1016/j.csda.2005.09.010.

[138] E. Ziv, M. Middendorf, and C. H. Wiggins. An information-theoretic
approach to network modularity. Physical Review E, 71:046117, 2005.

125

http://www.gnuplot.info

	Introduction
	Basics of graph theory
	Random graph models
	Erdos-Rényi graphs
	Small world networks
	Scale-free networks and the principle of preferential attachment
	Community structure

	Further reading

	Link prediction in complex networks
	Overview
	Prediction by local similarity indices
	Prediction by path ensembles and random walks
	Prediction based on stochastic network models

	The model framework
	Formal description
	Extended preference model

	Basic statistical properties
	Analytical results
	Numerical simulations

	Fitting the model to data
	The goal function for model fitting
	Fitting by expectation-maximisation
	Fitting by Markov chain Monte Carlo methods
	Combining EM and MCMC methods
	Choosing the number of vertex types

	Running time considerations
	Network generation
	Model fitting

	Performance measurements
	Fitting the model with given number of groups
	Choosing the number of groups
	Rapid mixing of the Markov chain

	Using the preference model for predicting unknown links
	Conclusion

	Fuzzy community structure in complex networks
	Overview
	Basic concepts
	Fuzzy partition matrices
	Similarity and the goal function

	Finding fuzzy communities in undirected networks
	Outline of the algorithm
	Connection weights
	Choosing the number of communities

	Identifying bridge vertices
	Bridgeness
	Centrality-weighted bridgeness
	Exponentiated entropy

	Benchmark results
	Nonoverlapping community structure
	Overlapping community structure
	Running time

	Applications
	Predicting missing neural connections in cortical networks
	The dataset
	Results
	Other prediction approaches

	Higher level brain areas in the visuo-tactile cortex
	Results
	Comparison with other approaches

	Detection of social bridges via fuzzy communities
	The UK university faculty dataset
	The network science co-authorship graph

	Conclusions
	Link prediction in complex networks
	Fuzzy communities in complex networks

	Technical background
	Generating random numbers
	The igraph library
	The basic graph representation in igraph
	An example: calculating SimRank scores

	Bibliography

