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Robust path integration in the entorhinal grid cell system wth
hippocampal feed-back

Abstract Animals are able to update their knowledge abobiack from the integrated hippocampal place representation
their current position solely by integrating the speed duad tis able to stabilize the grid cell code.

direction of their movement, known as path integration. R&eywords sensor fusion place representatiorlearning-

cent discoveries suggest that grid cells in the medial Birtornoise- error correction

nal cortex might perform some of the essential underlying

computations of path integration. However, a major concern
over path integration is that as the measurement of spgeghtroduction
and direction is inaccurate, the representation of the-posi

tion will become increasingly unreliable. In this paper Wgring the course of their evolution animals have developed
study how allothetic inputs can be used to continually Cogayeral types of sensory organs. Information collected by
rect the accumulating error in the path integrator syste1. Wese can be used by the animal to execute several tasks re-
set up the model of a mobile agent equipped with the egyired for its survival. One such task is navigation for whic
torhinal representation of idiothetic (grid cell) and &fletic  animals at different levels of development use differepety
(visual cells) information and simulated its place leagiim o sensory inputs. In rodents these types include auditory,
a virtual environment. Due to competitive learning a robuglctile, visual (allothetic) and self-motion (idiothetiafor-
hippocampal place code emerges rapidly in the model. ANation (Maaswinkel and Whishaw 1999). Integration of these
the same time, the hippocampo-entorhinal feed-back cqfpdalities into a unified representation of the environment
nections are modified via Hebbian learning in order to a”OVﬁight serve as the basis for navigation in animals at a high
hippocampal place cells to influence the attractor dynamigge| of phylogenetic development. Electrical recordifigsn

in the entorhinal cortex. We show that the continuous feegmﬂe cells in the rat hippocampus showing highly spatiall
correlated cell activity (O’Keefe and Dostrovsky 1971}, in
This research was supported by the EU Framework 6 ICEA mrojgficated that this structure might be the site of integrated
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place representation by the hippocampal cells (Wiener et al
1995; Jeffery 2007). For example, on one hand, changing the
visual appearance of the testing environment by modifying
its shape (Muller and Kubie 1987; Leutgeb et al 2007) or
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Path integration is performed using self-motion inforet al 2008) that similar Hebbian mechanism is able to pro-
mation (Etienne and Jeffery 2004), which originates fromhuce place cell like activity even if the representationhaf t
the visual-flow, the vestibular system, proprioceptive anotsensory input is less elaborated.
copies, etc. Theoretical considerations (McNaughton et al An other theory proposed by Burgess and O’'Keefe (1996)
2006) suggest that path integration in rats, using thisimulsuggests that hippocampal place cell activity is based®n th
modal information, is performed in the attractor network dfring of so called boundary vector cells (Barry et al 2006)
the recently discovered entorhinal grid cell system (Hafti A neural network model based on this theory was success-
et al 2005), which functions as a preprocessing stage in fa#y implemented in a mobile robot (Burgess et al 2000),
generation of the hippocampal place code. These cells foumdich used real-word inputs: sensory input cells, feeding
in all layers of the medial entorhinal cortex were (EC) showtheir output into entorhinal cortical cells, were selegtto
to fire on a regular hexagonal lattice, tessellating the espahe distance of a wall in a particular direction. Interegtjn
(Hafting et al 2005; Sargolini et al 2007). very recently this model was supported by experimental ev-

Path integration alone, however, can not be used by aldience, whereby cells, termed border cells, in the medial EC
mals or robots for proper navigation as errors in the measuféd adjacent parasubiculum were found to fire when the rat
ment of speed and direction increasingly accumulate, and WgS close to a geometric border of the environment (Sol-
ter the animal proceeds a certain distance this error wauld $t&d et al 2008). These cells might serve to produce a ref-
validate self localization. Fortunately, combining afietic €rénce frame for location determination and could be used
and idiothetic information offers a way to ameliorate path i 10 €rror correction, when the animal reaches the border, or
tegration and get rid of the harmful noise. There is evideng¥€n more, a corner of the environment. However, the ques-
showing that in humans, when the visual and the self-moti§Rn how the error accumulating in the path integrator while
information are in conflict either the visual system resieés tthe animal moves from border to border still requires furthe
self-motion system based on a remembered location of laf@boration. _ o
marks or the two information are integrated (Nardini et al Here, we ask the question how errors accumulating in
2008). Specifically, adults when facing conflicting cues ug@th integration is corrected in the entorhino-hippocdmpa
a weighted average of cues in determining their locatiopyStem in a biologically plausible way. Specifically, in the
while young children alternated between the use of eith@iesent study we propose a mechanism, which combine path
information source without combining them. In rats, howintegration via entorhinal grid cells and vision to create a
ever, when vision and self-motion are in conflict place celified representation of the environment by hippocampal
generally prefer to follow the visual stimulus (Knierim ét aPlace cells. We assume that the projection from CA1 and
1995; Jeffery 1998; Maaswinkel and Whishaw 1999). Moréubiculum to the deep layers of the entorhinal cortex can in-
over, depending on the precision needed to achieve a g(ﬁ'é_l@nce the attractpr dynamics in the entorhinal cort_ex, and
animals might swap the different navigation strategies. Fé\at these connections are established through Hebbiam lea
example, during homing, hamsters first follow a relativel?d when the environment is novel. This approach is consis-
straight line indicating the use of path integration (Sagu tentwith the idea proposed by O’Keefe and Burgess (2005),
et al 1993), however, when they get close to their nest, th#§10 suggested that a feed-back innervation from hippocam-
switch to follow a circular trajectory in a search for faraili Pal place cells to entorhinal grid cells facilitates theoasz-

(visual) cues (for a review see (Etienne et al 1996; Etienfign of grid cells to sensory inputs and associations betwee
and Jeffery 2004)). different sets of connected grid cells. Furthermore, wewsho

The exact mechanism of how grid cells and place ce(]hat these feed-back connections empower the system to cor-

interact with each other to form a robust representation § aiiiilf localization errors originating from noisy paite
the environment is still to be elucidated. Building on expe ’

imental observations several components of the underlying

neural structures have been studied by theoretical tobks. T
first models explaining the generation of hippocampal pla2eMethods

cell activity from visual inputs used the distance from and

the bearing to identified landmarks as input to the hippocafer numerical simulations of the entorhino-hippocampatietp
pus (Zipser 1985; Sharp 1991; Burgess et al 1994; Tourete set up a virtual environment and a simple robot model in
zky and Redish 1996; Barry and Burgess 2007). Hippocathe Webots (Michel 2004) mobile robotics simulation soft-
pal place cells were activated when the currently perceivere. All physical events happening to the robot (displgcin
scene matched the stored landmark configuration. Howevgerturning it, blocking its movement when hitting obsteg)le
these models require exact object recognition, and represas well as maintaining the communication between the ex-
tation of distances and angles between objects in the ECtefnal word and the neural network model via robotic sen-
such a representation is present, place cell activityaipar- sors were handled by Webots. To explore its environment,
titioning of the environment into place fields, emerges froe robot moved forward in a straight line for three time
the combination of a Hebbian-like learning between the ExZeps, then turned randomly left or right 0.3 radians. A time
and hippocampal cells and competition among hippocasstep in the simulations was 0.125 seconds and the robot's
pal place cells (Sharp 1991). Later it was shown (Ujfalusspeed was 0.22 meters per second.
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The neural model — the whisker cell, local visual celis 0-8]
grid cell and the place cell models — was run within th& -
robotic simulation using inputs from the robot’s sensonst-O 5
puts — firing rates of cells — were saved and processed g¥f-0.6
line in the R software environment (R Development Corg g 5|
Team 2007). Control of the robot was not connected to tife
neural model in any way, the robot moved randomly ar%i 0.41

sampled the environment. B 0.2
©
% 0.11
2.1 Overview of the neural network model g 0.0 a
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The neural network model consisted of neurons in the barrel Simulation length [time step]

cortex, entorhinal cortical grid cells, local visual cedlad
hippocampal place cells (Fig. 1). Inputs from the extern
world originated from the robot’s sensors and were repre
sented as firing rates in the entorhinal and barrel cortic
part of the model. As we intended to study how allotheti
information can be used to ameliorate path integration,
used noisy proprioceptive input in the simulations. Ermr a
cumulated (Fig. 2) in the path integrator and invalidated
the neural representation of position.

Cortical neurons (the input layer) innervated hippoca
pal cells via modifiable synapses. Hippocampal cells in tu
exhibited spatially correlated firing similar to experintaty
observed place cells. In the present model hippocampal ce
integrated the three types of modalities represented in tfig. 2 Properties of the simulation environment. Figarshows the
cortical models. We used this integrated place represerﬁgcumulation of noise in the path integration. Error of theakion de-

. s e : . termination based solely on path integration increasesfascéion of
tion to stabilize the spatial firing pattern of grid cells \d@a . -2eled distance. The line depict the mean differedbgtween

feed-back excitation from the hippocampus to grid cells. the real position and position calculated from the wheedtion, each
In the following sections of the Methods we describe thesed on 10 independent simulations. Note that in an opera dhe
parts of the model in more detail. increase would correspond to a square root function, haweveur
1x1 meter arena the mean difference is boundel,at= 0.521 meter

(Oser et al 1990). Noise strengthh = 0.05, see text. Simulation of the

model’s inputs in Webotd). A simple virtual environment and a mo-
2.2 Inputs of the model bile robot were simulated. The robot was allowed to wandedoaly
in the middle part of the environment in a distance from thipetl

o4

. . walls. This way we implemented distal visual cues, whichexsansed
The neural r_‘etwork model receives thre_e types of iNPUS 6 cameras (lines starting from the top of the robot showfitld
from the environment (Fig. B). First, 20 distance sensorsof vision of each camera) placed on the top of the cylindrixady of
represented by 20 rate models were used to simulate trerobot generating a panoramic view. Besides the cantbeasobot
whisking of rats. Whenever the robot moved close enou$f® eﬂ“'.ppeo' with 20 d'Sta”Ch":‘ pensors on its dlo;Nefrli plgétlon (lines
I, activity of these neurons increased from O conti ow their sensitivity range), which served to model whiskistecting
to a wall, y Hearby obstacles. Finally, the robot was moved by two wheeiich
uously to 1. These sensors were also used to perform IaWpplied the proprioceptive input to the neural model byistegng
level obstacle avoidance reflex. their rotation.
Second, one row of the panoramic camera image was
taken as the visual input. The robot was constrained to move
in the central portion of the environment, thus the stripeode

; . . . . eqinning of the simulation. Altogether, we simulated 120
wall it sensed by its cameras always remained in a distanc - .
wﬁual cells. Firing rate of a visual cell corresponded e th

§ervi_ng dis_tal visual cues. To gnable the robot to establl ray scale value of the respective camera pixel normalized
its orientation a cue card was simulated. Whenever the ro ﬁ?

moved it calculated its orientation relative to the direntof he(0..1] interval.

the cue card. The panoramic camera image was then rotatedThird, the rotation of the differential wheels was regis-
using the robot’s self established head direction suchahatiered and a speed vector was calculated serving an input to
pixel in a given direction (e.g. the view to the north) wathe entorhinal grid cell system consisting of 270 neurons.
always mapped to approximately the same local visual célhe speed vector was considered to be noisy as it is in real
irrespective of the orientation of the robot. Thus, the refeanimals and robots, giving rise to an inaccurate updatesof th
ence frame in our case was given by the location of the rokmisition’s representation by the grid cells, which intégda

and the direction of the cue card relative to the robot at thi@s noisy speed vector as described in the Sect. 2.4.
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Fig. 1 Overview of the computer modeA. The neural network model — consisting of the model of therial cortical grid cells and local
visual cells, whisker cells and the hippocampal place eelgas run in a simulated robot in the Webots environment. tspti the model,
represented as firing rates of grid, local visual and whiskéis respectively, came from the sensors of the robot sagalvirtual environment.
White noise was added to the proprioceptive input (wheettian). Neurons in the input layer innervated hippocamadecells, which in turn
fed-back onto the entorhinal grid celB. The inputs and the activity of the entorhinal grid cellsteys. Simulated grid cells of a given population
receive recurrent inputs from other grid cells of the popataand afferent input from the hippocampus, both of whidfuence the change of
grid cell activity in time (left). Grid cells are organizenl @& matrix, represented in the right panel, where darker adla square indicates higher
grid cell activity. The topology of the recurrent connengdnitiates the formation of an activity bumBd) after a few simulation time steps.
When the animal moves the noisy proprioceptive input mddsléhe recurrent connectivity between grid cells and tpetiof the neurons in
the corresponding directions is increased,(see Sec. 2.4 and Guanella and Verschure (2006) for morgsjleTde recurrent synaptid3€)
input is integrated with the feed-back input from the hipgpopus Bb) and finally the activity bump shifts according to the estietedirection
of motion Bd).

The noisy speed was simulated according to the followe achieve this behavior we implemented a Hebbian-like

ing equation: learning algorithm between neurons in the input layer and
hippocampal place cells and competition among place cells
s =sx(1+¢), (1) (Sharp 1991).

wheres is the constant noiseless speed measured from the
rotation of the robot's wheels is the noisy speed used to _
update the grid cell system, afdis a random variable fol- 2.4 The grid cell model

lowing the normal distribution with standard deviation ) ) . )
In a previous version of this model (Ujfalussy et al 2008)

grid cells were described by their firing rate, which was im-
2.3 The simulated hippocampal network and the learningplemented as a periodic function of the animal’s spatial lo-
rule cation, following Blair et al (2007). This simple approash i

computationally efficient and allows the simulation of sev-
Detailed equations and parameters following our previoasal grid cells at the same time. However, for our present
work (Ujfalussy et al 2008) describing the implementatiopurposes a dynamical description of grid cells is required
of the whisker, local visual and place cells can be found as we intend to describe the deterioration of the hexago-
the Appendix I. The purpose of the hippocampus model ival spatial firing pattern due to the noisy inputs and the its
the present simulations was to integrate its inputs and geestoration by modifiable connections between place cells
erate a unified representation of the environment by plaaed grid cells. Thus we incorporated the dynamical model of
cells. To achieve this goal we followed the theory proposéauanella and Verschure (2006) into our model framework.
by Rolls (1995), which explains how the hippocampal for- This artificial neural network model implements a con-
mation operates to serve as an episodic memory device. Himitous attractor system on a two dimensional neural space
ever, when input patterns are functions of the position; hifFig. 1 B). Activity of a neuron is represented by a scalar
pocampal cells show place correlated firing activity simiariable denoting the firing rate of the neuron. The connec-
lar to the behavior of experimentally observed place cellson among neurons is all-to-all and to return the hexagonal



spatial firing property of grid cells, the connections are inpopulation. Each element of tiw¢("-®) matrix was initial-
plemented on a twisted torus topology of the neural tissimed to 0. To evolve this matrix three learning rules were
(see Fig. 1 and 2 of Guanella and Verschure (2006)). Starsed as follows.
ing from a random initial condition, first an activity bump  The first learning rule we used to modify the hippocampo-
is formed somewhere in the neural space depending on tagtical feed-back connection was a semi-online rule (egfm
initial state, which is the stable solution of this continso correlation counting rule). First, during the learning pba
attractor system. Integration of the animal’s speed —he. ttwo variables counted the correlated and anti-correlated fi
displacement of the activity bump —is implemented throughg events between all place and grid cell pairs, as destribe
the modulation of the connections by shifting them in thia Table 2 (online phase). Then, when the learning phase was
direction of the animal’s motion. In our simulations we f0|over’ we determined tI’W(ch‘) We|ght matrix according to
lowed the same principle but used the noisy version of thge following equation (offline phase):
speed vector (Eq. 1).

According to recordings from freely moving rats we useé%(H@) _cC 4
3 layers of grid cells in the simulations, neurons withinteac " T c+a’ )
layer sharing a common spacing and all layers had the same
orientation (Barry et al 2007). Each layer consisted-dD9 wjith this rule we could approximate the ratio of the area
neurons, each neuron had a different spatial phase. For ggRere the grid cell firing field and the place field overlap
erating these neurons we used the parameters listed in Ta{{g the area of the place field for &l pairs, assuming that
1, other parameters were kept as in the original paper i robot did a sufficiently fine exploration on the simula-
Guanella and Verschure (2006). tion environment during the learning phase. This ratio ap-
proximates the probability of grid cell firing given that the
presynaptic hippocampal place cell fires. After learnihg, t
WH-G) matrix stores these probabilities for each pair.

‘ Parameter ‘ Layer | ‘ Layer Il ‘ Layer Il ‘

Gain 1 15 2
Bias 0 0 0
‘ Spacing [m] ‘ 0.80 ‘ 0.55 ‘ 0.40 ‘ ‘ Hi ‘ Gj ‘ action ‘
Table 1 Parameters used in our simulations of the grid cell model by >0y | >0 | c++
Guanella and Verschure (2006). Other parameters were kaptthe — —
original paper. Spacing in the model is a function of the gairameter. > On <0 | at++

<Oy | >06g

< Oy < Og

Additionally to the original model (Guanella and Ver-

; ; i iTable 2 Counting of firing events in the correlation counting rule. |
schure 2006) calculation of the grid cell activity was mOdlcase ofAy > Oa, the A cell was considered to be active, otherwise it

fied by the feed-back connections (Fig. 1). SpecificallyaequaS considered to be inactivea: correlation and anti-correlation case

tion 2 of Guanella and Verschure (2006) was changed irdgunter variables, respectively; asd- is the incrementation operator.
the following form We useddy = 0.3 andOg = 0.6 values in the simulations.

N
) . (HG) .
G=n (n(A. Wren (,le” HJ)) ’ @ Table 3 shows the formula of the other two Hebbian-
type continuous, on-line learning rules we used: a staddlliz
whereA is the original G is the modified activity of the grid Hebb and the presynaptic gating rule (Gerstner and Kistler
cells,H is the rate vectomN is the number of the simulated2002). The latter is a continuous on-line form of the corre-

hippocampal cells, anal(-) is the linear normalization func- lation counting rule, as the synaptic weights converge¢o th
tion mean firing rate of the grid cells given the presynaptic place
cell fires.
Vi —min(V)
max(V) —min(V)

n(Vi) = ©)

‘ Learning rule Formula ‘

Stabilized Hebb | AW™®) =y (H; G W)

2.5 Development of the hippocampo-cortical feed-back

In order to study the error correcting capability of the in- j '

tearated hippocampal place representation we had to adilfole 3 The studied continuous learning rulék.G: the rate vector of
9 HG PP i P p P . J[ € simulated hippocampal and grid cell populations at thengtime

thew(H.G) weight matrix of the feed-back connection prostep, respectivelyy: learning rate parameter.

jecting from the simulated hippocampal cells to the grid cel

Presynaptic gating AW,(H'@ =yxHjx (Gi fW,(H’G)>




Synaptic modification in biological systems implicate in- a
tricate, non-linear, time-dependent mechanisms (Bi arxd Pn
2001). However, in several practical applications inviodyi
learning and memory simplified learning algorithms (Gers . 6 -s [ ]
ner and Kistler 2002) might sufficiently fulfill their role in
implementing the necessary functionality. These algorith
usually build on firing activity correlation driven modifica
tion of the connectivity matrix and use the Hebbian-typ ﬂ
(Hebb 1949) learning rules in a general sense (Arbib 200
This motivated our above described learning rules as we

Specifically, for the functioning of our proposed mechanis gy n a
of error correction, the overlap of firing fields of grid anu

place cells is to be assessed. We suggest that the comelatio

of temporal firing activity is in accordance with this geo- C

_ _— ——

metrical property of firing and hence use correlation basekT & " . i

learning rules. The most abstract learning rule, the catrel |

tion counting rule, is far from a biologically implemented| = - . Y

mechanism, however, it is efficient and captures the ne

essary properties of the required rule in a simple way. Thi - - - "

other two rules are more biologically plausible: both come

from the family of stabilized Hebb rules, given in general by % ® - -

the formuIaAV\4<jH’G) = y(f(Gi)Hj —0(G;j )V\/i(jH‘G)) (e.0. :‘ Y O 4 t

see Blais et al (1999)). Specifically, the pre-synapticrgpti === SYEEN

rule, suggested by Grossberg (Grossberg 1974, 1976a,b) }5{883 Spatial activity pattern in the grid and the place cell syste

introduced to describe information processing in the \liSUgithout noise and without hippocampal feed-back. The zigging
cortex of the cat. line ona andd represent the path of the robot with small black dots
at sampling points where sensory information was processgdiots
show where a certain grid or place cell, respectively, hadzero ac-
tivity. On b the image shows the firing rate map of the same grid cell,
3 Results and onc the spatial auto-correlation function calculated from e
map. Grid cell parameters were: gain 1.5 and bias 0. The $eale

. . denotes 0.5 meter far, b, andd and 1 meter foc. Note that in the

3.1 Simulation of the model noiseless situation ideal grid and place codes are gederate

Initially, all firing rates and th€;; synaptic matrix elements
were set randomly and were modified during the course of
the simulation. Thav™:G) matrix was initialized to 0. To
solve the problem of the separation of concurrent learning
and exploitation of acquired knowledge, we separated the

simulation into two phases as described below. Second, due to the competition between hippocampal

neurons and the self-organizing synaptic modification, in-
put patterns were transformed into a sparse and orthogonal
) representation in the hippocampus. As described eatllgr, (
3.2 Learning phase falussy et al 2008) spatially correlated inputs generateel

cell activity in the model hippocampus during the learning
During the first (learning) phase of the simulation the @ari phase of the simulation (Fig. @. Generation of the place

hippocampal connections were modified by Eq. A-4, and teede was fast, place fields remain stable after a few visit of
feed-back connections as described in Sect. 2.5. This para@ertain location.

the simulation lasted for 3000 simulation time steps (ekcep

for Fig. 6b). During the learning phase, however, the feed-

back connections did not influence the activity of the en- An important difference between the previous version of
torhinal grid cells. During this phase the network inizald this model (Ujfalussy et al 2008) and its present version is
itself in two ways: First the initially random activity in ¢h that previously, similarly to other modeling works (Sotsta
grid cell system was stabilized and formed an activity bungt al 2006; Rolls et al 2006), we used multiple orientations
due to the attractor dynamics of this subsystem. The burapd spacings in the grid cell part of the model. In the present
was formed and path integration started within a few simuersion, however, only one orientation is used and onlyethre
lation time steps. As noise was turned off initially, gridise spacings, still, integrating the grid input with the visira
exhibited a robust hexagonal spatial activity pattern.(Big put results in well expressed place fields in the hippocampus
a—<C). (Fig. 3d).
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Fig. 4 Spatial activity pattern in the grid and place cell systerthwi g 5 gpatial activity pattern in the grid and place cell systerthwi
noise and without hippocampal feed-back. Placement ofguitafs and noggse anpd hippocan¥pgl feed-back. I%Iacemerﬁ)t of subfigﬁr@bsﬂm
the cells shown are the same as in Fig. 3. Note that introdutlise o1 shown are the same as in Fig. 3, noise stremgth,0.05

in the proprioceptive information distorted the regulamfir activity ' .

of grid cells. Note that while firing of the place cell becamermdis-

persed, the location of the place field remained similar. fidtative | . . .
usability of the remaining place field is due to the visualtmdrthe N the system together with the hippocampo-entorhinal-feed

input. Noise strengthy = 0.05. back correction@’(t)) and averaged for the whole course of
the active feed-back phase (3000 time steps):

3.3 Active feed-back phase Cx = (cor (G(t),G'(t)) )i—[3001.6000 (5)

During the second (active feed-back) phase (3000 time)stel§§ all three & € {1, 11, 1l }) grid cell layers (Table 1). This
synaptic weights did not change and all synaptic pathwa%lpulatl_on was performed for all three Iearnlng rules de-
influenced their target regions. Also, noise was added to #f@ibed in Sect. 2.5 and results were compared in Table 4.
signal of the rotation sensors of the robot’s wheels, which Simulations showed that all three learning rules studied
deteriorated the regular activity of the grid system (Fig. Rerformed equally well. However, when the feed-back ex-
a—c) and invalidated the path integration. As a result, tw@itation was not present the noiseless and the noisy spatial
third of the cortical input vector contained noisy informagdrid patterns were decorrelated. When comparing resuits ob
tion, which had an impact on the hippocampal place repr@ined for different grid layers (Table 4) we found that the
sentation, reflected by distorted place fields shown on Figbigger the spacing, the better the error correction. The rea
d. son for this can be understood by considering how the cor-
Simulation results show, however, that activating the hiﬁelation counting learning rule works: whenever there is an

pocampal feed-back resulted in restoring both the grid aA¥erlap between the firing field of a grid cell and a place
the place code (Fig. 5) cell a positive correlation was encountered and the synap-

tic strength matrix element between the corresponding cell
was increased. However, when the overlap was only partial
and in a given position the place cell was active, but the grid
3.4 Properties of the hippocampal feed-back innervation cell was not, an anti-correlation was registered and the cor
responding weight matrix element was decreased (Table 2).
To characterize the error correcting capability of the -inténcreasing the field size of the grid cells would result, on av
grated hippocampal place representation in the grid csll sgrage, in an increased overlap and opens the possibility to
tem, we calculated the Pearson correlation at each timé poinforce synapses enabling error correction.
t between the grid activity vector in the noiseless situation In the followings we narrowed down our experiments to
(G(t)) and the corrected grid activity when noise was presethie studying of the presynaptic gating learning rule. We nex
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Fig. 6 Error correcting by feed-back. Dependence of the erroectirrg capability of the presynaptic gating rule, as meaby the correlation
described in Eqg. 5, on the noise strengihgnd on the learning lengtlb). o = 0.05 inb. Circle — grid layer |, square — grid layer II, diamond —
grid layer Ill. The arrow ira indicates the noise strength used in the simulations uokbsswise noted.

Learning rule ‘ C ‘ Ci ‘ Cu ‘ Next, we examined how the length of the learning phase
influences the error correction potential of the feed-baok.
create comparable results, the simulation was divided into

Correlation counting | .905 | .827 | .735

Presynaptic gating | .921 | .839 | .743 three parts: first, the robot was engaged in learning for some
Stabilized Hebb | 921 | 838| 742 time steps{); second, it continued its random walk without
any modification of the synapses for some more time steps
No feed-back -.047 | .132 | -.013

(1o) such that; 4 1o = 3000; third the active feed-back phase
Table 4 Comparison of the three studied learning rules. Calcwatioegun and lasted for, = 3000 time steps. This way, we

and comparing the correlation between the original, nesseand the ensured that in the active feed-back stage the robot trcvele
corrected grid patterns we found that all three implemetgadhing along the same path

rules performed similarly well. However, when the feedbagcita- imulati | he | . | h (FiobBi
tion was turned off the original and the noisy grid patteresencom-  Simulation results on the learning length (Figbgin-
pletely decorrelated. dicated that approximately 700 time steps were sufficient

in our situation to reach the asymptotic value of the corre-
lation used to measure error correction. There are two ba-
. ) sic processes that influence the length of the learning; first
examined the noise tolerance of the feed-back by systejie feed-back synaptic matrix is modified to associate hip-
atically increasing ther noise strength parameter and calyocampal cell firing with grid cell firing. We found that in
culating the correlation (Eg. 5). Again, as discussed aboyge examined parameter intervai£ [0.1..0.5]) the learn-
we found that generally grid cell firing patterns with biggejhg rate did not effect overall learning time (data not shpwn
spacings can be better corrected than grids with small sp&gcond, the robot had to sample the environment long enough,
ing (Fig.6a). such that it was able to form enough associations between
Also note that in thes = 0 pointCx (0 = 0) < 1, for all hippocampal and grid fields when visiting a certain place.
layers. Finite sampling of the environment and differeat trindeed, while the robot traversed place fields that were not
jectories during the learning and the recall phases lead togssociated to grid fields by the feed-back during learning,
imperfect hippocampal place representation, which, va tthe path integrator run free of the hippocampal influence,
feed-back excitation, influenced the grid system even in thfys accumulated the sensory noise. Fig. 7 shows the time
noiseless case. Overall, we found that increasing the sens&yolution of the above described error correction.
noise up to aboutr = 0.2, the error correction performance  On the whole, we found that after the sufficient amount
of the feed-back decreased until it reached a limit valugf learning was accomplished (about 700 time steps in our
which was different for each grid layer, however, further incase) error correction in the grid cell system took place and

creasing the noise would not result in a significant drop gh appropriate place representation was generated.
the performance: Above a critical noise level, the informa-

tion in the proprioceptive input was negligible compared to

the allothetic inputs. We also found that depending on rat8o5 Predictions of the model

of the number of grid cells, and visual cells, — i.e. the ra-

tio between noisy and noiseless inputs — the limit varies: thiVe studied the properties of the simulated grid cell—place
less noisy input cells included, the better the error cdiwac cell system in situations when the environment around the
(data not shown). robot changes. In the first set of experiments we tested how
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‘ : : : ‘ ‘ : : ; : Fig. 8 Recovery after disorientation. See text for the protoc@dus
0 10 20 30 40 50 0 10 20 30 40 50 The five symbols show position estimation values (see Appelid
Simulation length [time step]  Simulation length [time step] oy five runs, the symbols with the error bars show their ayerand
Fig. 7 Continuous error correction by feed-baekEstimation of the standard deviation. The black arrows at time step 1 indscateen the
robot’s position based on the grid system (see AppendixQym- Visual input was turned back on. Note the instantaneousavepnent
bols show mean, error bars SEM of the position without err ¢ Of the position estimation after visual correction of thegjoimg activ-
recting feed-back (red, squares), with feed-back (blaigkndnds) and 1ty
without noise (green, dotsh. Error accumulation in the grid cell sys-

tem quantified by the correlation between different reéiiwe of the First environment Second environment
grid-system (see Eg. 5). Open red squares represent tredatmmn of

the noise-free grid-system with the noisy system withoppbtampal a
feed-back for the three simulated grid layers. Open blackes denote

correlations of the noise-free system with the noisy systghen its
activity is corrected by the hippocampal feed-back, givartlie three L H
layers of the grid-system. Filled symbols represent themfeathe o .
three layers. This figure is based on the average of ten raesteXt ,.::

e,

L}

for details.

I% # #
L’
the grid- and place cell systems are able to identify the lo- "

cation of the robot in an already learned, familiar, enwviron *
ment after disorientation (Fig. 8). For this experimeng th

robot first learned positions in the environment for SOOCbtirBQ % ‘,@
steps. Then, the grid activity was randomized and the ro %

wandered from a random starting point for 200 time steps b

with the visual input turned off. Third, the visual input was :
turned back on, and the robot kept wandering for 200 time  p|,ce cell #1 Place cell #2

steps. ) - . , .
. . . . Fig. 9 Remapping in a new environment. Left column: first environ-
As shown on Fig. 8 after the visual input is turned baqgent, right column: second environment. Figarshows a selected

(black arrows), the estimation of the robot’s position laasgyid cell, andb two place cells in the first and in the second environ-

on the grid cell system (see Appendix Il for the methodoirent, respectively. For details see the text.

ogy) or the place cell system (data not shown) rapidly im-

proves, showing that the grid cell system and the place cell

system runs in accordance with the previously learned pabange the same degree, in accordance with experimental

tern, i.e. the robot is able to recover from a disorientatiabservations (Fyhn et al 2007).

and recognizes an already visited environment. Place cells perform global remapping. Some place cells
In a second set of experiments the robot was put intoagre only active in one of the environments (approximately

novel environment. Specifically, the robot was first put int¢0% of the cells in the first only, about 30% in the second

an environment and learned the locations as describedoirly), some in both (about 10%) and some remained silentin

Sect. 3.2. After learning in the first environment the stlipeboth. Place fields of those cells that were active in both-envi

pattern on the walls was changed to simulate a new envireonment were independent. We also found that place fields

ment and the robot was allowed to learn again for 3000 tinrethe second environment were slightly larger than in the

steps. After learning spatial receptive fields of grid aratpl first (data not shown). These observations can be explained

cells were evaluated (Fig. 9). by taking into account the competitive learning mechanism
We found that grid cells remap coherently, as expectagsed in the hippocampal system. Cells that learned to repre-

Any two grid cells will preserve their relative phase, eackent a certain location will have synaptic strength assedia

grid cell will have the same spacing and their orientatidio them such that only the input pattern describing the loca-

Place cell #1 Place cell #2



10

tion of their place field will activate them, thus in the new en a b
vironment they will not be able to learn. Naive cells, which
were not involved in the representation of the first enviroi i WiV | Al 1Y NT 1

| 1 . \
ment, on the other hand, will be able to learn places. Also, ' -t A v b ' P 4 ' " = ‘ ‘—
in the second environment less cells are able to learn, tr - A~ '~ A ‘ P00 q

resulting place field will be bigger. s A | =/ ADAY ar) | .0
~ Finally, to explicitly test how visual and proprioceptive g ‘a) (s y O | - - a -
inputs are combined, in a third set of experiments we siry bt - =" . "

ulated the morphing of the environment. The oversimplifie |y A O O Ol AV IO .
visual system used in the model did not allow us to simp, o e b QO o @
stretch the arena together with the striped pattern on itis w “..\‘ o~ p . / 77‘.‘( N L3 4
because in this case the robot did not recognize the didtor: VAYEY ! 1Y B NN Wy
visual input. Fig. 10 Effect of scaling the proprioceptive input relative to thie v

However, to simulate the conflict between the visual arsdal input on the grid cell activity. The spatial autocaatiein func-
the proprioceptive system, we developed an other methden of one representative grid cell is shown withoat &nd with p)

; : : ocampal feed-back. During learning a vertically coegged grid
During the learning phase the gain parameter (see Tablé“ﬂractivity were associated with the hippocampal plageesenta-

. e . . Ci

of the grid cell system was modified, while the enVIronmelﬂgn_ As shown on figure, after rescaling the proprioceptive input
was kept unchanged. During the active feed-back phase, dheng recall, the regular hexagonal spatial firing pattefrgrid cells
gain parameter was set back to its original value, thus simere reestablished in the absence of hippocampal feed-bawlever,
ulating a mismatch between the proprioceptive and the {ipureb shows that the visual input induce vertical rescaling ingtie
sual inputs. Specifically, the gain parameter of the gridiscefe" system via the hippocampal feed-back. The magnitudeeofer-

) ’ " . . . i(ial rescaling E = 1.5) was exactly the same as modulation of the
was changed from 1 to 1.5 in the vertical direction and ke X esponding Gain parameter
1 in the horizontal direction for learning. As a result, dur- P ggainp ’
ing learning the hippocampal feed-back was associated with
a distorted grid pattern that moved 1.5 times faster in thehe same time improve the properties of place fields them-
vertical direction than in the horizontal direction. Dgire- ¢qjyes as well. in a circularly causal manner.
call the gain parameter in the vertical direction was sekbac gased on e:xperimental evidence (Wilson and McNaughton
to 1, simulating that the side of the arena corresponding {§93) in a theoretical framework McNaughton et al (1996)

the vertical direction was shortened 1.5 times while the roposed that the visual information might be used both to
sual cues remained unchanged. Without hippocampal fegdapiish the initial location of rodents — initialize itatp

back, the grid activity exhibited the regular hexagonal pahegrator system — and to correct for accumulating error.
tern according 1o its proprioceptive input (Fig. & HOW- - £q|0wing this idea, there have been attempts to explain how
ever, when the hippocampal feed-back was turned on, theiapie representation in the path integrator system might
grid pattern was compressed 1.5 times in the vertical dirégqerge For example, Arleo and Gerstner (2000) have pre-
tion (Fig. 10 .b)' DL_lr!ng recall, the hlppo_campal feed'b.a%ented a model in which they define abstract extra-hippoahmp
forced the grid activity to change faster in the verticabdit a4, integrator neurons (in fact, rather similar to gridsel
tion, due to the associations learned previously, resyltin to,nq five years later), which integrated wheel rotatiorejTh
the compressed grid pattern. “also faced the problem of accumulating error and used visual

Thus we conclude, that the visual input is able to contigyes to eliminate its harmful effect. Namely, after a certai
uously influence the entorhinal path integrator systemnia gmount of time their robot stopped exploration and searched
integrated hippocampal place representation. for familiar visual cues. When a cue was found to be reliable
enough the path integrator was reset to the current location
determined by the visual stimulus.

Our model fits in this general theory as it uses the vi-
4 Discussion sual information to correct path integration (we hypothe-

size that olfactory, auditory or whisking inputs could also

We have analyzed a computer model of the rodent cortidee used for this corrections as these modalities are similar
hippocampal system from the perspective of place learnitggvision in that noise does not cause error to accumulate
and recognition as a continuation of our previous work (Uja their representations). However, in our model not only
falussy et al 2008). The main result of our study is thatthe visual, but the integrated (visual & proprioceptive) in
representation of locations integrating visual and pmpriformation was used to correct the path integration errdr (c.
ceptive information can be used to decrease the harmful @'Keefe and Burgess 2005)). Moreover, we did not intro-
fect of sensory noise accumulating in the path integrator siduce discrete time points or set up thresholds when a re-
system. Specifically, we have shown that although the noisglibration becomes necessary, instead building on therya
self locomotion information would distort the firing patter of the hippocampus (Amaral and Witter 1989) and imple-
of entorhinal cortical grid cells a feed-back excitatioonfr menting the modifiable hippocampo-cortical feed-back; con
hippocampal place cells can restore the correct pattern aimdiously corrected the path integrator. This continuaus i
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fluence of allothetic information on the path integratios-sygrid and head-direction cells (Sargolini et al 2007). lagts
tem is supported by the fact that entorhinal grid cells’ fiingly, there is an extensive system of connections among en-
ing fields rescaled in response to environmental deformatitorhinal cortical layers too (van Haeften et al 2003; Kleost
(Barry et al 2007). erman et al 2003), which implicates that the grid represen-
Theories on the hippocampo-cortical feed-back mostigtion and the path integration in the entorhino-hippocaimp
hypothesize on its functional role in respect of the episodsystem is an emergent property, which requires all partic-
memory aspect of the cortico-hippocampal system (Treviggting regions and layers. Intriguingly, the head-dii@tt
and Rolls 1994; Lérincz and Buzsaki 2000; Witter et al 2008ystem, which likely originates in the lateral mammillary
According to these theories the hippocampus is able tolgapigicleus, reaches the entorhinal cortex via the postsubicul
form a new representation upon passing through a new epddnnervates its superficial layers (Taube 2007). Adding
e.g., visiting an unknown location. After the memories a@ the similarity between the grid-system and the hippocam-
formed the feed-back activation could provide informatiopal place-system is the fact, that the entorhinal cortex in-
useful to the neocortex in the building of new representationervates the mammillary nuclei (Shibata 1988). Within our
by recalling previous memories, which process would comodel framework, we propose an overall functional role of
stitute a form of memory consolidation (Rolls and Kesnédhe hippocampal feed-back, without a detailed explanation
2006). Also, a closed loop connecting layer II-11l of the enof the precise connection structure.
torhinal cortex to the hippocampus and from the latter to the L
deep layers of the entorhinal cortex (Witter et al 2000) igh !N the presented model we used the approximation that
serve to continuously compare new inputs and temporarf]§iSe in the proprioceptive input was only simulated when
stored information in order to facilitate the decision wiegt 1€ Synaptic connections were already established. This is

a new or an already stored experience is encountered. due to the fact that we primarily intended to show that an

An other aspect of the feed-back connection might t|)r(19teg:]rat(-:-_d place representation can be used to correctfone o
it constituent part. The learning process was necessary to

that when only a fragment of the episode is presented, it | : . : i i
able to recall the whole episodic memory through the bac?§t the appropriate weight matrix for the feed-back connec

projection pathways from the hippocampus to the cerebL%nutmggje\éerémrenglgoggsxefr i;;hs?dzr:%wthgﬁ%ia%srq Ocan
neocortex, resulting in reinstatement of neuronal agtivit y ’ 9 pioma

Zértategy. Animals (from arthropods to rodents) were shown
I

association areas of_ the cer(_-:‘bral neocortex similar to th Start the exploration of a new environment by short trips,
present during the original episode (Treves and Rolls 1994).~ . : -
itially frequently returning to their nest or an other-ini

Similarly, in our model the location of the animal can b%

continually recalled based on visual cues. Converseljén t al location (Collett and Zeil 1998; Etienne et al 1998) and
gy : . move further away only after they are familiar with their im-
absence of vision (e.g., in darkness) the animal could

trieve visual landmarks associated with its location based Mediate surrounding. This exploration strategy is in favor

its position information coming from path integration. of our proposed model as during the short trips only small
error accumulates in the path integrator. If the learniray pr

. The model proposed by Gaussier et al (2007) SUggesiss |asts only for a short time — and our simulation results
different role for the hippocampo-entorhinal feed-back, i goed that a learning converges rapidly —, and after learn-
cluding an explanation of spatially correlated processes g ihe feed-back is used to correct the path integraton, tha
well. In this model there is again a continuous interplay bt 4 gradual exploration and learning the animal is able to

tween the hippocampus and the entorhinal cortex, where fjg, 46 its map while keeping the hippocampus and entorhi-
latter stores and recognizes input configurations, whige th,| cortex always in register.

former identifies transitions from the present towards new
states. This approach is somewhat similar to ours in that the Theoretically, the allothetic information could reach the
entorhinal grid cell system is partly driven by the hippoeanpath integrator system directly, or indirectly through an i
pus, but differs in that Gaussier et al (2007) do not assumelgrated representation from the hippocampus. Manipula-
tractor dynamics as the basis for the generation of gric cefions resulting from a coordinated alteration of both the hi
but suppose that the operation of an extra-hippocampal s§gcampal and the entorhinal representations like rotation
tem endowed with “long-distance” path integration capabilhe environmental landmarks (Hafting et al 2005), deforma-
ities creates the grid activity in the entorhinal cortexegiv tion of the enclosure (Barry et al 2007) or induction of simul
some properties of the connections between the two striggneous global remapping in the hippocampus and grid cell
tures. realignment (Fyhn et al 2007) can be interpreted within both
In our model, the representation of the anatomy of thke direct and the indirect framework. Our model predict,
entorhinal cortex and the hippocampal feed-back is not dewever, that after the inactivation of the hippocampus, fir
tailed. It is known, however, that the hippocampus sends &fg of grid cells would remain location dependent but would
ferents to the deep layers of the entorhinal cortex and teecome more dispersed and would not follow environmental
ceives efferents from the superficial layers (Witter et &0 manipulations. Indeed, recordings on a linear track showed
It is also known, that classical grid cells can primarily bthat although hippocampal inactivation did not disrupt the
found in layer Il of the EC, while deeper layers (lll, V, andspatially confined firing of the grid cells, the fields became
VI) contain grid cells, head-direction cells and conjuneti wider and less stable (Hafting et al 2008) supposedly be-
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f th mulating error in th h intearator sysParameter| Value Description
cause of the accumulating erro the path integrator sy. H 1060 Tomber of 3l

tem. . . .. L a 0.05 Learning rate
In our simulations the hexagonal firing pattern of the grid x 0.01  Sparseness of coding
cells was generated by an attractor network of entorhinal 0.6 Mean synaptic strength
neurons that requires specific connectivity pattern (Gllane P 0.1 Deviation of synaptic strengths from mean

and Verschure 2006; McNaughton et al 2006; Fuhs and ToWkiBle 5 Default parameter values used in simulations of the hip-
zky 2006). Our basic idea, that allothetic information irees: Pocampal model

the grid cells indirectly though the hippocampus can also be

used in an other class of grid cell models (Hasselmo et al

2007; Burgess et al 2007), where grid cell firing arises frog'PPENDIX I

interference of theta frequency membrane potential @scil

tions in single neurons. In this case, hippocampal plads Cetyis Appendix describes calculation of the robot's estiedaposition
should continually reset the phase of the dendritic oscillbased on the firing of grid or place cells. We quantified theiefficy
tions of entorhinal grid cells. Spike timing dependent plasf the hippocampal feed-back by estimating the locatiorhefrobot

ticity rules during exploration could be used to set up tH&sed on the activity of the grid cells. First, we calculatesitwo di-
ensional firing rate map of each grid cell during the leagrperiod.

proper connectivity (Lengyel et al 2005). Hippocampal ar@econd, we obtained a probabilistic robot location map biipiying

entorhinal phase precession (Hafting et al 2008) and syamt-wise the rate maps of all simultaneously active getiscduring

threshold oscillation of entorhinal grid cells (Giocomaagt the recall period. Finally, the maximum of this map gave usugh

2007) support this scenario. estimation of the current position of the robot. This measuas used
in Figures 7 and 8.
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This Appendix summarizes the technical details of the phjjfatussy ICEA project (IST 027819)

et al (2008) about the hippocampal network, part of the neatavork
model described here (Fig. 1). In the present model we steaitED00
hippocampal cells described by a rate vedtorThese cells were in-
nervated by neurons of the input layer (described by thevettor References
I) consisting of grid cells®), local view cells and whisker cells, but
not by other hippocampal cells. The simulation was divid&d iwo
phases (Rolls 1995), learning and active feed-back, ré&sphc

During the learning phase (Sect. 3.2) first, the afferentivation
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