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Robust path integration in the entorhinal grid cell system with
hippocampal feed-back

Abstract Animals are able to update their knowledge about
their current position solely by integrating the speed and the
direction of their movement, known as path integration. Re-
cent discoveries suggest that grid cells in the medial entorhi-
nal cortex might perform some of the essential underlying
computations of path integration. However, a major concern
over path integration is that as the measurement of speed
and direction is inaccurate, the representation of the posi-
tion will become increasingly unreliable. In this paper we
study how allothetic inputs can be used to continually cor-
rect the accumulating error in the path integrator system. We
set up the model of a mobile agent equipped with the en-
torhinal representation of idiothetic (grid cell) and allothetic
(visual cells) information and simulated its place learning in
a virtual environment. Due to competitive learning a robust
hippocampal place code emerges rapidly in the model. At
the same time, the hippocampo-entorhinal feed-back con-
nections are modified via Hebbian learning in order to allow
hippocampal place cells to influence the attractor dynamics
in the entorhinal cortex. We show that the continuous feed-

This research was supported by the EU Framework 6 ICEA project
(IST 027819).

D. Samu
Department of Biophysics, KFKI Research Institute for Particle and
Nuclear Physics of the Hungarian Academy of Sciences

P. Erős
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back from the integrated hippocampal place representation
is able to stabilize the grid cell code.
Keywords sensor fusion· place representation· learning·
noise· error correction

1 Introduction

During the course of their evolution animals have developed
several types of sensory organs. Information collected by
these can be used by the animal to execute several tasks re-
quired for its survival. One such task is navigation for which
animals at different levels of development use different types
of sensory inputs. In rodents these types include auditory,
tactile, visual (allothetic) and self-motion (idiothetic) infor-
mation (Maaswinkel and Whishaw 1999). Integration of these
modalities into a unified representation of the environment
might serve as the basis for navigation in animals at a high
level of phylogenetic development. Electrical recordingsfrom
single cells in the rat hippocampus showing highly spatially
correlated cell activity (O’Keefe and Dostrovsky 1971), in-
dicated that this structure might be the site of integrated
spatial representation in the rat brain (O’Keefe and Nadel
1978). Indeed, the integration of different modalities in the
hippocampus is supported by both the anatomy of this struc-
ture (Amaral and Witter 1989; Amaral and Lavenex 2006)
and the influence of the different types of modalities on the
place representation by the hippocampal cells (Wiener et al
1995; Jeffery 2007). For example, on one hand, changing the
visual appearance of the testing environment by modifying
its shape (Muller and Kubie 1987; Leutgeb et al 2007) or
rotating the landmarks supposedly used for self-localization
(Jeffery and O’Keefe 1999) would alter the firing pattern of
place cells in a way systematically corresponding to changes
in the environment. On the other hand, self-motion infor-
mation has an effect on place cell firing both in the angu-
lar (Jeffery and O’Keefe 1999) and in the linear (Gothard
et al 1996) domain. Most intriguingly, rats are able to switch
back-and-forth between vision and path integration depend-
ing on their reliability in case they are in conflict (Jeffery
1998).
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Path integration is performed using self-motion infor-
mation (Etienne and Jeffery 2004), which originates from
the visual-flow, the vestibular system, proprioceptive motor
copies, etc. Theoretical considerations (McNaughton et al
2006) suggest that path integration in rats, using this multi-
modal information, is performed in the attractor network of
the recently discovered entorhinal grid cell system (Hafting
et al 2005), which functions as a preprocessing stage in the
generation of the hippocampal place code. These cells found
in all layers of the medial entorhinal cortex were (EC) shown
to fire on a regular hexagonal lattice, tessellating the space
(Hafting et al 2005; Sargolini et al 2007).

Path integration alone, however, can not be used by ani-
mals or robots for proper navigation as errors in the measure-
ment of speed and direction increasingly accumulate, and af-
ter the animal proceeds a certain distance this error would in-
validate self localization. Fortunately, combining allothetic
and idiothetic information offers a way to ameliorate path in-
tegration and get rid of the harmful noise. There is evidence
showing that in humans, when the visual and the self-motion
information are in conflict either the visual system resets the
self-motion system based on a remembered location of land-
marks or the two information are integrated (Nardini et al
2008). Specifically, adults when facing conflicting cues use
a weighted average of cues in determining their location,
while young children alternated between the use of either
information source without combining them. In rats, how-
ever, when vision and self-motion are in conflict place cells
generally prefer to follow the visual stimulus (Knierim et al
1995; Jeffery 1998; Maaswinkel and Whishaw 1999). More-
over, depending on the precision needed to achieve a goal,
animals might swap the different navigation strategies. For
example, during homing, hamsters first follow a relatively
straight line indicating the use of path integration (Séguinot
et al 1993), however, when they get close to their nest, they
switch to follow a circular trajectory in a search for familiar
(visual) cues (for a review see (Etienne et al 1996; Etienne
and Jeffery 2004)).

The exact mechanism of how grid cells and place cells
interact with each other to form a robust representation of
the environment is still to be elucidated. Building on exper-
imental observations several components of the underlying
neural structures have been studied by theoretical tools. The
first models explaining the generation of hippocampal place
cell activity from visual inputs used the distance from and
the bearing to identified landmarks as input to the hippocam-
pus (Zipser 1985; Sharp 1991; Burgess et al 1994; Touret-
zky and Redish 1996; Barry and Burgess 2007). Hippocam-
pal place cells were activated when the currently perceived
scene matched the stored landmark configuration. However,
these models require exact object recognition, and represen-
tation of distances and angles between objects in the EC. If
such a representation is present, place cell activity, i.e.a par-
titioning of the environment into place fields, emerges from
the combination of a Hebbian-like learning between the EC
and hippocampal cells and competition among hippocam-
pal place cells (Sharp 1991). Later it was shown (Ujfalussy

et al 2008) that similar Hebbian mechanism is able to pro-
duce place cell like activity even if the representation of the
sensory input is less elaborated.

An other theory proposed by Burgess and O’Keefe (1996)
suggests that hippocampal place cell activity is based on the
firing of so called boundary vector cells (Barry et al 2006)
A neural network model based on this theory was success-
fully implemented in a mobile robot (Burgess et al 2000),
which used real-word inputs: sensory input cells, feeding
their output into entorhinal cortical cells, were selective to
the distance of a wall in a particular direction. Interestingly,
very recently this model was supported by experimental ev-
idence, whereby cells, termed border cells, in the medial EC
and adjacent parasubiculum were found to fire when the rat
was close to a geometric border of the environment (Sol-
stad et al 2008). These cells might serve to produce a ref-
erence frame for location determination and could be used
to error correction, when the animal reaches the border, or
even more, a corner of the environment. However, the ques-
tion how the error accumulating in the path integrator while
the animal moves from border to border still requires further
elaboration.

Here, we ask the question how errors accumulating in
path integration is corrected in the entorhino-hippocampal
system in a biologically plausible way. Specifically, in the
present study we propose a mechanism, which combine path
integration via entorhinal grid cells and vision to create a
unified representation of the environment by hippocampal
place cells. We assume that the projection from CA1 and
subiculum to the deep layers of the entorhinal cortex can in-
fluence the attractor dynamics in the entorhinal cortex, and
that these connections are established through Hebbian learn-
ing when the environment is novel. This approach is consis-
tent with the idea proposed by O’Keefe and Burgess (2005),
who suggested that a feed-back innervation from hippocam-
pal place cells to entorhinal grid cells facilitates the associa-
tion of grid cells to sensory inputs and associations between
different sets of connected grid cells. Furthermore, we show
that these feed-back connections empower the system to cor-
rect self-localization errors originating from noisy pathinte-
gration.

2 Methods

For numerical simulations of the entorhino-hippocampal model,
we set up a virtual environment and a simple robot model in
the Webots (Michel 2004) mobile robotics simulation soft-
ware. All physical events happening to the robot (displacing
it, turning it, blocking its movement when hitting obstacles),
as well as maintaining the communication between the ex-
ternal word and the neural network model via robotic sen-
sors were handled by Webots. To explore its environment,
the robot moved forward in a straight line for three time
steps, then turned randomly left or right 0.3 radians. A time
step in the simulations was 0.125 seconds and the robot’s
speed was 0.22 meters per second.
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The neural model – the whisker cell, local visual cell,
grid cell and the place cell models – was run within the
robotic simulation using inputs from the robot’s sensors. Out-
puts – firing rates of cells – were saved and processed off-
line in the R software environment (R Development Core
Team 2007). Control of the robot was not connected to the
neural model in any way, the robot moved randomly and
sampled the environment.

2.1 Overview of the neural network model

The neural network model consisted of neurons in the barrel
cortex, entorhinal cortical grid cells, local visual cellsand
hippocampal place cells (Fig. 1). Inputs from the external
world originated from the robot’s sensors and were repre-
sented as firing rates in the entorhinal and barrel cortical
part of the model. As we intended to study how allothetic
information can be used to ameliorate path integration, we
used noisy proprioceptive input in the simulations. Error ac-
cumulated (Fig. 2a) in the path integrator and invalidated
the neural representation of position.

Cortical neurons (the input layer) innervated hippocam-
pal cells via modifiable synapses. Hippocampal cells in turn
exhibited spatially correlated firing similar to experimentally
observed place cells. In the present model hippocampal cells
integrated the three types of modalities represented in the
cortical models. We used this integrated place representa-
tion to stabilize the spatial firing pattern of grid cells viaa
feed-back excitation from the hippocampus to grid cells.

In the following sections of the Methods we describe the
parts of the model in more detail.

2.2 Inputs of the model

The neural network model receives three types of inputs
from the environment (Fig. 2b). First, 20 distance sensors
represented by 20 rate models were used to simulate the
whisking of rats. Whenever the robot moved close enough
to a wall, activity of these neurons increased from 0 contin-
uously to 1. These sensors were also used to perform low-
level obstacle avoidance reflex.

Second, one row of the panoramic camera image was
taken as the visual input. The robot was constrained to move
in the central portion of the environment, thus the striped
wall it sensed by its cameras always remained in a distance
serving distal visual cues. To enable the robot to establish
its orientation a cue card was simulated. Whenever the robot
moved it calculated its orientation relative to the direction of
the cue card. The panoramic camera image was then rotated
using the robot’s self established head direction such thata
pixel in a given direction (e.g. the view to the north) was
always mapped to approximately the same local visual cell,
irrespective of the orientation of the robot. Thus, the refer-
ence frame in our case was given by the location of the robot
and the direction of the cue card relative to the robot at the
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Fig. 2 Properties of the simulation environment. Figurea shows the
accumulation of noise in the path integration. Error of the location de-
termination based solely on path integration increases as afunction of
the traveled distance. The line depict the mean difference (δ ) between
the real position and position calculated from the wheel rotation, each
based on 10 independent simulations. Note that in an open arena the
increase would correspond to a square root function, however, in our
1x1 meter arena the mean difference is bounded atδmax= 0.521 meter
(Oser et al 1990). Noise strength,σ = 0.05, see text. Simulation of the
model’s inputs in Webots (b). A simple virtual environment and a mo-
bile robot were simulated. The robot was allowed to wander randomly
in the middle part of the environment in a distance from the striped
walls. This way we implemented distal visual cues, which were sensed
by 6 cameras (lines starting from the top of the robot show thefield
of vision of each camera) placed on the top of the cylindricalbody of
the robot generating a panoramic view. Besides the cameras,the robot
was equipped with 2·10 distance sensors on its lower portion (lines
show their sensitivity range), which served to model whiskers detecting
nearby obstacles. Finally, the robot was moved by two wheels, which
supplied the proprioceptive input to the neural model by registering
their rotation.

beginning of the simulation. Altogether, we simulated 120
visual cells. Firing rate of a visual cell corresponded to the
gray scale value of the respective camera pixel normalized
in the[0..1] interval.

Third, the rotation of the differential wheels was regis-
tered and a speed vector was calculated serving an input to
the entorhinal grid cell system consisting of 270 neurons.
The speed vector was considered to be noisy as it is in real
animals and robots, giving rise to an inaccurate update of the
position’s representation by the grid cells, which integrated
this noisy speed vector as described in the Sect. 2.4.
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Fig. 1 Overview of the computer model.A. The neural network model – consisting of the model of the entorhinal cortical grid cells and local
visual cells, whisker cells and the hippocampal place cells– was run in a simulated robot in the Webots environment. Inputs of the model,
represented as firing rates of grid, local visual and whiskercells respectively, came from the sensors of the robot sampling a virtual environment.
White noise was added to the proprioceptive input (wheel rotation). Neurons in the input layer innervated hippocampal place cells, which in turn
fed-back onto the entorhinal grid cells.B. The inputs and the activity of the entorhinal grid cells system. Simulated grid cells of a given population
receive recurrent inputs from other grid cells of the population and afferent input from the hippocampus, both of which influence the change of
grid cell activity in time (left). Grid cells are organized in a matrix, represented in the right panel, where darker color of a square indicates higher
grid cell activity. The topology of the recurrent connections initiates the formation of an activity bump (Ba) after a few simulation time steps.
When the animal moves the noisy proprioceptive input modulates the recurrent connectivity between grid cells and the input of the neurons in
the corresponding directions is increased (Bc, see Sec. 2.4 and Guanella and Verschure (2006) for more details). The recurrent synaptic (Bc)
input is integrated with the feed-back input from the hippocampus (Bb) and finally the activity bump shifts according to the estimated direction
of motion (Bd).

The noisy speed was simulated according to the follow-
ing equation:

s′ = s∗ (1+ξ ), (1)

wheres is the constant noiseless speed measured from the
rotation of the robot’s wheels,s′ is the noisy speed used to
update the grid cell system, andξ is a random variable fol-
lowing the normal distribution with standard deviationσ .

2.3 The simulated hippocampal network and the learning
rule

Detailed equations and parameters following our previous
work (Ujfalussy et al 2008) describing the implementation
of the whisker, local visual and place cells can be found in
the Appendix I. The purpose of the hippocampus model in
the present simulations was to integrate its inputs and gen-
erate a unified representation of the environment by place
cells. To achieve this goal we followed the theory proposed
by Rolls (1995), which explains how the hippocampal for-
mation operates to serve as an episodic memory device. How-
ever, when input patterns are functions of the position, hip-
pocampal cells show place correlated firing activity simi-
lar to the behavior of experimentally observed place cells.

To achieve this behavior we implemented a Hebbian-like
learning algorithm between neurons in the input layer and
hippocampal place cells and competition among place cells
(Sharp 1991).

2.4 The grid cell model

In a previous version of this model (Ujfalussy et al 2008)
grid cells were described by their firing rate, which was im-
plemented as a periodic function of the animal’s spatial lo-
cation, following Blair et al (2007). This simple approach is
computationally efficient and allows the simulation of sev-
eral grid cells at the same time. However, for our present
purposes a dynamical description of grid cells is required
as we intend to describe the deterioration of the hexago-
nal spatial firing pattern due to the noisy inputs and the its
restoration by modifiable connections between place cells
and grid cells. Thus we incorporated the dynamical model of
Guanella and Verschure (2006) into our model framework.

This artificial neural network model implements a con-
tinuous attractor system on a two dimensional neural space
(Fig. 1 B). Activity of a neuron is represented by a scalar
variable denoting the firing rate of the neuron. The connec-
tion among neurons is all-to-all and to return the hexagonal
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spatial firing property of grid cells, the connections are im-
plemented on a twisted torus topology of the neural tissue
(see Fig. 1 and 2 of Guanella and Verschure (2006)). Start-
ing from a random initial condition, first an activity bump
is formed somewhere in the neural space depending on the
initial state, which is the stable solution of this continuous
attractor system. Integration of the animal’s speed – i.e. the
displacement of the activity bump – is implemented through
the modulation of the connections by shifting them in the
direction of the animal’s motion. In our simulations we fol-
lowed the same principle but used the noisy version of the
speed vector (Eq. 1).

According to recordings from freely moving rats we used
3 layers of grid cells in the simulations, neurons within each
layer sharing a common spacing and all layers had the same
orientation (Barry et al 2007). Each layer consisted of 9·10
neurons, each neuron had a different spatial phase. For gen-
erating these neurons we used the parameters listed in Table
1, other parameters were kept as in the original paper by
Guanella and Verschure (2006).

Parameter Layer I Layer II Layer III

Gain 1 1.5 2

Bias 0 0 0

Spacing [m] 0.80 0.55 0.40

Table 1 Parameters used in our simulations of the grid cell model by
Guanella and Verschure (2006). Other parameters were kept as in the
original paper. Spacing in the model is a function of the gainparameter.

Additionally to the original model (Guanella and Ver-
schure 2006) calculation of the grid cell activity was modi-
fied by the feed-back connections (Fig. 1). Specifically, equa-
tion 2 of Guanella and Verschure (2006) was changed into
the following form

Gi(t) = n

(

n(Ai(t))+n

(

N

∑
j=1

W (H,G)
i j H j

))

, (2)

whereA is the original,G is the modified activity of the grid
cells,H is the rate vector,N is the number of the simulated
hippocampal cells, andn(·) is the linear normalization func-
tion

n(Vi) =
Vi −min(V)

max(V)−min(V)
. (3)

2.5 Development of the hippocampo-cortical feed-back

In order to study the error correcting capability of the in-
tegrated hippocampal place representation we had to adjust
theW(H,G) weight matrix of the feed-back connection pro-
jecting from the simulated hippocampal cells to the grid cell

population. Each element of theW(H,G) matrix was initial-
ized to 0. To evolve this matrix three learning rules were
used as follows.

The first learning rule we used to modify the hippocampo-
cortical feed-back connection was a semi-online rule (termed
correlation counting rule). First, during the learning phase,
two variables counted the correlated and anti-correlated fir-
ing events between all place and grid cell pairs, as described
in Table 2 (online phase). Then, when the learning phase was
over, we determined theW(H,G) weight matrix according to
the following equation (offline phase):

W (H,G)
i j =

c
c +a

. (4)

With this rule we could approximate the ratio of the area
where the grid cell firing field and the place field overlap
and the area of the place field for alli, j pairs, assuming that
the robot did a sufficiently fine exploration on the simula-
tion environment during the learning phase. This ratio ap-
proximates the probability of grid cell firing given that the
presynaptic hippocampal place cell fires. After learning, the
W(H,G) matrix stores these probabilities for each pair.

Hi G j action

≥ΘH ≥ΘG c++

≥ΘH < ΘG a++

< ΘH ≥ΘG -

< ΘH < ΘG -

Table 2 Counting of firing events in the correlation counting rule. In
case ofAi > ΘA , theAi cell was considered to be active, otherwise it
was considered to be inactive.c,a: correlation and anti-correlation case
counter variables, respectively; and++ is the incrementation operator.
We usedΘH = 0.3 andΘG = 0.6 values in the simulations.

Table 3 shows the formula of the other two Hebbian-
type continuous, on-line learning rules we used: a stabilized
Hebb and the presynaptic gating rule (Gerstner and Kistler
2002). The latter is a continuous on-line form of the corre-
lation counting rule, as the synaptic weights converge to the
mean firing rate of the grid cells given the presynaptic place
cell fires.

Learning rule Formula

Stabilized Hebb ∆W (H,G)
i j = γ ∗

(

H j ∗Gi −W (H,G)
i j

)

Presynaptic gating ∆W (H,G)
i j = γ ∗H j ∗

(

Gi −W (H,G)
i j

)

Table 3 The studied continuous learning rules.H,G: the rate vector of
the simulated hippocampal and grid cell populations at the given time
step, respectively;γ : learning rate parameter.
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Synaptic modification in biological systems implicate in-
tricate, non-linear, time-dependent mechanisms (Bi and Poo
2001). However, in several practical applications involving
learning and memory simplified learning algorithms (Gerst-
ner and Kistler 2002) might sufficiently fulfill their role in
implementing the necessary functionality. These algorithms
usually build on firing activity correlation driven modifica-
tion of the connectivity matrix and use the Hebbian-type
(Hebb 1949) learning rules in a general sense (Arbib 2002).
This motivated our above described learning rules as well.
Specifically, for the functioning of our proposed mechanism
of error correction, the overlap of firing fields of grid and
place cells is to be assessed. We suggest that the correlation
of temporal firing activity is in accordance with this geo-
metrical property of firing and hence use correlation based
learning rules. The most abstract learning rule, the correla-
tion counting rule, is far from a biologically implemented
mechanism, however, it is efficient and captures the nec-
essary properties of the required rule in a simple way. The
other two rules are more biologically plausible: both come
from the family of stabilized Hebb rules, given in general by

the formula∆W (H,G)
i j = γ

(

f (Gi)H j −g(G j)W
(H,G)
i j

)

(e.g.

see Blais et al (1999)). Specifically, the pre-synaptic gating
rule, suggested by Grossberg (Grossberg 1974, 1976a,b) was
introduced to describe information processing in the visual
cortex of the cat.

3 Results

3.1 Simulation of the model

Initially, all firing rates and theCi j synaptic matrix elements
were set randomly and were modified during the course of
the simulation. TheW(H,G) matrix was initialized to 0. To
solve the problem of the separation of concurrent learning
and exploitation of acquired knowledge, we separated the
simulation into two phases as described below.

3.2 Learning phase

During the first (learning) phase of the simulation the cortico-
hippocampal connections were modified by Eq. A-4, and the
feed-back connections as described in Sect. 2.5. This part of
the simulation lasted for 3000 simulation time steps (except
for Fig. 6 b). During the learning phase, however, the feed-
back connections did not influence the activity of the en-
torhinal grid cells. During this phase the network initialized
itself in two ways: First the initially random activity in the
grid cell system was stabilized and formed an activity bump
due to the attractor dynamics of this subsystem. The bump
was formed and path integration started within a few simu-
lation time steps. As noise was turned off initially, grid cells
exhibited a robust hexagonal spatial activity pattern (Fig. 3
a–c).

a b

c d

Fig. 3 Spatial activity pattern in the grid and the place cell systems
without noise and without hippocampal feed-back. The zig-zagging
line on a andd represent the path of the robot with small black dots
at sampling points where sensory information was processed, big dots
show where a certain grid or place cell, respectively, had non-zero ac-
tivity. On b the image shows the firing rate map of the same grid cell,
and onc the spatial auto-correlation function calculated from therate
map. Grid cell parameters were: gain 1.5 and bias 0. The scalebar
denotes 0.5 meter fora, b, andd and 1 meter forc. Note that in the
noiseless situation ideal grid and place codes are generated.

Second, due to the competition between hippocampal
neurons and the self-organizing synaptic modification, in-
put patterns were transformed into a sparse and orthogonal
representation in the hippocampus. As described earlier, (Uj-
falussy et al 2008) spatially correlated inputs generate place
cell activity in the model hippocampus during the learning
phase of the simulation (Fig. 3d). Generation of the place
code was fast, place fields remain stable after a few visit of
a certain location.

An important difference between the previous version of
this model (Ujfalussy et al 2008) and its present version is
that previously, similarly to other modeling works (Solstad
et al 2006; Rolls et al 2006), we used multiple orientations
and spacings in the grid cell part of the model. In the present
version, however, only one orientation is used and only three
spacings, still, integrating the grid input with the visualin-
put results in well expressed place fields in the hippocampus
(Fig. 3d).
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a b

c d

Fig. 4 Spatial activity pattern in the grid and place cell system with
noise and without hippocampal feed-back. Placement of subfigures and
the cells shown are the same as in Fig. 3. Note that introducing noise
in the proprioceptive information distorted the regular firing activity
of grid cells. Note that while firing of the place cell became more dis-
persed, the location of the place field remained similar. Therelative
usability of the remaining place field is due to the visual part of the
input. Noise strength,σ = 0.05.

3.3 Active feed-back phase

During the second (active feed-back) phase (3000 time steps)
synaptic weights did not change and all synaptic pathways
influenced their target regions. Also, noise was added to the
signal of the rotation sensors of the robot’s wheels, which
deteriorated the regular activity of the grid system (Fig. 4
a–c) and invalidated the path integration. As a result, two
third of the cortical input vector contained noisy informa-
tion, which had an impact on the hippocampal place repre-
sentation, reflected by distorted place fields shown on Fig. 4
d.

Simulation results show, however, that activating the hip-
pocampal feed-back resulted in restoring both the grid and
the place code (Fig. 5)

3.4 Properties of the hippocampal feed-back innervation

To characterize the error correcting capability of the inte-
grated hippocampal place representation in the grid cell sys-
tem, we calculated the Pearson correlation at each time point
t between the grid activity vector in the noiseless situation
(G(t)) and the corrected grid activity when noise was present

a b

c d

Fig. 5 Spatial activity pattern in the grid and place cell system with
noise and hippocampal feed-back. Placement of subfigures and the
cells shown are the same as in Fig. 3, noise strength,σ = 0.05.

in the system together with the hippocampo-entorhinal feed-
back correction (G′(t)) and averaged for the whole course of
the active feed-back phase (3000 time steps):

CX = 〈cor
(

G(t),G′(t)
)

〉t=[3001..6000] (5)

for all three (X ∈ {I, II, III }) grid cell layers (Table 1). This
calculation was performed for all three learning rules de-
scribed in Sect. 2.5 and results were compared in Table 4.

Simulations showed that all three learning rules studied
performed equally well. However, when the feed-back ex-
citation was not present the noiseless and the noisy spatial
grid patterns were decorrelated. When comparing results ob-
tained for different grid layers (Table 4) we found that the
bigger the spacing, the better the error correction. The rea-
son for this can be understood by considering how the cor-
relation counting learning rule works: whenever there is an
overlap between the firing field of a grid cell and a place
cell a positive correlation was encountered and the synap-
tic strength matrix element between the corresponding cells
was increased. However, when the overlap was only partial
and in a given position the place cell was active, but the grid
cell was not, an anti-correlation was registered and the cor-
responding weight matrix element was decreased (Table 2).
Increasing the field size of the grid cells would result, on av-
erage, in an increased overlap and opens the possibility to
reinforce synapses enabling error correction.

In the followings we narrowed down our experiments to
the studying of the presynaptic gating learning rule. We next
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Fig. 6 Error correcting by feed-back. Dependence of the error correcting capability of the presynaptic gating rule, as measured by the correlation
described in Eq. 5, on the noise strength (a) and on the learning length (b). σ = 0.05 inb. Circle – grid layer I, square – grid layer II, diamond –
grid layer III. The arrow ina indicates the noise strength used in the simulations unlessotherwise noted.

Learning rule CI CII CIII

Correlation counting .905 .827 .735

Presynaptic gating .921 .839 .743

Stabilized Hebb .921 .838 .742

No feed-back -.047 .132 -.013

Table 4 Comparison of the three studied learning rules. Calculating
and comparing the correlation between the original, noiseless and the
corrected grid patterns we found that all three implementedlearning
rules performed similarly well. However, when the feed-back excita-
tion was turned off the original and the noisy grid patterns were com-
pletely decorrelated.

examined the noise tolerance of the feed-back by system-
atically increasing theσ noise strength parameter and cal-
culating the correlation (Eq. 5). Again, as discussed above,
we found that generally grid cell firing patterns with bigger
spacings can be better corrected than grids with small spac-
ing (Fig.6a).

Also note that in theσ = 0 pointCX(σ = 0) < 1, for all
layers. Finite sampling of the environment and different tra-
jectories during the learning and the recall phases lead to an
imperfect hippocampal place representation, which, via the
feed-back excitation, influenced the grid system even in the
noiseless case. Overall, we found that increasing the sensory
noise up to aboutσ = 0.2, the error correction performance
of the feed-back decreased until it reached a limit value,
which was different for each grid layer, however, further in-
creasing the noise would not result in a significant drop of
the performance: Above a critical noise level, the informa-
tion in the proprioceptive input was negligible compared to
the allothetic inputs. We also found that depending on ratio
of the number of grid cells, and visual cells, – i.e. the ra-
tio between noisy and noiseless inputs – the limit varies: the
less noisy input cells included, the better the error correction
(data not shown).

Next, we examined how the length of the learning phase
influences the error correction potential of the feed-back.To
create comparable results, the simulation was divided into
three parts: first, the robot was engaged in learning for some
time steps (τl); second, it continued its random walk without
any modification of the synapses for some more time steps
(τ0) such thatτl +τ0 = 3000; third the active feed-back phase
begun and lasted forτa = 3000 time steps. This way, we
ensured that in the active feed-back stage the robot traveled
along the same path.

Simulation results on the learning length (Fig. 6b) in-
dicated that approximately 700 time steps were sufficient
in our situation to reach the asymptotic value of the corre-
lation used to measure error correction. There are two ba-
sic processes that influence the length of the learning: first,
the feed-back synaptic matrix is modified to associate hip-
pocampal cell firing with grid cell firing. We found that in
the examined parameter interval (γ = [0.1..0.5]) the learn-
ing rate did not effect overall learning time (data not shown).
Second, the robot had to sample the environment long enough,
such that it was able to form enough associations between
hippocampal and grid fields when visiting a certain place.
Indeed, while the robot traversed place fields that were not
associated to grid fields by the feed-back during learning,
the path integrator run free of the hippocampal influence,
thus accumulated the sensory noise. Fig. 7 shows the time
evolution of the above described error correction.

On the whole, we found that after the sufficient amount
of learning was accomplished (about 700 time steps in our
case) error correction in the grid cell system took place and
an appropriate place representation was generated.

3.5 Predictions of the model

We studied the properties of the simulated grid cell – place
cell system in situations when the environment around the
robot changes. In the first set of experiments we tested how
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Fig. 7 Continuous error correction by feed-back.a Estimation of the
robot’s position based on the grid system (see Appendix II).Sym-
bols show mean, error bars SEM of the position without error cor-
recting feed-back (red, squares), with feed-back (black, diamonds) and
without noise (green, dots).b Error accumulation in the grid cell sys-
tem quantified by the correlation between different realizations of the
grid-system (see Eq. 5). Open red squares represent the correlation of
the noise-free grid-system with the noisy system without hippocampal
feed-back for the three simulated grid layers. Open black circles denote
correlations of the noise-free system with the noisy system, when its
activity is corrected by the hippocampal feed-back, given for the three
layers of the grid-system. Filled symbols represent the mean for the
three layers. This figure is based on the average of ten runs. See text
for details.

the grid- and place cell systems are able to identify the lo-
cation of the robot in an already learned, familiar, environ-
ment after disorientation (Fig. 8). For this experiment, the
robot first learned positions in the environment for 3000 time
steps. Then, the grid activity was randomized and the robot
wandered from a random starting point for 200 time steps
with the visual input turned off. Third, the visual input was
turned back on, and the robot kept wandering for 200 time
steps.

As shown on Fig. 8 after the visual input is turned back
(black arrows), the estimation of the robot’s position based
on the grid cell system (see Appendix II for the methodol-
ogy) or the place cell system (data not shown) rapidly im-
proves, showing that the grid cell system and the place cell
system runs in accordance with the previously learned pat-
tern, i.e. the robot is able to recover from a disorientation
and recognizes an already visited environment.

In a second set of experiments the robot was put into a
novel environment. Specifically, the robot was first put into
an environment and learned the locations as described in
Sect. 3.2. After learning in the first environment the striped
pattern on the walls was changed to simulate a new environ-
ment and the robot was allowed to learn again for 3000 time
steps. After learning spatial receptive fields of grid and place
cells were evaluated (Fig. 9).

We found that grid cells remap coherently, as expected.
Any two grid cells will preserve their relative phase, each
grid cell will have the same spacing and their orientation
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Fig. 8 Recovery after disorientation. See text for the protocol used.
The five symbols show position estimation values (see Appendix II)
for five runs, the symbols with the error bars show their average and
standard deviation. The black arrows at time step 1 indicates when the
visual input was turned back on. Note the instantaneous improvement
of the position estimation after visual correction of the ongoing activ-
ity.

a

b

First environment Second environment

Place cell #1 Place cell #1Place cell #2 Place cell #2

Fig. 9 Remapping in a new environment. Left column: first environ-
ment, right column: second environment. Figurea shows a selected
grid cell, andb two place cells in the first and in the second environ-
ment, respectively. For details see the text.

change the same degree, in accordance with experimental
observations (Fyhn et al 2007).

Place cells perform global remapping. Some place cells
were only active in one of the environments (approximately
40% of the cells in the first only, about 30% in the second
only), some in both (about 10%) and some remained silent in
both. Place fields of those cells that were active in both envi-
ronment were independent. We also found that place fields
in the second environment were slightly larger than in the
first (data not shown). These observations can be explained
by taking into account the competitive learning mechanism
used in the hippocampal system. Cells that learned to repre-
sent a certain location will have synaptic strength associated
to them such that only the input pattern describing the loca-
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tion of their place field will activate them, thus in the new en-
vironment they will not be able to learn. Naive cells, which
were not involved in the representation of the first environ-
ment, on the other hand, will be able to learn places. Also, as
in the second environment less cells are able to learn, their
resulting place field will be bigger.

Finally, to explicitly test how visual and proprioceptive
inputs are combined, in a third set of experiments we sim-
ulated the morphing of the environment. The oversimplified
visual system used in the model did not allow us to simply
stretch the arena together with the striped pattern on its wall
because in this case the robot did not recognize the distorted
visual input.

However, to simulate the conflict between the visual and
the proprioceptive system, we developed an other method.
During the learning phase the gain parameter (see Table 1)
of the grid cell system was modified, while the environment
was kept unchanged. During the active feed-back phase, the
gain parameter was set back to its original value, thus sim-
ulating a mismatch between the proprioceptive and the vi-
sual inputs. Specifically, the gain parameter of the grid cells
was changed from 1 to 1.5 in the vertical direction and kept
1 in the horizontal direction for learning. As a result, dur-
ing learning the hippocampal feed-back was associated with
a distorted grid pattern that moved 1.5 times faster in the
vertical direction than in the horizontal direction. During re-
call the gain parameter in the vertical direction was set back
to 1, simulating that the side of the arena corresponding to
the vertical direction was shortened 1.5 times while the vi-
sual cues remained unchanged. Without hippocampal feed-
back, the grid activity exhibited the regular hexagonal pat-
tern according to its proprioceptive input (Fig. 10a). How-
ever, when the hippocampal feed-back was turned on, the
grid pattern was compressed 1.5 times in the vertical direc-
tion (Fig. 10b). During recall, the hippocampal feed-back
forced the grid activity to change faster in the vertical direc-
tion, due to the associations learned previously, resulting in
the compressed grid pattern.

Thus we conclude, that the visual input is able to contin-
uously influence the entorhinal path integrator system via an
integrated hippocampal place representation.

4 Discussion

We have analyzed a computer model of the rodent cortico-
hippocampal system from the perspective of place learning
and recognition as a continuation of our previous work (Uj-
falussy et al 2008). The main result of our study is that a
representation of locations integrating visual and proprio-
ceptive information can be used to decrease the harmful ef-
fect of sensory noise accumulating in the path integrator sub-
system. Specifically, we have shown that although the noisy
self locomotion information would distort the firing pattern
of entorhinal cortical grid cells a feed-back excitation from
hippocampal place cells can restore the correct pattern and

l1 l2

a b

Fig. 10 Effect of scaling the proprioceptive input relative to the vi-
sual input on the grid cell activity. The spatial autocorrelation func-
tion of one representative grid cell is shown without (a) and with (b)
hippocampal feed-back. During learning a vertically compressed grid
cell activity were associated with the hippocampal place representa-
tion. As shown on figurea, after rescaling the proprioceptive input
during recall, the regular hexagonal spatial firing patternof grid cells
were reestablished in the absence of hippocampal feed-back. However,
figureb shows that the visual input induce vertical rescaling in thegrid
cell system via the hippocampal feed-back. The magnitude ofthe ver-
tical rescaling (l1l2 = 1.5) was exactly the same as modulation of the
corresponding gain parameter.

at the same time improve the properties of place fields them-
selves as well, in a circularly causal manner.

Based on experimental evidence (Wilson and McNaughton
1993) in a theoretical framework McNaughton et al (1996)
proposed that the visual information might be used both to
establish the initial location of rodents – initialize its path
integrator system – and to correct for accumulating error.
Following this idea, there have been attempts to explain how
a stable representation in the path integrator system might
emerge. For example, Arleo and Gerstner (2000) have pre-
sented a model in which they define abstract extra-hippocampal
path integrator neurons (in fact, rather similar to grid cells
found five years later), which integrated wheel rotation. They
also faced the problem of accumulating error and used visual
cues to eliminate its harmful effect. Namely, after a certain
amount of time their robot stopped exploration and searched
for familiar visual cues. When a cue was found to be reliable
enough the path integrator was reset to the current location
determined by the visual stimulus.

Our model fits in this general theory as it uses the vi-
sual information to correct path integration (we hypothe-
size that olfactory, auditory or whisking inputs could also
be used for this corrections as these modalities are similar
to vision in that noise does not cause error to accumulate
in their representations). However, in our model not only
the visual, but the integrated (visual & proprioceptive) in-
formation was used to correct the path integration error (c.f.
(O’Keefe and Burgess 2005)). Moreover, we did not intro-
duce discrete time points or set up thresholds when a re-
calibration becomes necessary, instead building on the anatomy
of the hippocampus (Amaral and Witter 1989) and imple-
menting the modifiable hippocampo-cortical feed-back, con-
tinuously corrected the path integrator. This continuous in-
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fluence of allothetic information on the path integration sys-
tem is supported by the fact that entorhinal grid cells’ fir-
ing fields rescaled in response to environmental deformation
(Barry et al 2007).

Theories on the hippocampo-cortical feed-back mostly
hypothesize on its functional role in respect of the episodic
memory aspect of the cortico-hippocampal system (Treves
and Rolls 1994; Lőrincz and Buzsáki 2000; Witter et al 2000).
According to these theories the hippocampus is able to rapidly
form a new representation upon passing through a new episode
e.g., visiting an unknown location. After the memories are
formed the feed-back activation could provide information
useful to the neocortex in the building of new representations
by recalling previous memories, which process would con-
stitute a form of memory consolidation (Rolls and Kesner
2006). Also, a closed loop connecting layer II-III of the en-
torhinal cortex to the hippocampus and from the latter to the
deep layers of the entorhinal cortex (Witter et al 2000) might
serve to continuously compare new inputs and temporarily
stored information in order to facilitate the decision whether
a new or an already stored experience is encountered.

An other aspect of the feed-back connection might be
that when only a fragment of the episode is presented, it is
able to recall the whole episodic memory through the back-
projection pathways from the hippocampus to the cerebral
neocortex, resulting in reinstatement of neuronal activity in
association areas of the cerebral neocortex similar to that
present during the original episode (Treves and Rolls 1994).
Similarly, in our model the location of the animal can be
continually recalled based on visual cues. Conversely, in the
absence of vision (e.g., in darkness) the animal could re-
trieve visual landmarks associated with its location basedon
its position information coming from path integration.

The model proposed by Gaussier et al (2007) suggests a
different role for the hippocampo-entorhinal feed-back, in-
cluding an explanation of spatially correlated processes as
well. In this model there is again a continuous interplay be-
tween the hippocampus and the entorhinal cortex, where the
latter stores and recognizes input configurations, while the
former identifies transitions from the present towards new
states. This approach is somewhat similar to ours in that the
entorhinal grid cell system is partly driven by the hippocam-
pus, but differs in that Gaussier et al (2007) do not assume at-
tractor dynamics as the basis for the generation of grid cells
but suppose that the operation of an extra-hippocampal sys-
tem endowed with “long-distance” path integration capabil-
ities creates the grid activity in the entorhinal cortex given
some properties of the connections between the two struc-
tures.

In our model, the representation of the anatomy of the
entorhinal cortex and the hippocampal feed-back is not de-
tailed. It is known, however, that the hippocampus sends af-
ferents to the deep layers of the entorhinal cortex and re-
ceives efferents from the superficial layers (Witter et al 2000).
It is also known, that classical grid cells can primarily be
found in layer II of the EC, while deeper layers (III, V, and
VI) contain grid cells, head-direction cells and conjunctive

grid and head-direction cells (Sargolini et al 2007). Interest-
ingly, there is an extensive system of connections among en-
torhinal cortical layers too (van Haeften et al 2003; Kloost-
erman et al 2003), which implicates that the grid represen-
tation and the path integration in the entorhino-hippocampal
system is an emergent property, which requires all partic-
ipating regions and layers. Intriguingly, the head-direction
system, which likely originates in the lateral mammillary
nucleus, reaches the entorhinal cortex via the postsubiculum
and innervates its superficial layers (Taube 2007). Adding
to the similarity between the grid-system and the hippocam-
pal place-system is the fact, that the entorhinal cortex in-
nervates the mammillary nuclei (Shibata 1988). Within our
model framework, we propose an overall functional role of
the hippocampal feed-back, without a detailed explanation
of the precise connection structure.

In the presented model we used the approximation that
noise in the proprioceptive input was only simulated when
the synaptic connections were already established. This is
due to the fact that we primarily intended to show that an
integrated place representation can be used to correct one of
its constituent part. The learning process was necessary to
set the appropriate weight matrix for the feed-back connec-
tion. However, we propose that the shown mechanism can
be utilized by animals as well, considering their exploratory
strategy. Animals (from arthropods to rodents) were shown
to start the exploration of a new environment by short trips,
initially frequently returning to their nest or an other ini-
tial location (Collett and Zeil 1998; Etienne et al 1998) and
move further away only after they are familiar with their im-
mediate surrounding. This exploration strategy is in favor
of our proposed model as during the short trips only small
error accumulates in the path integrator. If the learning pro-
cess lasts only for a short time – and our simulation results
showed that a learning converges rapidly –, and after learn-
ing the feed-back is used to correct the path integrator, than
with a gradual exploration and learning the animal is able to
enlarge its map while keeping the hippocampus and entorhi-
nal cortex always in register.

Theoretically, the allothetic information could reach the
path integrator system directly, or indirectly through an in-
tegrated representation from the hippocampus. Manipula-
tions resulting from a coordinated alteration of both the hip-
pocampal and the entorhinal representations like rotationof
the environmental landmarks (Hafting et al 2005), deforma-
tion of the enclosure (Barry et al 2007) or induction of simul-
taneous global remapping in the hippocampus and grid cell
realignment (Fyhn et al 2007) can be interpreted within both
the direct and the indirect framework. Our model predict,
however, that after the inactivation of the hippocampus, fir-
ing of grid cells would remain location dependent but would
become more dispersed and would not follow environmental
manipulations. Indeed, recordings on a linear track showed
that although hippocampal inactivation did not disrupt the
spatially confined firing of the grid cells, the fields became
wider and less stable (Hafting et al 2008) supposedly be-
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cause of the accumulating error in the path integrator sys-
tem.

In our simulations the hexagonal firing pattern of the grid
cells was generated by an attractor network of entorhinal
neurons that requires specific connectivity pattern (Guanella
and Verschure 2006; McNaughton et al 2006; Fuhs and Touret-
zky 2006). Our basic idea, that allothetic information reaches
the grid cells indirectly though the hippocampus can also be
used in an other class of grid cell models (Hasselmo et al
2007; Burgess et al 2007), where grid cell firing arises from
interference of theta frequency membrane potential oscilla-
tions in single neurons. In this case, hippocampal place cells
should continually reset the phase of the dendritic oscilla-
tions of entorhinal grid cells. Spike timing dependent plas-
ticity rules during exploration could be used to set up the
proper connectivity (Lengyel et al 2005). Hippocampal and
entorhinal phase precession (Hafting et al 2008) and sub-
threshold oscillation of entorhinal grid cells (Giocomo etal
2007) support this scenario.

APPENDIX I

This Appendix summarizes the technical details of the paperUjfalussy
et al (2008) about the hippocampal network, part of the neural network
model described here (Fig. 1). In the present model we simulated 1000
hippocampal cells described by a rate vectorH. These cells were in-
nervated by neurons of the input layer (described by the ratevector
I ) consisting of grid cells (G), local view cells and whisker cells, but
not by other hippocampal cells. The simulation was divided into two
phases (Rolls 1995), learning and active feed-back, respectively.

During the learning phase (Sect. 3.2) first, the afferent innervation
from the input layer was used to calculate the activation (h) of hip-
pocampal neurons

h j = ∑
i

Ci jIi, (A-1)

whereCi j describes the strength of each synapse between the input
layer and the hippocampus. Second, from the activation vector firing
rates were calculated using a nonlinear activation function f (·)

H = f (h,χ), (A-2)

whereχ is the desired sparseness of the coding andh is the hippocam-
pal activation vector. The functionf (·) was implemented by an itera-
tion, which selected the most active neurons and scaled their activation
into the[0..1] interval such that the desired sparsenessχ was reached:

< H >2

< H2 >

!
= χ (A-3)

During learning the connection matrix (Ci j) was modified by a Hebbian-
type learning rule

∆Ci j = αH j (Ii −Ci j) , (A-4)

whereα is the learning rate.
During the active feed-back phase (Sect. 3.3) cell activities were

calculated by the same set of equations A-1 – A-3, butCi j was fixed.
In the simulations all-to-all connections were applied inCi j . Initial

matrix elements were picked from a normal distribution:

P(Ci j = w) =
1√
2πρ

e
− (w−µ)

2ρ2
, if 0 < w < 1 (A-5)

Table 5 lists parameters used in the hippocampal model.

Parameter Value Description
N 1000 Number of cells
α 0.05 Learning rate
χ 0.01 Sparseness of coding
µ 0.6 Mean synaptic strength
ρ 0.1 Deviation of synaptic strengths from mean

Table 5 Default parameter values used in simulations of the hip-
pocampal model

APPENDIX II

This Appendix describes calculation of the robot’s estimated position
based on the firing of grid or place cells. We quantified the efficiency
of the hippocampal feed-back by estimating the location of the robot
based on the activity of the grid cells. First, we calculatedthe two di-
mensional firing rate map of each grid cell during the learning period.
Second, we obtained a probabilistic robot location map by multiplying
point-wise the rate maps of all simultaneously active grid cells during
the recall period. Finally, the maximum of this map gave us a rough
estimation of the current position of the robot. This measure was used
in Figures 7 and 8.
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