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Introduction
The vast amount of neural data opened a new era of brain 
research where new data analysis methods are highly needed for 
taking a full advantage of the resources we have. Such methods 
for example the causality detection methods, which try to extract 
causal relations from data based on observations without any 
experimental intervention.

Aim
In this poster we attempt to review mainstream causality analysis 
methods.

Methods
In the first part we present methods based on Norbert Wiener's 
notion of causality on stochastic systems. We start with the first 
formalization of the Wiener-principle, namely Granger causality. 
Then we continue with the exact information-theoretical 
formulation (Schreiber) by introducing Transfer Entropy, which 
measures predictive information transfer between two variables.
In the second part we present state-space methods. This 
approach applies for deterministic dynamical systems and based 
on Takens theorem. In one hand we show how Convergent Cross-
Mapping works and review enhanced versions of it since of its 
invention in 2012. The other hand we present how complexity and 
causality are related.

Results
We show the methods in work on simulation examples, discuss 
the capabilities and draw the borders of applicability.

Conclusion
The stochastic and deterministic dynamical system views are 
complementary approaches and the simultaneous application of 
the two to neural data bears the promise of a new level of 
understanding of the information processing and the underlying 
dynamics.
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Granger causality

According to Norbert Wiener a variable X is a cause of an 
other varibale Y if one can make better predictions on the 
future values of Y based on not just past Y values but 
including the past values of X too.
The first formalization of this idea was made by Clive 
Granger in the framework of linear autoregressive models:
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If X Granger-causes Y then the error variance of the 
extended model is significantly smaller than the more 
concised model's error variance.

Granger causality can be applied in the frequency domain, 
and in this case the causal relations can be seen by spectral 
components.
The method needs relatively few data-points, and the 
estimation process is faster compared to non-parametric 
methods, but the linearity and stationarity assumptions 
restrict the interpretation of the results. A bigger problem of 
Granger causality is that in the case of circular causality the 
predicted directionality of the connection becomes unreliable.

Transfer Entropy

Shannon entropy quantifies the uncertainty over some 
quantity:

H (X )=−∑ p(X i) ln (p(X i))

The conditional entropy quantifies the uncertainty when 
some other variable is observed:

H (X∣Y )=−∑ p(Y j)∑ p(X i∣Y j) ln (p(X i∣Y j))

Mutual information quantifies the information gained by 
observing y variable:

I (X ,Y )=H (X )−H (X∣Y )

We can define conditional mutual information by:

I (X ,Y∣Z)=H (X∣Z)−H (X∣Y ,Z)

A non-parametric translation of Norbert Wiener's original idea 
to information theory's language is Transfer Entropy 
introduced by Thomas Schreiber in 2008. Transfer Entropy 
quantifies the predictive information transfer, the Mutual 
Information between future Y values and present X states 
conditioned on present Y states. 

TE(X→Y )=I (Y t+1 , X t∣Y t)

Transfer Entropy and Granger causality are equivalent in the 
case of jointly gaussian variables. TE was used to 
reconstruct interaction delays in turtle visual system (Wibral 
et al., 2013).
There are several toolboxes for the computation of TE, for 
example JIDT with python bindings or TRENTOOL for 
matlab. The method is data and computation intensive and 
has the same problems as Granger causality except linearity.

Convergent Cross-Mapping

A dynamical system view of causality detection was invented 
by George Sugihara in 2012. A dynamical system is a 
system whose state (Z) changes with time. From the current 
state of a system one can predict all the coming future 
states, if time evolution rules are known.

Z t=ϕt (Z0)

The time-evolution can be stroboscopic like in the case of 
discrete maps or continuous like in the case of flows. An 
example for discrete chaotic map is the logistic map, and an 
example of a continuous flow is the Lorenz-system.

The actual state is a point in state space, which space is 
spanned by the state variables as axes. As time evolution 
goes on the system's state traces out a trajectory in state 
space defined by the actual values of state variables in every 
time instance. In many cases the system's state gets 
attracted to a lower dimensional subspace of state space 
and the points form there a manifold.
Sugihara's idea is based on Takens theorem which claims 
that the state of a chaotic dynamical system can be restored 
(reconstructed) with the aid of one time series measurement 
from that system by a process called time delay embedding. 
The method has two parameters the embedding dimension 
(d) and  the embedding delay (τ).

X t=(x t , xt−τ , x t−2 τ , ... , x (d−1 ) τ)
T

According to Takens theorem the time delay procedure at 
d>= 2m+1 is an embedding that is for every point there is an 
invertible smooth mapping (whose derivative is also injective) 
between the reconstructed and the original state space. 
From here follows that the manifold formed by the points in 
the reconstructed state space is topologically equivalent with 
the manifold in the original state space, meaning that every 
point has the same set of neighboring points in both spaces.
Sugihara et al. generalized Takens theorem and then looked 
at the picture in a multivariate way. The basic idea is that if 
two time series measurements (X,Y) were from the same 
dynamical system then the reconstructed state spaces can 
be mapped back to the same original manifold, so there 
should be a smooth mapping between them too. In this case 
one can say there is circular causality between the two 
variable.

F M x=M ∃F−1

G M Y=M ∃G−1

G−1 F=Q F−1G=Q−1

Q M x=M y M x=Q−1 M y

F

G

Asymmetrical relation arise when the original state-spaces 
are not the same, but one of them is a  lower dimensional 
projected version of the other. The mapping works in one 
direction, but this operation is non-invertable. In this case one 
can speak about unidirectional causal relation, where the 
mapping works from the effect to cause but not the other 
direction.

M
1

M
2

M
x

M
y

If there are no such mappings between the two reconstructed 
manifolds, they are not belong to the same dynamical 
system. In this case one can say that there is no causality 
between the two variables.
Convergent Cross-Mapping is a procedure which tests the 
existence or the absence of this mapping. It is cross-
mapping, because it estimates the mapping between the two 
reconstructed manifolds and convergent because this 
estimate converges to the true mapping as one takes longer 
and longer time series.

This  idea was extended to detect interaction delays between 
variables (Ye Hao et al., 2015). The more or less parallel work 
of Schumacher et al. is based on same principles, it also 
contains time delay detection and in addition they applied 
their method to neural data (Schumacher et al., 2015).
There were attempts to apply the method to indicate time 
varying interactions. For example Ma et al used a feed 
forward neural network to explicitly estimate the smooth 
mapping between the embedded times series.  When the 
mapping error was small enough they detected causal 
relation otherwise they said that the two time series were 
independent in the time segment (Ma et al 2014). Other 
approaches are also possible to detect time varying Sugihara 
causality (Somogyvari et al, unpublished).
Sugihara's method works well on deterministic data and in the 
case of circular causality, but it cannot detect hidden common 
causes. Moreover the linear mixing, and signal 
autocorrelation restricts the applicability on raw extracellular 
or imaging data.
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