Data analysis methods in the neuroscience

Zoltán Somogyvári

Wigner Research Centre for Physics of the Hungarian Academy of Sciences
Spectral methods
Methods applicable to one time series
The Fourier transformation

\[g(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos \left(\frac{2\pi m t}{T} \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{2\pi n t}{T} \right) \]

\[= \sum_{m=0}^{\infty} a_m \cos \left(\frac{2\pi m t}{T} \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{2\pi n t}{T} \right) \]

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of my cat...

Meow!
The Fourier transformation

\[\mathbf{A} \cdot \mathbf{B} = AB \cos \theta = (A \cos \theta)B = A(B \cos \theta) \]
\[i \cdot i = j \cdot j = k \cdot k = 1; \quad i \cdot j = j \cdot k = k \cdot i = 0; \]
\[\mathbf{A} \cdot \mathbf{B} = (A_x i + A_y j + A_z k) \cdot (B_x i + B_y j + B_z k) \]
\[= A_x B_x + A_x B_x + A_x B_x \]
\[\mathbf{A} \cdot \mathbf{B} = AB (\hat{e}_\mathbf{A} \cdot \hat{e}_\mathbf{B}) = AB (1)(1) \cos \theta = AB \cos \theta \]

Coordinates: projection (dot product) onto the orthogonal unit vectors (base) of the coordinate system
The Fourier transformation

\[\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt \]
Example: Slow dynamics of the epileptic seizure

An experimental epilepsy model: Generalized epilepsy evoked by local application of 4-Aminopyridin, ECoG:

Three phases of the seizure can be distinguished, based on amplitudes, frequencies and waveforms.
The Fourier spectrum
Wavelet-transformation

Yves Meyer Abel-prize 2017
Wavelet-transformation

a) Mother wavelets

- **Shaping factor G_s**
 - $G_s = 3$
 - $G_s = 6$
 - $G_s = 9$

- **Heisenberg box**

b) Daughter wavelets ($G_s = 6$)

- **Dilation of the mother wavelet**
 - $s_0/2$
 - $2\omega_0$
 - s_0
 - $\omega_0/2$
 - $2s_0$

- **Scale s**

- **Frequency ω**

- **Heisenberg box**

- **Translation of the mother wavelet in time**

Formula

$$\Phi_{s,d}(t) = \frac{1}{\sqrt{s}} \Phi\left(\frac{t-d}{s}\right)$$
Wavelet-transformation
Wavelet-transformation of the ECoG
How to find connection between data series?

The traditional method: Correlation
(more precisely, the linear correlation coefficient)
How to find connection between data series?

The traditional method: Correlation (more precisely, the linear correlation coefficient)

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

R=0.6
What does the correlation tells us?

Problem 1: it is possible, that there is a clear connection between the two time series, but the correlation is 0 because of the non-linear form of connection.
Convolution, cross- and auto- correlation

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20206883
Coherence

a Phase coherence

\[
\Delta_{\text{phase}} = 0
\]

\[
\Delta_{\text{phase}} \neq 0
\]

b Amplitude correlation

\[f_1 = f_2\]

\[f_1 \neq f_2\]
Correlation vs. Coherence

The linear correlation coefficient

\[r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}} \]

Coherence spectrum

\[\text{Coh}(f) = \frac{\left| \sum_{i=1}^{N} F_1(f) \cdot F_2^*(f) \right|^2}{\sum_{i=1}^{N} |F_1(f)|^2 \cdot \sum_{i=1}^{N} |F_1(f)|^2} \]
2 dimensional, 256 channel electrode system

Made possible parallel monitoring of the many subareas of the hippocampus and cc. 100 sorted and identified neurons.
The high frequency power map show the somatic layers, which corresponds to the positions of the sorted individual neurons. The fusion of this high frequency power map with the result of the coherence clustering resulted a detailed layering map of the hippocampus. This electro-anatomical map corresponded well to the tissue histology.

Berényi et al. J Neurophysiology 2014
Layer structure of the hippocampus are revealed under the assumption, that the channels in the same layer receive similar synaptic inputs, but with different temporal delays. Thus coherence and the coherence based clustering could reveal the anatomical layers.
Micro-electro imaging

Micro-electro anatomy:
512 channel electrode system in the neocortex
Information theoretical methods
Information theoretical measures

Entropy:

\[H(X) = - \sum_x p_x \log(p_x) \]

Entropy is a measure of disorder and information content.
\(p_x \) is the probability of state \(x \). Depending on the state space, there are different entropies. Spectral entropy, approximate entropy...
MRI with implanted subdural grid electrodes

4*8 channels in the grid plus 2*8 channels in two strip electrodes, 1024 Hz sampling
Entropy of the ECoG during seizure initialization

The Approximate Entropy (AE) is significantly increased solely during the initial, low amplitude phase of the seizure, then AE is decreased below the baseline during the high amplitude phase of the seizure. The positions of the increased AE values during the first sec of the seizure corresponds very well to the seizure onset zone.

Publisher on two conference posters: Hungarian Neuroscience Meeting 2015 and the Hungarian Neurosurgery Conference 2014
Information theoretical measures

Mutual information

\[I(X;Y) = H(X) + H(Y) - H(X,Y) \]

\[H(X) = - \sum_x p_x \log(p_x) \]
Phase-space reconstruction

The reconstructed pseudo-attractor in the state space, constructed from the data and its derivatives \((a(t), a_1(t), a_2(t) \ldots)\) is topologically equivalent to the systems real attractor in its original state space, according to the Whitney theorem.

Derivation increases noise, so the \((a(t), a(t+dt), a(t+2dt) \ldots)\) delayed coordinates, return maps are used in stead: Takens’-theorem.
A simple epilepsy model

The change in the relative strength of the recurrent excitation and in inhibition results in:
- spikes
- seizures with complex dynamics
- status epilepticus

The seizures can be eliminated by increasing the strength of the inhibition.
Reconstructed attractors from the simulated time series and their changes

The synaptic depression decreases the activation and drives the system into the regime of the irregular (chaotic) oscillation.
Comparison of the reconstructed attractors from the simulation and the epileptic ECoG
Phase space reconstruction

What to do with the reconstructed attractors?

It is not easy to determine the type (topology) of the attractor, based on the noisy measurements.

It is possible to measure its dimension, for example: L^2-dimension. $N = L^d$ where N is the number points in a sphere with radius L.

It is possible to measure the average Ljapunov-exponent, meaning the average instability of the paths.

What else?
How to measure the dimension of the manifold?

Let's take two radii and count the number of points within the spheres: the exponent of the increase with respect to the radius gives us the dimension.

$$N(r) = N_0 \cdot r^D$$

$$D = \frac{\ln \left(\frac{N_i}{N_{i+1}} \right)}{\ln \left(\frac{r_i}{r_{i+1}} \right)}$$
Methods applicable to small number of data/time series
The cocktail-party problem and the principal component analysis (PCA)

\[Y_i(t) = \sum W_{ij} X_j(t) \]

Let's search for the directions correspond to maximal variance.
Principal component analysis

\[
\overline{x}_n = \frac{1}{K} \sum_{k=1}^{K} x_{kn}
\]

\[
\sigma_n = \sqrt{\frac{1}{K-1} \sum_{k=1}^{K} (x_{kn} - \overline{x}_n)^2}
\]

\[
S = \left(\text{covar}[y_i, y_j]_{i,j=1}^{N} \right) \otimes \left(\frac{1}{K-1} \sum_{k=1}^{K} y_{ki}y_{kj} \right)_{i,j=1}^{N} = \frac{1}{K-1} Y^T \cdot Y
\]

\[
S \cdot X' = \lambda \cdot X'
\]

\[
Z = X \cdot A
\]
Principal component network, derivation of Oja's rule:

\[w_i(n+1) = w_i(n) + \eta y(x(n)) x_i(n) \]

\[w_i(n+1) = \frac{w_i(n) + \eta y(x(n)) x_i(n)}{(\sum_{j=1}^{m} [w_j(n) + \eta y(x(n)) x_j(n)]^p)^{1/p}} \]

\[w_i(n+1) = \frac{w_i(n)}{(\sum_j w_j^p)^{1/p}} + \eta \left(\frac{y(n)x_i(n)}{(\sum_j w_j^p)^{1/p}} - \frac{w_i(n)\sum_j y(n)x_j(n)w_j(n)}{(\sum_j w_j^p)^{1+1/p}} \right) + O(\eta^2) \]

\[y(x(n)) = \sum_{j=1}^{m} x_j(n)w_j(n) \]

\[\|w\| = (\sum_{j=1}^{m} w_j^p)^{1/p} = 1 \]

\[w_i(n+1) = w_i(n) + \eta y(n)(x_i(n) - w_i(n)y(n)) \]
The cocktail-party problem and the independent component analysis (ICA)

\[Y_i(t) = \sum W_{ij} X_j(t) \]

Let's search for the most independent directions! The basic idea is the central limit theorem: Linear combination of two independent variables is closer to the Gaussian distribution than the original. Thus, let's search for the least Gaussian sources. How to measure the “non-Gaussianity”? Eq: Skewness, entropy...
The cocktail-party problem and the independent component analysis (ICA)

\[Y_i(t) = \sum W_{ij} X_j(t) \]

The most independent directions:
Independent component analysis (ICA)
Independent component analysis (ICA)
The spike triggered average EC potential patterns have been decomposed into 9 different independent components by ICA. Some of them clearly corresponds to the signals of specific pathways and mechanisms: component #2 corresponds to Schaffer collateral, #8 and #9 together correspond to the Theta.
Micro-electro imaging

Inputs of a neurons from different pathways: ICA

A CA1 interneuron (#8)
Micro-electro imaging

Inputs of neurons from different pathways: ICA

A CA1 interneuron (#8)
Micro-electro imaging

Inputs of a neuron from different pathways: ICA

A CA3 pyramid neuron (#56)
Micro-electro imaging

Inputs of a neurons from different pathways: ICA

A DG neuron (#36)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

DG granular neurons (n=8)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

CA1 pyramidal neurons (n=29)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

CA3 pyramidal neurons (n=8)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

CA1 PV neurons (n=16)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

CA3 PV neurons (n=2)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

DG (CA3?) PV neurons (n=2)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

DG AxoAx neurons (n=4)
Micro-electro imaging

Cell type specific potentials
Reconstructed without theta

CA3 AxoAx neurons (n=1)
ARMA and ARIMA model fitting

\[X(t) = \sum A_i X(t-i) \]

\[X(t) = \sum A_i X(t-i) + \sum B_j X'(t-j) \]

Partial autocorrelation
Directed effect, causality measures
Granger-causality

The original idea came from Norbert Winer

\[x \rightarrow y, \text{ if the inclusion of past } x \text{ values improves the prediction quality on } y \]

Clive Granger
Publication 1969
Nobel price in Economic Sciences 2003
Causality measures

Granger-causality

\[X(t) = \sum_{j} a_1(j) X(t-j) + \epsilon_1(t) \]
\[Y(t) = \sum_{j} d_1(j) Y(t-j) + \eta_1(t) \]

\[X(t) = \sum_{j} a_2(j) X(t-j) + \sum_{j} b_2(j) Y(t-j) + \epsilon_2(t) \]
\[Y(t) = \sum_{j} c_2(j) X(t-j) + \sum_{j} d_2(j) Y(t-j) + \eta_2(t) \]
Causality measures

Granger-causality

\[\Sigma_1 = \text{Var}(\epsilon_1(t)) \]
\[\Gamma_1 = \text{Var}(\eta_1(t)) \]
\[\Sigma_2 = \text{Var}(\epsilon_2(t)) \]
\[\Gamma_2 = \text{Var}(\eta_2(t)) \]

\[F_{Y \rightarrow X} = \log(\Sigma_1) - \log(\Sigma_2) \]
\[F_{X \rightarrow Y} = \log(\Gamma_1) - \log(\Gamma_2) \]
\[F_{YX} = \log(\Sigma_2 \Gamma_2) - \log(\Sigma_2 - \text{cov}^2(\epsilon_2(t)\eta_2(t))) \]
Problems with the Granger-causality

Model dependency can be ameliorated by using nonlinear extensions, kernel solutions or model free transfer entropy method.

But,

The problem implied by self-predictability and uncertain outcome for bidirectional coupling is inherent in the basic principle: In case of circular coupling, the information contained by the second data series is already available in the system's own past.
Practice
stacksize(2e8)
getd ~/TANIT/SummerSchool15/PRACTICE
loadmatfile('~/TANIT/SummerSchool15/PRACTICE/Seizure1.mat');
st=1e3;
chn=43;
cm1=CorrFor(adat,1,5e3);

stn=floor(size(adat,1)/st);
scm=zeros(stn,chn);
cmm=zeros(stn*chn,chn);
for k=1:stn
l1=(k-1)*st+1;
l2=k*st;
[cm]=CorrFor(adat,l1,l2);
cmm((k-1)*chn+1:k*chn,:)=cm;
scm(k,:)=mean(cm,'r');
end
socol(24);
tplot(scm);