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Abstract

The medial septum-diagonal band (MSDB) complex is considered as a pacemaker for the hippocampal

theta rhythm. Identification of the different cell types, their electro-physiological properties and their

possible function in the generation of a synchronized activity in the MSDB is a hot topic. A recent

electro-physiological study showed the presence of two antiphasically firing populations of parvalbumin

containing GABAergic neurons in the MSDB. Other papers described a network of cluster-firing gluta-

matergic neurons, which is able to generate synchronized activity in the MSDB. We propose two different

computer models for the generation of synchronized population theta oscillation in the MSDB and com-

pare their properties. In the first model GABAergic neurons are intrinsically theta periodic cluster-firing

cells; while in the second model GABAergic cells are fast-firing cells and receive periodic input from

local glutamatergic neurons simulated as cluster-firing cells. Using computer simulations we show that

the GABAergic neurons in both models are capable of generating antiphasic theta periodic population os-

cillation relying on local, septal mechanisms. In the first model antiphasic theta synchrony could emerge

if GABAergic neurons form two populations preferentially innervate each other. In the second model

in-phase synchronization of glutamatergic neurons does not require specific network structure, and the

network of these cells are able to act as a theta pacemaker for the local fast-firing GABAergic circuit. Our

simulations also suggest that neurons being non-cluster-firingin vitro might exhibit clustering properties

when connected into a networkin vivo.
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1 Introduction

The medial septum-diagonal band (MSDB) complex is believed to play a crucial role in the genera-

tion and maintenance of a typical hippocampal oscillatory activity the temporally nested theta (4-12 Hz)

and gamma (40-60 Hz) rhythm (Petsche et al., 1962; Stewart and Fox, 1990; Vinogradova, 1995). The

hippocampal theta oscillation, which is a large amplitude coherent oscillation, prominent during immo-

bility and exploratory movements (Vanderwolf, 1969; Vértes and Kocsis, 1997) is fundamental in several

neural computations like memory formation (Hasselmo et al., 2002) and memory related tasks, such as

navigation (O’Keefe and Nadel, 1978) in many different ways (Lengyel et al., 2005).

Classically, neurons in the MSDB were considered either cholinergic or GABAergic based on their

different anatomical and electro-physiological properties (Brashear et al., 1986; Griffith, 1988; Kiss et al.,

1990). GABAergic cells interconnected via axo-somatic synapses (Henderson et al., 2004) innervate
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different hippocampal interneurons (Freund and Antal, 1988) driving them by firing rhythmic bursts phase

locked to the hippocampal theta rhythm (Green and Arduini, 1954; Bland et al., 1999; Brazhnik and Fox,

1997; Stewart and Fox, 1990). Cholinergic cells also display rhythmic burst-firing activity (Brazhnik and

Fox, 1997, 1999), but they have slower modulatory effect than GABAergic cells (Cole and Nicoll, 1984)

and they innervate both interneurons and pyramidal cells in the hippocampus (Frotscher and Leranth,

1985). By analyzing the phase relationship between medial septal unit activity and hippocampal field

oscillation a strong phase coupling was observed both in anaesthetized (Brazhnik and Fox, 1997) and in

freely moving rats (King et al., 1998; Dragoi et al., 1999; Brazhnik and Fox, 1999), but the preferred

firing phase of different cell types remained unclear. A recent study used combined immunocytochemical

and electro-physiological methods to demonstrate that parvalbumin expressing (PV+), GABAergic cells

show bimodal phase distribution during hippocampal theta activity (Borhegyi et al., 2004).In vitro studies

on MSDB neurons showed that GABAergic cells express parvalbumin and exhibit fast-spiking activity

(Morris et al., 1999; Sotty et al., 2003).

The first neuron type found to exhibit sustained rhythmic activityin vitro was a cluster-firing cell

type described by Serafin et al. (1996). These neurons were considered as non-cholinergic, putative

GABAergic neurons. Later, Sotty et al. (2003) using simultaneous electro-physiological and biochemical

methods identified them as glutamatergic neurons. The presence of a population of glutamatergic neurons

in the MSDB has been recently confirmed by anatomical studies (Hajszan et al., 2004; Colom et al., 2005).

These glutamatergic neurons form a network that is able to produce slow, synchronized bursting activity

and innervate local GABAergic and cholinergic cells (Manseau et al., 2005). A recentin vitro study also

showed that activation of glutamate receptors can synchronize MSDB neurons in theta frequency (Garner

et al., 2005).

The aim of the present study is (i) to determine how theta synchronized bursting activity can emerge

internally within the MSDB in a network of GABAergic neurons and (ii ) how the bimodal preferred firing

phase distribution (Borhegyi et al., 2004) of these cells is generated. To achieve this, two competing

models will be set up and compared based on competing experimental results. In the first model, which

will be referred to as the “ping-pong model”, GABAergic cells are modeled as cluster-firing cells (Serafin

et al., 1996), which form two subpopulations (SPs) preferentially innervating each-other. In the ping-

pong model no other cell type is simulated explicitly. In the second model, which will be referred to

as the “feed-forward model” both glutamatergic and GABAergic cells are simulated. In this model,

contrary to the ping-pong model, GABAergic cells are of the fast-firing type (Morris et al., 1999) and

glutamatergic cells producing their phasic drive are modeled as cluster-firing neurons (Sotty et al., 2003).

In the following sections the two models are described in detail and studied to identify characteristic
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properties suitable for experimental validation.

2 Methods

2.1 Neuron models

Two types of neurons were simulated in the present study: a cluster-firing and a fast-firing neuron. Details

of the model equations can be found in the Appendix.

Cluster-firing neuron. To model cluster-firing neurons in the MSDB we used the single compartment

model described by Wang (2002) with unchanged parameters unless otherwise noted. This model con-

tains spike generating currents (INa, IK) and a slowly inactivating potassium current (IKS). The membrane

potential change is given by the following current balance equation:

CmdV/dt = −INa − IK − IKS − IL − Isyn + Iext (1)

whereCm = 1µF/cm2 is the membrane capacitance,IL is the leakage andIsyn is the synaptic current.

Iext, the external current, is a constant depolarizing current representing background excitation mostly

due to cholinergic innervation. The membrane noise term, originally introduced by Wang was omitted.

For numerical integration of these equations the initial membrane potential of each cell was chosen ran-

domly from a Gaussian distribution of meanµ(Vinit) = −64 mV and standard deviationσVinit = 30 mV.

The external current of this cell type was also taken from a Gaussian distribution. In the case when

cluster-firing cells represented GABAergic neurons (the ping-pong model) the external current was set

to µ(Iext) = 0.025 nA, σ(Iext) = 0.0025 nA mean and standard deviation, respectively. When cluster-

firing neurons represented glutamatergic cells (the feed-forward model) the external current was set to a

slightly smaller value in order to achieve population oscillation frequency around 5 Hz (µ(Iext) = 0.02 nA,

σ(Iext) = 0.002 nA mean and std, respectively). In control conditions an individual cell fires clusters of

action potentials in the theta frequency range (4-6 Hz) while the intracluster frequency is in the gamma

range (40-50 Hz, Fig. 1A., inset).

[Figure 1 about here.]

In order to gain more insight into the model’s functioning we prepared the bifurcation diagram of the

model. The single cell model can be considered as a five dimensional dynamical system with dynamical

variablesV , the membrane potential;h gate of the sodium channel;n gate of the delayed rectifier potas-

sium channel;p andq gates of the slow potassium channel. Since the time constant of theq gate is one
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order longer (∼ 100 ms) than that of all other variables, this gate controls the bursting behavior of the

cell. When the activation of theq gate was varied as a parameter (reduced, 4 dimensional model) to iden-

tify its contribution to the evolution of the membrane potential a subcritical Hopf bifurcation was found

to separate the resting and the spiking state of the model (Fig. 1B). The other four dynamical variables

belong to the fast subsystem responsible for the spiking behavior and the subthreshold oscillation. In the

simulations we used the original, 5 dimensional model, the bifurcation analysis was made to gain more

insight into the model’s functioning and the reduced model was not used later in our simulations.

Fast-firing neuron. Medial septal fast-firing, non accommodating neurons were shown to express par-

valbumin (Morris et al., 1999), a calcium binding protein, suggesting that these neurons are GABAergic

and project to the hippocampus (Freund, 1989).

To model these neurons we simplified the cluster-firing neuron model used in (Wang, 2002), described

briefly in the previous section, by omitting the slow potassium channel, which is responsible for the

cluster-firing behavior. The speed of the inactivation ofINa and the activation ofIK were increased by

changing the temperature factorφ from 5 to 10 so that the AHPs became smaller. The membrane potential

change of the fast-firing cell is given by the following current balance equation:

CmdV/dt = −INa − IK − IL − Isyn + Iext (2)

To introduce heterogeneity the initial membrane potential of each cell was chosen from a Gaussian dis-

tribution of meanµ(Vinit) = −64 mV and standard deviationσVinit = 30 mV. TheIext background current

was an important parameter for synchronization of these neurons and were varied betweenµ(Iext) =

−0.008 nA andµ(Iext) = −0.026 nA. The basic behavior of this model (Fig. 6B) is similar to physio-

logical measurements from fast firing cells, except that the model lacks the depolarizing sag and spike

frequency adaptation, which is present in most of the GABAergic cells in the MSDB (Sotty et al., 2003).

2.2 Synapse models

Two types of synapses were simulated:

GABAergic synapse model.GABAA IPSCs were described based on (Wang and Buzsáki, 1996) by the

equation:

Isyn = ḡsyns(V − Esyn), (3)

whereḡsyn is the maximal synaptic conductance, and the activation variables was governed by the follow-

ing first order kinetics:
ds

dt
= α[F (Vpre)] (1− s)− βs, (4)
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where the transmitter release probability ([F (Vpre)]) was a function of the membrane potential of the

presynaptic neuron:

[F (Vpre)] =
1

1 + exp
(
−Vpre−Θsyn

K

) (5)

Parameters characterizing synaptic contacts between different pre- and postsynaptic neurons were as

follows: α = 14 ms−1, β = 0.07 ms−1, K = 2 mV, Θsyn = 0 mV, Esyn = −75 mV. The synaptic

conductance was set togsyn = 0.25 nS when GABAergic cells are modeled as cluster-firing cells orgsyn =

0.189 nS when they were fast-firing neurons. We set the synaptic conductances differently to compensate

for the different current–frequency relationship of the two model neurons and to obtain similar IPSP

amplitudes.

Glutamatergic synapse model.Glutamatergic transmission was mediated by AMPA receptors described

in Destexhe (2000). Briefly

IAMPA = ḡAMPAs(V − EAMPA) (6)

ds

dt
= α [T (Vpre)] (1− s)− βs (7)

Here,α = 1.1 mM−1ms−1, β = 0.19 ms−1, EAMPA = 0 mV, gAMPA = 0.1 nS on glutamatergic and

gAMPA = 0.15 nS on GABAergic cells. The concentration of the released transmitter ([T (Vpre)]) is a

function of the presynaptic membrane potential,

[T (Vpre)] =
Tmax

1 + exp
(
−Vpre−Θsyn

K

) , (8)

whereTmax = 1 mM, Θsyn = 2 mV, andK = 5 mV.

2.3 Network models

Recent physiological findings (Henderson et al., 2004; Borhegyi et al., 2004) suggest that a delicate

synaptic connection pattern might account for the pacemaker capability of septal GABAergic cells. It

was shown that the distribution of preferred firing phases of medial septal PV+ GABAergic neurons is a

bimodal distribution: a subpopulation of these cells preferentially fire at the peak while the other SP at

the trough of the hippocampal field theta oscillation (Borhegyi et al., 2004). This experimental finding

encouraged us to examine the role of the connectivity between and within the two GABAergic SPs in the

synchronization of MSDB neurons.

In the following sections two models will be introduced and studied. In the first model, the ping-pong

model, only GABAergic neurons were simulated. Here GABAergic neurons are described as cluster-

firing cells. These cells were divided into two SPs. Connection probabilitiespAA , pAB , pBA , pBB are
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defined to give the probability of connecting two neurons chosen from SP A or one from SP A to one from

SP B, etc., respectively, using the GABAA synapse model. Connection probability between two cells from

the same (different) SP(s) is described bypAA = pBB = pc−b, (pAB = pBA = pc +b), respectively, where

pc is the connection probability in the whole network andb means the bias (or polarization parameter) to

preferentially innervate neurons from the other SP. The value ofb was systematically varied between0

and0.5 while pc was kept constant. Ifb is low (around zero) then the network has random connectivity

(Fig. 2A); if, on the other hand,b is high then the network is divided into two SPs reciprocally innervating

each other (a polarized network, Fig. 2B). Autapses were not allowed. Each of the SPs contained 20

neurons. No other neuron types (cholinergic or glutamatergic) were simulated in the ping-pong model.

The second network presented here, the feed-forward model, consisted of both glutamatergic and

GABAergic neurons. Glutamatergic neurons were described as cluster-firing cells, GABAergic neurons

as fast-firing cells. The GABAergic network again was divided into two subpopulations as described

above. Glutamatergic cells randomly innervated neurons of only one of the two GABAergic subpopula-

tion by AMPA receptor mediated synapses with probabilitypUA = 0.5. In this model only glutamatergic

and GABAergic neurons were simulated, the tonic effect of cholinergic neurons was implicitly taken into

account by theIext external current. We simulated 40 glutamatergic and 40 GABAergic neurons in the

feed-forward model.

In order to analyze the effect of heterogeneity introduced to the system we made 10 parallel simula-

tions with different connection matrices and initial conditions.

2.4 Softwares and mathematical analysis

The bifurcation diagrams were prepared using the XPPAUT (version: 5.91) simulation environment (Er-

mentrout, 2002), all other simulations were performed using the GENESIS (version 2.2) software package

(Bower and Beeman, 1998) under the Linux operating system. Mathematical analysis of the results were

performed using the GNU octave (version 2.1.69).

To quantify the synchronization of the neuronal firing in the network, we introduced a coherence

index based on the correlation between the activity of cell pairs from the same network. The activity of

each cell was defined by dividing the simulation timeT into small bins ofτ width and the value of a

given bin was 1 if the cell fired during that interval or 0 if not. Thus, the coherence index of a network is

calculated as the mean correlation between the activity of all cell pairs from the network. We calculated

gamma coherence withτ = 5 ms and theta coherence withτ = 50 ms.

To define the firing phase of a cell a periodic reference signal was required. Since the hippocampal

regions are not included in the simulations we can not relate the firing phase of the individual cells to
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a hippocampal signal like in experimental studies. Instead, we quantified the relative preferred firing

phases of the two GABAergic subpopulations via an arbitrarily chosen reference signal and compared

these relative values with experimental findings. In the experiments by Borhegyi et al. (2004) the relative

phase difference between the two SPs was approximately 152◦ corresponding to∼100 – 70 ms time

difference depending on the theta frequency (4 – 6 Hz). The reference signal used in our calculations was

the mean firing rate versus time function of one of the SPs (see Fig 4C). 0◦ was chosen to be the trough,

180◦ the peak of this sinusoid-like signal. Mean firing rate of the SPs was calculated as the mean of its

cells’ approximate firing rate. The approximate firing rates were calculated by convolving the series of

firings by a Gaussian of 1 ms standard deviation according to Dayan and Abbott (2001). The phase (Φ)

of each spike was calculated relative to this signal, i.e. the minimum and the maximum between which

the spike occurred were identified and the phase of the spike was calculated by

Φ =


180◦

t

tmax− tmin
if tmax > tmin,

180◦
t

tmax− tmin
+ 180◦ if tmax < tmin.

(9)

wheret is the time when the spike was emitted,tmin and tmax are the time of the minimum and the

maximum, respectively, of the mean firing rate of the SP. This phase was regarded as a vector of unit

length and of angleΦ. The sum of these vectors calculated for all spikes of a cell divided by the number

of spikes fired was considered as the preferred firing phase of a given neuron. Mean phases of the two

SPs were calculated by taking the average of the phase vectors of a given SP’s cells.

We distinguish between the termsclusteringandcluster-firing. The latter means that a cell responds

to a constant depolarizing current with repetitive clusters of action potentials. Clustering, on the other

hand, means that the firing pattern of a neuron in a network contains clusters of action potentials. The

cause of clustering could be both network and/or single-cell phenomena: (i) non-cluster-firing cells when

connected into a network or driven by some phasic input might emit spikes in clusters, or (ii ) cluster-

firing cells in a properly connected network might preserve their cluster-firing property. We say that the

ith spike is the first and thejth spike is the last spike of a cluster if (a) the interspike interval before and

after the cluster is sufficiently large; (b) the cluster is sufficiently long (there are more than one spike in

the cluster); (c) the cluster is not longer than one theta period. Quantitatively:

[ISI(i−1), ISIj ] > 1.5 ∗
∑n

k=1 ISIk

n
(10a)

tj − ti > 0.001s (10b)

tj − ti < 0.3s (10c)
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whereISIi means theith interspike interval,n is the number ofISIs during the simulation andti is the

time of the spike before theith interspike interval. A neuron is considered as a clustering cell if it has on

the average more than 3 clusters in 1 s.

Power spectra of network activities were calculated using octave’s Fast Fourier Transformation algo-

rithm. Theta (gamma) power were determined as the sum of the power spectrum values between 4-10

(40-80) Hz.

3 Results

Our hypothesis was that the structure of local synaptic connections between GABAergic cells in the

MSDB is responsible for their synchronization and for the generation of a preferred firing phase.

We give two different models for theta and gamma synchronization in the medial septum. In the

ping-pong model discussed in Section 3.1 GABAergic cells are autonomous theta periodic pacemakers

(cluster-firing cells), while in the feed-forward model, studied in Section 3.2, they are fast-firing neurons

with external theta-periodic input from the local glutamatergic circuit, in which glutamatergic cells are

simulated as cluster-firing neurons.

3.1 Synchronization in a network of cluster-firing GABAergic cells

First, we analyzed the random network of cluster-firing cells, i.e. the ping-pong model withb = 0

(Fig. 2A). Wang (2002) showed that spikes of cluster-firing neurons are synchronized in an all-to-all

network, while the clusters of the cells were asynchronous. In our model cells in the random network

also have synchronized activity. We found that some cells fire clusters of action potentials, while a subset

of cells fire single spikes or doublets (Fig. 2C). There is no theta modulation in the population activity of

the network as shown by the population activity histogram (Fig. 2C, upper trace) and the FFT (Fig. 2E).

Second, the polarization of the network was increased by increasing the bias (b) parameter in the

connection probability (see Methods). In a polarized network theta periodic clusters of action potentials

of neurons from one SP alternate with clusters of the other SP and strong theta modulation is present in the

activity of both SPs (Fig. 2D, E). On the FFT histograms an other peak at gamma frequency (∼ 40 Hz)

indicates that spikes are also synchronized in the polarized network (Fig. 2E).

[Figure 2 about here.]

The proportion of clustering cells (neurons that fire periodic clusters not single spikes; see Methods)

in the ping-pong model rapidly increases with network polarization between biasb = 0.2 andb = 0.3
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(Fig. 3A). Above this critical range (indicated by the shadowed region on Fig. 3) the theta and gamma

coherence in the SPs are also high (Fig. 3B, C). The coherence between the two SPs is negative because

the two populations are antiphasic. Below the critical range the theta coherence is similar to the control,

while the gamma coherence is positive both within and between the SPs.

[Figure 3 about here.]

We tested a larger (N = 80) polarized (b = 0.5) ping-pong model with sparser synaptic connec-

tions to identify what properties of the system determine theta synchronization characteristics. We found

that the product of the total number and the strength of synapses arriving to a given cell is critical for

theta synchronization (data not shown). A two-fold decrease in the number of synaptic contacts of a cell

compensates an increase of similar magnitude in the synaptic strength. In a network of 80 neurons the

minimal connection probability required for stable theta synchronization waspc ∼ 0.2 (approximately 16

GABAA synapses converging onto a cell) with a maximal synaptic conductance ofgsyn = 0.25 nS. Simi-

larly, to achieve the same theta synchrony in a network of 40 neurons withgsyn = 0.25 nS the connection

probability was doubled:pc ∼ 0.4. The dependence of theta coherence on the network polarization (b)

was similar in the large and in the small networks (data not shown).

In symmetric networks clusters of firing of the two SPs are exactly antiphasic (the phase difference is

180± 8◦, Fig. 4A). Neurons from the same SP have slightly different preferred firing phases (Fig 4A-C)

but the preferred firing phase of the neurons was independent of their firing rate (Fig. 4B, correlation

between the firing rate and the preferred firing phase in one SP was−0.1± 0.2; the mean and the std. of

10 independent simulation).

In their experiments Borhegyi et al. (2004) found that the phase difference between the two SPs was

significantly smaller than180◦. In order to study if our network is able to show smaller phase difference

between the two SPs we introduced asymmetry in the ping-pong model by increasing the external current

(Iext) applied to one of the SPs while decreasing it to the other. This asymmetry gradually decreased the

phase difference between the two SPs (Fig. 4D). Similar result is obtained when the asymmetry was in the

synaptic connections between the two SPs (Fig. 4E). However, when the external current or the inhibition

is highly unbalanced then one of the two SPs remains silent and the network do not show synchrony.

[Figure 4 about here.]

3.2 Synchronization in a network of fast-firing GABAergic cells

Second, we studied the feed-forward model, which consisted of two SPs of fast-firing GABAergic neurons

with theta periodic pacemaker input arriving to only one of the two SPs (Excitatory driven SubPopulation
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or ESP; while the other SP is called Inhibitory driven SubPopulation orISP). In this model theta periodic

pacemaker input is generated by a network of glutamatergic neurons (see Section 3.2.1) simulated as

cluster-firing cells.

The feed-forward model is motivated by simultaneous electro-physiological and anatomical studies

(Sotty et al., 2003; Manseau et al., 2005), which suggest that cluster-firing cells are more likely to be

glutamatergic than GABAergic and GABAergic neurons show fast-firing behavior. These glutamatergic

cells innervate other local neurons including glutamatergic and GABAergic cells (Manseau et al., 2005).

Building on this justification glutamatergic cells in the feed-forward model were simulated as cluster-

firing cells.

3.2.1 Glutamatergic neurons act as pacemakers for septal theta rhythm

Glutamatergic cells were described by the cluster-firing cell model and were interconnected into a net-

work by fast glutamatergic synapses (see Methods). The same analysis was conducted for this network as

described in Section 3.1 for cluster-firing cells interconnected by GABAergic connections (i.e. systemati-

cally increasing theb bias parameter) to show that network polarization can not eliminate robust in-phase

synchronization in the present case. Simulations show that spikes and clusters of coupled glutamatergic

neurons are synchronized to each other (Fig. 5A) and theta or gamma coherence of the network does not

change with the polarization (Fig. 5B). Instead of antiphasic synchronization as seen in the ping-pong

model, glutamatergic cells show in-phase synchronization since these neurons fire their spikes and clus-

ters simultaneously in the whole network (Fig. 5C, D) and the mean phase of all cells’ firing are similar.

[Figure 5 about here.]

This robust in phase synchronization allows the glutamatergic network to be a local theta periodic

pacemaker for a network of fast-firing GABAergic neurons in the medial septum.

3.2.2 Theta synchronization in the feed-forward model

The theta periodic input generated by the local glutamatergic network was used to drive GABAergic cells

of the feed-forward model. Only neurons from one of the two SPs are innervated by local glutamatergic

cells (ESPon Fig. 6A,) with connection probabilitypUA = 0.5. The other SP, that lacks glutamatergic

innervation (ISPon Fig. 6A) needs stronger excitatory current (Iext) to maintain its firing capability, which

is decreased by the inhibitory innervation from the ESP. When the fast-firing GABAergic neurons are

innervated by the glutamatergic network GABAergic cells from the two SPs fire alternating clusters of

action potentials (Fig. 6C, D). As action potential generation is the result of the interplay between their
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intrinsic dynamics and the glutamatergic innervation the activity of the neurons from theESPis highly

irregular. On the other hand, theISP lacks synaptic input during its active state (it is inhibited while the

ESP is active and starts firing when disengaged from its inhibition) so the firing pattern of these neurons

is more regular and governed by its membrane dynamics and the tonic drive. The gamma and theta

coherence in the GABAergic SPs of the feed-forward model are similar to those seen in the polarized

ping-pong model (data not shown).

[Figure 6 about here.]

In the feed-forward model cells from both GABAergic SPs fired in clusters in the whole external

current range (−0.025 ≤ Iext,ESP≤ −0.0175 nA) that enabled firing (Fig. 7A,B) (i.e. when the firing rate

of both populations is greater than zero on Fig. 7B). The activity of neurons from theESPwere similar in

the random (smallb) and the polarized (b ∼ 0.5) networks because of their strong coupling to the local

glutamatergic cells (Fig. 7C, D).

Neurons from theISPwere antiphasic with theESPin both the random and the polarized networks

(Fig. 7G, H), but due to recurrent collaterals moreISPneurons had lower firing rate in the random network

than in the polarized network (Fig. 7D). Due to these feed-back connections the proportion of clustering

ISPcells was also smaller in the random case than in the polarized case. Although, the total inhibition

arriving to a given neuron is similar in the random and in the polarized networks (because the connection

probability (pc) and thus the mean number of synapses on a given neuron are equal in the two cases) as

the two SPs fire intermittently the inhibition in a polarized network is phasic while in a random network

it is more tonic.

In a random network the proportion of clustering cells in theISPwas smaller than in theESP(Fig. 7C).

In this case the tonic inhibition decreases the firing rate of the cells with lowerIext (note thatIext comes

from a Gaussian distribution, see Section 2.1) below a threshold and these cells often fire single spikes

(Fig. 7E) rather than clusters (Fig. 7F).

[Figure 7 about here.]

The phase delay between the GABAergic and the glutamatergic cells (Fig. 8A) reflects the time re-

quired to the activation of the GABAergic cells. The phase delay of theESPrelative to theISP is higher

than180◦ (Fig. 8A) because the neurons of theISPdo not have a phasic excitatory drive. Cells with lower

firing rate fire later in both SPs (Fig. 8B, C). The phase difference between the two SPs decreased if the

external current or the strength of the glutamatergic innervation of theESPwas increased (Fig. 8D, E). It

also showed a small decrease if the GABAergic innervation of theISPwas stronger (the bias is positive
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on Fig. 8F). All of these changes enhanced the phasic inhibition of theISPand enlarged the gap between

the activation of the two SPs (see shaded box on Fig. 6C, D). When the bias of the synaptic connections is

high the circuit is similar to a feed-forward network, where the glutamatergic cells form the first layer and

theESPand theISP the second and the third one, respectively. The phase difference was independent of

the polarization of the network (Fig. 8G). No phase difference larger than∼ 160◦ was observed between

the ESPand theISP. This is due to the fact that an increased phase difference could be brought about

by decreasedIext and/or decreasing the strength of the glutamatergic innervation but such decrease over a

certain limit (corresponding to∼ 160◦ phase difference) would make one of the SPs silent.

[Figure 8 about here.]

4 Discussion and conclusions

In this section we will compare the two models with each other and with experimental findings. Table 1.

showing the similarities and the differences between the two models serves as an ordered summary for

the following paragraphs.

[Table 1 about here.]

4.1 Electrophysiology of the MSDB

Experimental evidence underly that periodic firing of MSDB neuronsin vivo remain after chronic isola-

tion from the brainstem or from the hippocampus (Vinogradova et al., 1980; Vinogradova, 1995). These

results suggest that neurons in the MSDB can act as autonomous pacemaker. Indeed, coherent extra-

cellular oscillation at theta frequency in the MSDB slice preparation was observed in the presence of

kainate, a glutamate receptor agonist (Garner et al., 2005). However, in this study putative GABAergic

and cholinergic neurons fired single action potentials in each theta cycle rather than clusters. In another

study Manseau et al. (2005) observed synchronized glutamatergic bursts under epileptogen conditions

in vitro in various cell types in the MSDB. Although the frequency was much slower and the duration

of these bursts was much longer than underin vivo conditions, it is remarkable that in both studies the

synchronized activity in the MSDB is linked to the activation of glutamatergic receptors as in our feed-

forward model. These experimental results served as rationale on which we based the hypothesis that

intraseptal mechanisms alone might serve as generators of the theta pacemaker activity and proposed

models that are in accordance with the above observations.
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Contrary toin vitro preparations where cholinergic and GABAergic cells exhibit slow-firing and fast-

firing activity, respectively (Griffith and Matthews, 1986; Morris et al., 1999; Knapp et al., 2000) both

cholinergic and GABAergic cells were found to display burst-firing activityin vivo (King et al., 1998;

Brazhnik and Fox, 1999). Moreover, further studies (Griffith, 1988; Griffith et al., 1991; Henderson

et al., 2001; Sotty et al., 2003) underpin the notion that underin vitro conditions medial septal cells do

not exhibit sustained cluster- or burst-firing activity in the theta frequency range. Following this line of

thoughts, we might conclude that there exist some conditions favoring burst-firingin vivo, which have

not been reproducedin vitro yet. In the presented computer simulations we experiment with changing the

firing characteristics of different cell types (GABAergic and glutamatergic) and conclude that in the stud-

ied situations even if GABAergic cells are not cluster-firing cells they can exhibit clustering properties,

which could explain the apparent duality of GABAergic cell firing propertiesin vivoandin vitro.

Arrangement of spikes in theta periodic clusters can rely both on intrinsic or extrinsic mechanisms.

A specific ion channel might serve as the basis of a mechanism of intrinsic theta modulation of activity

as in our modeled cluster-firing cell. Like the regulation of the H-current is mediated by metabotropic

receptors via the intracellular concentration of the cyclic AMP (Wainger et al., 2001), the regulation of

an ion channel responsible for cluster-firing behavior may require specific extracellular environment (e.g.

neuromodulators from the brainstem) that is not presentin vitro. Interaction between neurons through

synapses can also results in a rhythmic firing pattern as in our feed-forward model. In this case modulation

by the fast synaptic dynamics causes a substantial change in the firing pattern of the neurons (see further

discussion in Sec. 4.3, 4.4).

Heterogeneity in their firing rate is a prominent characteristic of medial septal neurons (King et al.,

1998; Brazhnik and Fox, 1999; Dragoi et al., 1999; Borhegyi et al., 2004)in vivo. This heterogeneity

is present in both of our models, but the mean firing rate is lower in the ping-pong model (similar to

Borhegyi et al. (2004)) and higher in the feed-forward model (like in King et al. (1998); Brazhnik and

Fox (1999)). The firing rate of a neuron can be varied in a wider range in the feed-forward model because

in the ping-pong model the membrane dynamics do not permit cluster-firing with firing rates higher than

∼ 40 Hz.

Borhegyi et al. (2004) found that cells with longer bursts tended to fire around the peak while short

burst neurons fired around the trough of the hippocampal theta. Our models can reproduce this finding

when the external current of the two SPs are different (Fig 8C). Correlation between the firing rate and the

preferred firing phase characterize neurons within one SP in our feed-forward model, whereas no such

correlation was found in the ping-pong model. This correlation has not been studied yet experimentally.
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4.2 Network structure and preferred firing phase

A specific network structure is required for synchronization of GABAergic neurons in our ping-pong

model. Recent anatomical studies (Henderson et al., 2004) revealed two PV+ cell populations in the

medial septum: one medially and another more laterally located. These two populations differ in their

GABAergic innervation: PV+ basket-like terminals are on medially located cells, while there are fewer

PV+ synapses on the laterally located neurons. It is possible that these parvalbumin-positive populations

correspond to the two, antiphasically oscillating cell-populations described by Borhegyi et al. (2004).

In the same study Henderson et al. (2004) filled a fast-spiking, putative PV+ neurons with biocitin and

found that their synaptic contacts with other PV+ neurons were similar to that described above. However,

they did not determine if PV+ contacts on the biocitin filled neurons were basket-like or not. If a neuron

having basket-like contacts on its soma do not form basket-like synapses on other neurons and vice versa

that would be a direct evidence for the presence of a polarized network of GABAergic neurons in the

medial septum, which is crucial to synchronization in our ping-pong model.

Brazhnik and Fox (1997) found that theta periodic membrane oscillation of brief-spike (putative

GABAergic) cells is mediated by glutamatergic EPSPs, while rhythmic firing of long-spike (putative

cholinergic) cells are driven by GABAergic IPSPs. These two populations fired in the opposite phase

of the dentate theta. They suggested a feed-forward network where GABAergic neurons are driven by

glutamatergic EPSPs and they provide phasic inhibition to cholinergic neurons. Later (Brazhnik and Fox,

1999) they also showed that intraseptal blockade of GABAergic transmission eliminated rhythmicity of

putative cholinergic cells, whereas rhythmicity of putative GABAergic neurons remained unchanged. In

our feed-forward model when the bias of synapses is positive (Fig. 8E) theISPcould be replaced with a

population of cholinergic neurons as Brazhnik and Fox (1999) suggest. In this case, if we accept that only

one GABAergic population is present in the MSDB then the phase distribution of GABAergic neurons

will be unimodal. However, Henderson et al. (2004) did not find parvalbumin containing terminals on the

somata of the cholinergic cells in the MSDB, however, it is also possible that not all septal GABAergic

neuron contain parvalbumin.

GABAergic neurons identified by their parvalbumin immunoreactivity form two distinct populations

according to their preferred firing phases relative to the hippocampal theta oscillation (Borhegyi et al.,

2004). Other studies classifying GABAergic and cholinergic cells based on the shape of the action po-

tential found that putative GABAergic cells show unimodal phase distribution (Brazhnik and Fox, 1997)

or no phase preference (King et al., 1998) related to the hippocampal theta. However, these cells were

shown to be ChAT negative (Griffith, 1988) but no GABAergic marker was tested, therefore they can
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be either glutamatergic or GABAergic neurons. If the glutamatergic neurons and the two GABAergic

populations of our feed-forward model are taken together we get three distinct peaks located on one side

of the phase-circle (Fig. 8A). In experiments the average firing phase of these three populations measured

together would result in a similar phase distribution as found by Brazhnik and Fox (1999).

4.3 Pharmacological modulation of the septal theta rhythm

Pharmacological modification of synapses among the medial septal neurons offers to be a possible tool

to reveal the network connectivity. Synaptic connections may play an important role in modifying the

firing pattern of a given cell or in the synchronization of two neurons. Physiological evidences suggest

that rhythmic burst-firing of different neurons in the medial septum rely on phasic activation through

cholinergic, GABAergic and glutamatergic synaptic connections (Stumpf et al., 1962; Stewart and Fox,

1989; Brazhnik and Fox, 1997).

Brazhnik and Fox (1999) found that local injection of scopolamine (a cholinergic antagonist) abol-

ishes the burst-firing activity of cholinergic but not that of putative GABAergic neurons in anaesthetized

rats. In freely moving rats, however, scopolamine decreased the firing rate of both cholinergic and

GABAergic neurons. The GABAA antagonist picrotoxin also disrupts burst-firing activity of choliner-

gic but not GABAergic neurons in freely moving rat. Preferred firing phase of these neurons were stable

under drug application. Taken together, it is unlikely that rhythmic firing of GABAergic neurons is the

effect of GABAergic or cholinergic synaptic modulation.

Blocking the GABAergic synapses in our ping-pong model causes desynchronization of these neurons

but the cells remain theta periodic. However, a feed-back from the hippocampus is able to maintain

synchronized activity of the network like in the study of Wang (2002). GABAergic blockade in our

feed-forward model abolishes theta periodic firing of GABAergic neurons from theISP.

4.4 Glutamatergic neurons

The robust in phase synchronization of glutamatergic cells in our model raise the possibility that this

circuit can serve as theta periodic pacemaker for septal and also for hippocampal neurons.

Blocking AMPA receptors in the medial septum does not abolish hippocampal theta in the behaving

rat (Leung and Shen, 2004) but under urethane anaesthesia local infusion of AMPA receptor antagonists

to the MSDB disrupt hippocampal theta oscillation triggered by intraseptal cholinergic activation (Puma

and Bizot, 1999). These studies suggest that glutamatergic neurons are involved in the generation of the

atropine sensitive theta in the hippocampus.
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Manseau et al. (2005) observed large glutamatergic bursts in various cell types including putative

glutamatergic neurons. These neurons fired clusters of action potentials in response to constant depolar-

ization but in the presence of 4-AP (a potassium channel blocker) and bicuculline (a GABAA antagonist)

they fired bursts on the top of a large excitatory wave. The frequency of the bursts were much slower than

the frequency of the theta oscillation. Their study suggests that glutamatergic neurons are able to pace

synchronized rhythmic activity in the MSDB. On the other hand, these experiments did not explain how

large excitatory bursts could emerge in a network of cluster-firing neurons.

The effect of local application of glutamate receptor antagonists to the firing pattern of MSDB neu-

rons have not been studied. Our feed-forward model predicts that the local application of an AMPA

receptor antagonist would result in desynchronization of glutamatergic cells and would disrupt cluster-

firing activity of GABAergic neurons. However, if hippocampal theta remains after the drug injection a

feed-back from the hippocampus may also be able to maintain synchronized burst-firing activity in a part

of the network.

4.5 Conclusions and main results

We gave two different models to describe the generation of synchronized theta activity in medial septal

GABAergic networks. An important characteristic of both models is that the GABAergic neurons are able

to fire synchronized clusters of action potentials in the absence of periodic input from another brain area.

This means that if GABAergic cells are cluster firing and their connections in the MSDB are organized

similarly to the proposition of the ping-pong model then septal GABAergic cells are able to pace other

brain regions by themselves. If, on the other hand, they rather have fast-firing characteristics one way to

elicit clustering behavior is to provide these cells with phasic input. One possible source of such an input,

as shown in the feed-forward model, is a network of local cluster-firing glutamatergic cells.

Both of our models were inspired by the recent experiment of Borhegyi et al. (2004) showing that

parvalbumin containing GABAergic cells show bimodality in their preferred firing phase distribution.

Both of our models were designed to reproduce this property.

We also showed that non-cluster-firing cells when connected in an appropriate network (e.g. similar to

the one sketched in the feed-forward model) show clustering behavior due to emergent network dynamics.

This finding might help to understand whyin vivo and in vitro experiments characterize differently the

firing properties of a given cell type.

Furthermore, our computer simulations show that a local network of interconnected glutamatergic

cluster-firing neurons in the MSDB is able to generate robust theta periodic drive to GABAergic neurons.
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APPENDIX

Membrane potential change of the cluster-firing model taken from Wang (2002) is given by the following

current balance equation:

CmdV/dt = −INa − IK − IKS − IL − Isyn + Iext (A-1)

whereCm = 1µF/cm2, Isyn, the synaptic andIext, the external currents are described in the Methods section.

The leakage current is described by the following equation:IL = (V −EL)/Rm whereRm = 1Ω/m2 and

EL = −50 mV.

The three voltage-dependent currents were described by the Hodgkin-Huxley formalism where the

gating variablex satisfies a first order kinetics: dx/dt = αx(V )(1−x)−βx(V )x ≡ (xinf(V )−x)/τx(V ).

The sodium current (INa) was in the standard form:

INa = gNam
3
infn(V − ENa) (A-2a)

minf = αm/(αm + βm) (A-2b)

αm = (−102(V + 0.033))/(exp(−102 · (V + 0.033))− 1)) (A-2c)

βm = 4 · exp(−(V + 0.058)/0.018) (A-2d)

αh = φ · 70(exp(−(V + 0.051)/0.010)) (A-2e)

βh = φ · 103/(exp(−102 · (V + 0.021)) + 1) (A-2f)

The delayed rectifier potassium current (IK) was described as:

IK = gKn
4(V − EK) (A-3a)

αn = (−φ · 104 · (V + 0.038))/(exp(−102 · (V + 0.038))− 1) (A-3b)

βn = 125 · φ · exp(−(V + 0.048)/0.080) (A-3c)

The slow potassium current (IKS):

IKS = gKSpq(V − EK) (A-4a)

pinf = 1/(1 + exp(−(V + 0.034)/0.0065)) (A-4b)

qinf = 1/(1 + (exp(V + 0.065)/0.0066)) (A-4c)

τq = τq0 · (1 + 1/(1 + (exp−(V + 0.05)/0.0068))) (A-4d)

with parametersτp = 6 s, τq0 = 0.1 s.
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The maximal conductance and the reversal potential of the ion channels were set as follows:gNa =

500 S/m2, gK = 80 S/m2, gKS = 120 S/m2; ENa = 55 mV, EK = −85 mV. The membrane surface was

taken to be1.26 · 103mm2, equivalent to the surface area of a sphere of20µm diameter.

To modeled the MSDB fast-firing neurons with simplified the cluster-firing model by omitting the

termIKS from equation A-1, and changing theφ parameter in equation A-2e-f and A-3b-c from 5 to 10.
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List of Figures

1 The slow potassium channel governs the cluster-firing of the model neuron.A, Bi-
furcation diagram of the cluster-firing neuron. Increasing the applied current the stable
equilibrium point disappears, an unstable periodic orbit emerges and the cell fires clus-
ters of action potentials (0.001 < Iext < 0.045 nA). Further increasing the applied current
stabilizes the periodic orbit and the neuron fires regular spikes with high frequency. The
neuron has a second equilibrium at large positive currents. (black line: stable fixed point,
black dashed line: unstable fixed point, gray line: stable periodic orbit, gray dashed line:
unstable fixed point) The inset shows the response of the neuron to anI = 0.025 nA
current pulse. B, Bifurcation diagram of the reduced (four dimensional) model. The
activation of theq gate is the bifurcation parameter. Trajectory (black line) of the five
dimensional model is projected to theq–V plane. Activation and inactivation of the dy-
namical variableqgoverns the cluster-firing behavior. When theqgate is open, the system
has a single and stable fixed point attractor (resting state). Since its steady-state value is
small at the resting state theq gate starts to close, the fixed point becomes unstable and
a periodic orbit emerges via a Hopf bifurcation. The system diverges from the unstable
fixed point to a stable oscillation (spiking state). Due to the long AHPs, the average mem-
brane potential is more negative during the spiking state and theq gate opens slowly. This
increase in the conductance of the slow potassium current terminates the spiking. . . . . 26

2 Network structure and synchronization in the ping-pong model.A, Connection ma-
trix and the schematic diagram shows the structure of a random network. Shaded cir-
cles represent subpopulations of cluster-firing neurons, arrows mean GABAergic synaptic
connections and the size of the arrow represents the connection probability between cells
from the given subpopulation(s). The connection probability between each pair of neu-
rons is the same. B, Connection matrix and schematic diagram of a polarized network.
The connection probability between cells from different subpopulations is higher than
between cells from the same subpopulation. The total number of synapses are similar in
the random and in the polarized networks. C-D, The activity of the two subpopulations
(gray bars are drawn above black bars) and the membrane potential of one neuron are
shown in the random (C) and in the polarized (D) network. The plotted population ac-
tivity represents the number of spikes fired by all cells from the given subpopulation in
a 5 ms long time-bin. In the random network (C) some cells fire single action potentials
and the spikes are synchronized to each other (see population activity). In the polarized
network (D) neurons fire clusters of action potentials where both the spikes and the clus-
ters are synchronized. The two populations are antiphasic. Notice the fast IPSPs between
the spike-clusters. E, Power spectrum of the network activity in the random (left) and the
polarized (right) case. The middle panel shows the change of theta and gamma power
with network polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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3 Antiphasic synchronization characterize networks where the bias is higher than ap-
proximately 0.25. A, Proportion of clustering cells in the whole network rapidly in-
creases (from∼ 0.5 to ∼ 1) between bias0.2 and0.3 (critical range, indicated by the
shadowed box). In a random network (low bias)∼ 50% of the cells fire single spikes
(left inset), others fire clusters of action potentials (right inset) depending on their exter-
nal current and synaptic connections. Both insets are taken from the same subpopulation,
bias=0.05. B-C, Theta (B) and gamma (C) coherence of the network also change substan-
tially in the critical range of the bias. The horizontal shaded region shows the mean and
the standard error of the correlation between uncoupled cells for control. High negative
correlation values between the two subpopulations indicate that they are antiphasic. Spike
synchronization (gamma rhythm) is present in the random network. Error bars show the
standard deviation of 10 parallel simulations with the same parameters. . . . . . . . . . 28

4 Phase relationship between GABAergic neurons in the ping-pong model.A, The
polar plot shows that the preferred firing phase of neurons related to the mean firing
rate of one subpopulation shows a bimodal distribution. The distance from the center
corresponds to the vector length (center:0, periphery:1; see Methods). Large distance
means strong phase preference. B, There is no correlation between the firing rate and
the preferred firing phase of the neurons. (400 neurons from 10 parallel simulations
are shown). C, Example for two neurons from the same subpopulation with different
preferred firing phases (black and gray lines). The phase difference between the two
cells is∼ 50◦. The mean firing rate of one SP (upper black line) is used as reference
to calculate the firing phases. D, The phase difference between the two subpopulations
is smaller if their external currents are different. Bias is the difference from the mean in
µA/cm2. E, Phase difference between the two subpopulations decreases when synapses
are asymmetric: synapses from subpopulationA to B are stronger than synapses fromB
to A. Bias is the difference from the mean in %. Parameterb = 0.45 on this figure. . . . 29

5 Synchronized activity in the excitatory network is independent from the network
polarization. A, Population activity of the two subpopulations (gray bars are drawn
on top of black bars) and the membrane potential of a representative neuron. Action
potentials and clusters are synchronized in the whole population. B, The synchrony of the
cells does not change with the polarization of the network. Coherence between cells from
the same (different) subpopulation(s) are shown by black (gray) lines. Horizontal shaded
region shows the mean and the standard error of the correlation between uncoupled cells
for control. C, The polar plot shows that the preferred firing phase of the cells are similar
(see caption of Fig. 4A). D, Discrete peaks of population activity enlarged from A show
that the spikes of the cells are synchronized within the clusters. . . . . . . . . . . . . . . 30

6 Interactions between septal glutamatergic and GABAergic neurons – the feed-forward
model. A, A randomly interconnected network of glutamatergic neurons innervate a sub-
population (ESP) of fast-firing GABAergic cells. The two GABAergic subpopulations
reciprocally innervate each other (shaded circle: cluster-firing neuron, open circle: fast-
firing neuron, open arrow: glutamatergic connection, filled arrow: GABAergic connec-
tion). B, Response of a fast-firing neuron to an external current pulse (dI=0.025 nA). C-D,
Activity of the two GABAergic subpopulations and an example for the membrane poten-
tial trace (C,ESPand D,ISP). The neurons in the two subpopulations fire intermittent
clusters like cells in Fig. 2D, but these clusters are driven by EPSPs and IPSPs and not by
the cell’s intrinsic dynamics. The shaded box shows the delayed firing of the inhibitory
driven subpopulation. Parameters:Iext,ESP = −0.0225 nA, Iext,ISP = −0.012 nA, bias=0.45. 31
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7 Change in the external current but not in the network structure disrupts coherent
oscillation in the fast-firing GABAergic network. A-B, When the external current ap-
plied to theESPis in the−0.025 ≤ Iext,ESP≤ −0.0175 nA range the proportion of cluster-
ing cells (A) is high and the firing rate of the two subpopulations are similar (B) in the two
subpopulations (Iext,ISP = −0.012 nA, bias=0.45). Vertical gray lines indicate the default
parameter values used in the feed-forward model, while shaded regions mark physiologi-
cally non-relevant parameter ranges. C-F, Change in the bias does not alter the activity of
theESPbecause of its strong glutamatergic drive (C-D, gray lines,Iext,ESP = −0.0225 nA).
Cells with lower firing rate (E,∼ 17 Hz) do not show clustering behavior like cells with
higher firing rate (F,∼ 22 Hz) (both cells shown in E and F are from theISP). Since more
cells fire at lower frequency due to denser feed-back inhibition in random than in polar-
ized networks, the mean firing rate (D, black line) and the number of clustering neurons
(C, black line) in theISPare lower in random networks than in polarized networks. G-H,
The phase distribution of spikes in the random (G) and in the polarized networks (H) for
ESP(gray) andISP(black), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Phase relationships in the feed-forward modelA, Polar plot shows the phase relation-
ship between glutamatergic (gray dots) and GABAergic (black dots) cells. Cells from
theESPhave a slight phase delay (∼ 45◦) relative to the glutamatergic cells. Cells from
ISPhave a phase delay more than∼ 180◦ relative to cells fromESPdue to their delayed
activation (see Fig. 6C, D). B, Correlation between the firing rate and the preferred firing
phase was significantly negative (for theESP: -0.53; for ISP: -0.75). C, Neurons on the
raster plot are ordered according to their preferred firing phase. Cells with smaller number
(earlier phase) usually have higher firing rate within the SP. D-G, The phase difference
between the two subpopulations depends on the external current applied to theESP(D),
the strength of the glutamatergic input (E), the bias of the strength of the GABAergic
synapses (F). Bias is the difference from the mean synaptic conductance in %. It is pos-
itive if the synaptic connections fromESP to ISP are stronger than fromISP to ESP.
The phase difference was independent from the polarization of the network (G) and was
always smaller than∼ 160◦. Vertical gray lines indicate the default parameter values
used in the feed-forward model, while shaded regions mark physiologically non-relevant
parameter ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

25



restrest

Subcritical
Hopf bifurcation

I=0.499nA
Subcritical
Hopf bifurcation

I=0.009942nA

I=0.04489nA
Clustering/spiking transition

I (nA)

q_gate

Fold limit cycle bifurcation

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

B

Saddle node on invariant circle

1 s

50 mV

A

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

spikingclustering

-60

-40

-20

 0

 20

 40

 0.2  0.25  0.3  0.35  0.4

-100

-80

-60

-40

-20

 0

 20

 40

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Figure 1:

26



time (s)

 0  10  20  30  40
 0

 10

 20

 30

 40

Presynaptic cell

Po
st

sy
na

pt
ic

 c
el

l

 0

 10

 20

 30

 40

 0  10  20  30  40
Presynaptic cell

Po
st

sy
na

pt
ic

 c
el

l

0
20
40
60
80

100

0 0.1 0.2 0.3 0.4 0.5
Network polarization

1 10 100
Frequency (Hz)

Po
w

er

3

4

5

6

10

10

10

10

10

10

2

1 10 100
Frequency (Hz)

Po
w

er

3

4

5

6

10

10

10

10

10

10

2

1 1.2 1.4 1.6 1.8 2

10

0

5

-80

-40

0

40

0

5

10

1 1.2 1.4 1.6 1.8 2

40

0

-40

-80

E

C D

B

time (s)

%
 o

f m
ax

im
um

 p
ow

er

gamma

theta

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

N
etw

ork activity (spikes per bin)

N
etw

ork activity (spikes per bin)

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

A

Figure 2:

27



C
oh

er
en

ce
 in

de
x 

(t
he

ta
)

C
oh

er
en

ce
 in

de
x 

(g
am

m
a)

C(AA, BB)

C (AB)

C(AA, BB)

C (AB)

A

Pr
op

or
tio

n 
of

 c
lu

st
er

in
g 

ce
lls

0.4

0.5

0.6

0.7

0.8

0.9

1

���� �� � � �� 	
 ����� ���������� ��
�
����
���� ��

��������� ������� !�!"�"#

$�$% &' () *+ ,- .�./ 0�01 2�23 4�45 6�67 8�89
:�: ; < == >?@A BCD

EEF�F
GG
GH�HI JJK�KLM�MN OP�PQ R�RST�T U�U

V�VW XYZ [\
]�]^_ `�`ab c�cde f�fg

hi j jkl lmn nop pq qr st tu uv vw wx xyz{ {| |} }~ ~� �� �� �� �

0 0.1 0.2 0.3 0.4 0.5

50 mV

0.5 s

B

C

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

Network polarization (bias)

Network polarization (bias)

Network polarization (bias)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3:

28



8

12

16

20

24

28
90

180

270

315

135 45

225

0

A

C

ED

B
� �� ���� ���	


�� ��� �� ���
� �� �

� ��� ����� �� �
��  ! !"#$ $%

&'() *+, ,- - ./01
2 23 3

4567
89

:;
<=

>?
@A BC DEFGH HI IJKL LM MN NO P P PQ Q QR R R RS S S

0

40

20

-80

-40

0

40

1 1.2 1.4 1.6 1.8 2time (s)

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

M
ean firing rate (H

z)

150

160

170

180

0 10 20 30
Bias of synaptic connections (%)

0 0.2 0.4 0.6

140

160

180

Ph
as

e 
di

ff
er

en
ce

 (°
)

Bias of external current

100 200 300 40

Fi
ri

ng
 ra

te
 (H

z)

o

Preferred firing phase (°)o

Figure 4:

29



time (s)

��� ��� � ������ 	�	
�
� �  �� �� �� �� ��
�� �� ���� ��� � !�! "" ## $% &'�' ( ) * +, -- . / 00 1234 5678�89:�:; <=>? @@A

A
BBC
C
D�DEF�FG H�HIJ�JK LMNO PQRS TUVW XXY

Y
ZZ[
[

\\]
]
^^_
_

`abc

90

180

270

315

135 45

225

0
de fghihj kl mnopqrsistit uvwx yz{|}~ ���i���i�� ���i�����i���i�� ���i���i�� ���i��i��� ���i���i� i ¡i¡¢ £¤¥¦ §¨©i©ªiª«¬ ®¯i¯°i°±²³i³´

0 0.2 0.3 0.4 0.50.1

 0

 0.2

 0.4

 0.6

 0.8

Network polarization

gamma

theta

C
oh

er
en

ce
 in

de
x

10 spikes

µiµiµiµ¶i¶i¶i¶

N
etw

ork activity (spikes per bin)

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

·¸ ¹�¹¹�¹º
º

C D

-80

-40

0

40

0

10

20

1 1.2 1.4 1.6 1.8 2

B

A

»�»¼�¼½ ¾ ¿ ÀÁ ÂÃ�ÃÄ Å ÆÇÈ É ÊË Ì ÍÎ Ï Ð ÑÑ ÒÓ ÔÕÖ�Ö× ØÙ ÚÛ Ü�ÜÝ Þ�Þß àá âã äå æç èé êëì�ìíî�îï ð ñòóô õõ ö÷øù úû�ûüý�ýþ ÿ�ÿ� � � �� ���� � 	
 � �� � �������� ��� ��� � ��� �� ! " # $%

100 ms

&& '( )*�*+ ,-.�./ 01 23 45 6789

Figure 5:

30



time (s)

time (s)

B

ESP ISP

A

-80

-60

-40

-20

 0

 20

 1  1.2  1.4  1.6  1.8  2

10

0

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

ESP

 1  1.2  1.4  1.6  1.8  2

-60

-40

-20

 0

 20 10

0

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

ISP

200 ms

50 mV

N
etw

ork activity (spikes per bin)
N

etw
ork activity (spikes per bin)

C

D

Figure 6:

31



� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

o o

-0.035 -0.025 -0.015 I (nA)

ISP

ESP

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5

100

80

60

80

40

0

-0.015-0.025 -0.02 I (nA)
ISP

Fi
ri

ng
 ra

te
 (H

z)

ESP

ISP

ESP

Network polarization

16
20
24
28
32

Fi
ri

ng
 ra

te
 (H

z)

H

C
lu

st
er

in
g 

ce
lls

 (%
)

Network polarization

ESP

ISP

E

0.5 s

50 mV

Phase (°)
0 100 200 300

ESP

ISP

N
um

be
r o

f s
pi

ke
s

G random network (b=0.05)

0 100 200 300
Phase (°)

ESP

0

40

80

N
um

be
r o

f s
pi

ke
s

polarized network (b=0.45)

C
lu

st
er

in
g 

ce
lls

 (%
)

0

80

40

A

C

F

B

D

40

80

0

ISP

Figure 7:

32



o

o

o

ISP

ISP ESP

ESP

ESP

ISP

-0.015-0.025 -0.02
External current 1 (nA)

0

20

40

60

� � �� � �� � �� � �� � �� � �� � �� � �

� �� �� �� �� �� �� �� �

130

140

150

Glutamatergic drive (nS)

0

20

40

1 1.2 1.4 1.6 1.8 2time (s)

ce
ll 

nu
m

be
r

� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

��
��
��
�

��
��
��
�

B

C

A

G

D E

F

260 300 340 20 60 100
Preferred firing phase (°)

Fi
ri

ng
 ra

te
 (H

z)

�	 
� ��� ����� �� � ��� ����� ��� �� � !" "# #$ $% %&' ()
*+

,- ./

0 01 123 45
6 67

8 89
:; <=> >?@ABC DEFGH HI I

J JK KL LM
NO PQRS

T TU UVW
X X X XY Y Y Y

0.150.125 0.175

140

150

0 0.1 0.2 0.3 0.4 0.5
Network polarization

 100

 120

 140

 160

Ph
as

e 
di

ff
er

en
ce

 (°
) 

Ph
as

e 
di

ff
er

en
ce

 (°
) 

Bias of synaptic connections

90

0

135

180

225

270

315

45

ZZZ
ZZ
[[[
[[

-30 -20 -10 0 10 20 30

135

145

155

Figure 8:

33



List of Tables

1 The similarities and the differences between the two models. . . . . . . . . . . . . . . . 35

34



PHENOMENON PING -PONG M ODEL FEED-FORWARD M ODEL

Theta in medial septal slice is possible possible

GABAergic cells in the MSDB fire
theta periodic clusters

in vivoandin vitro in vivo

GABAergic neurons arein vitro cluster-firing cells fast-firing cells

Theta periodicity in GABAergic cells is
caused by

a slow potassium current synaptic input

Firing rate of neurons can be different slightly (10− 25 Hz) largely (5− 45 Hz)

Firing rate and preferred firing phase no correlation lower firing rate fires later

Cells are synchronized through GABAergic glutamatergic and GABAergic
synapses

The network structure required for syn-
chronization

polarized network of GABAergic neu-
rons

random network of glutamatergic and
GABAergic neurons. Glutamater-
gic neurons innervate a proportion of
GABAergic cells

Phase distribution of GABAergic neu-
rons

bimodal (150− 180◦) bimodal (120− 150◦) or unimodal

Locale application of glutamate antago-
nist

has no effect disrupt hippocampal and septal theta
oscillation

Locale application of GABA antagonist asynchron clustering cells no effect/disrupts clustering activity

Table 1: The similarities and the differences between the two models.
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